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APPLICATIONS OF RESIDUES

TO COMBINATORIAL IDENTITIES

I-CHIAU HUANG

(Communicated by Wolmer V. Vasconcelos)

Abstract. A concrete aspect of Grothendieck Duality is used to give local
cohomology proofs of combinatorial identities including MacMahon’s master
theorem, Grosswald identity, identity of Shoo, Tepper identity, and others.

In combinatorial analysis, the method of integral representation is widely used
(see, for example, [1]). This analytic method provides an analytic framework in
which many combinatorial problems can be systematically solved. The basis for
this method is given with the help of the formalism of residues and the formal
properties for transforming integrals. The symbolic apparatus of this method dates
back at least to 18th century, however, without rigorous foundations. For instance,
the convergence of series was not taken into account.

On the other hand, the method of formal power series and formal Laurent series
has also been developed for solving combinatorial problems (see, for example, [3]).
Contour integrals in the analytic method are replaced by “taking the coefficient
of a monomial in a series ” in this algebraic method. However the concept of
differentials is lacking in the algebraic side. In this article, we enrich the existing
algebraic methods by using a concrete aspect of Grothendieck Duality. “Taking the
coefficient ” thus becomes more natural with the presence of differentials.

In section 1, we give an algebraic definition of residues and review their prop-
erties. In section 2, we give local cohomology proofs of some known combinatorial
identities which were shown by the analytic methods in [1] and [2]. Our proofs
resemble the symbolic guise of the proofs in [1] or [2]. For the general language of
commutative algebra, the reader is referred to [7], [5], and [4].

1. Residues

Let κ be a field. Formal power series rings over κ can be characterized without
referring to variables. Assume that a Noetherian local ring (R,m) containing κ is a
formal power series ring of n variables over κ, that is, the following three conditions
are satisfied.

• R is complete and is of Krull dimension n.
• R is m-smooth over κ.
• The induced map κ→ R/m is an isomorphism.
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Choose a regular system of parameters X1, · · · , Xn of R (that is, n elements which
generate m). Then elements in R can be written uniquely as an infinite sum∑

i1,··· ,in≥0

ai1,··· ,inX
i1
1 · · ·X in

n , ai1,··· ,in ∈ κ.

The universal separated differential module (Ω̃R/κ, d) of R over κ is freely generated

by dX1, · · · , dXn. Elements in the top local cohomology module Hn
m(∧nΩ̃R/κ) of

∧nΩ̃R/κ supported at m can be described using generalized fractions:

Definition 1. Let f1, · · · , fn be a system of parameters of R (that is, n elements
which generate m up to radical). We define[

ω

f i11 , · · · , f inn

]
f1,··· ,fn

(ω ∈ ∧nΩ̃R/κ, i1, · · · , in > 0 )

to be the image of

f i−i11 · · · f i−inn ω

(f1 · · · fn)i
( i = i1 + · · ·+ in )

under the canonical map(
∧nΩ̃R/κ

)
f1···fn

→ Hn
m(∧nΩ̃R/κ).

Theorem 1. If g1 = f i11 , · · · , gn = f inn , then[
ω

f i11 , · · · , f inn

]
f1,··· ,fn

=

[
ω

f i11 , · · · , f inn

]
g1,··· ,gn

.

A proof of the above theorem is sketched in [4, (2.2)]. As a consequence of the
above theorem, we may write generalized fractions without subscript. Generalized
fractions enjoy the following properties:

Property 1 (linearity law). For ω1, ω2 ∈ ∧nΩ̃R/κ, i1, · · · , in > 0, and k1, k2 ∈ κ,[
k1ω1 + k2ω2

f i11 , · · · , f inn

]
= k1

[
ω1

f i11 , · · · , f inn

]
+ k2

[
ω2

f i11 , · · · , f inn

]
.

Property 2 (vanishing law; [4], 2.3.i, or [6], 7.2.a). For ω ∈ ∧nΩ̃R/κ,[
ω

f i11 , · · · , f inn

]
= 0

if and only if (f i11 · · · f inn )sω ∈ (f
i1(s+1)
1 , · · · , f in(s+1)

n ) ∧n Ω̃R/κ for some s ≥ 0.

In particular, for any 1 ≤ j ≤ n,[
f
ij
j ω

f i11 , · · · , f inn

]
= 0.

Property 3 (transformation law; [4], 2.3.ii, or [6], 7.2.b). For ω ∈ ∧nΩ̃R/κ and a
system of parameters f ′1, · · · , f ′n of R,[

ω
f1, · · · , f`

]
=

[
det(ri,j)ω
f ′1, · · · , f ′`

]
,

if f ′i =
∑n

j=1 ri,jfj for i = 1, · · · , n.
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Note that elements in Hn
m(∧nΩ̃R/κ) can be written uniquely as a finite sum∑

i1,··· ,in>0

[
ai1,··· ,in dX1 · · · dXn

X i1
1 , · · · , X in

n

]
, ai1,··· ,in ∈ κ.

So we can make the following definition.

Definition 2. The residue map

resX1,··· ,Xn : Hn
m(∧nΩ̃R/κ) → κ

is defined to be the κ-linear map satisfying

resX1,··· ,Xn

[
ai1,··· ,in dX1 · · · dXn

X i1
1 , · · · , X in

n

]
=

{
ai1,··· ,in , if i1 = · · · = in = 1,

0, otherwise.

Many of our applications are based on the following theorem which is a special
case of [4, (5.3)].

Theorem 2. Let Y1, · · · , Yn be another regular system of parameters of R. Then
resX1,··· ,Xn = resY1,··· ,Yn .

So we can write resX1,··· ,Xn simply as res.
Using modules of zero dimensional support, the notion of residues can be ex-

tended to power series rings over a complete local ring [4, Chapter 5]. In such
general context, residue maps are transitive. Here we only state a special case
which will be used later.

Property 4 (transitivity law). For f0, f1, f2 · · · ∈ κ[[X ]],

resX,Y

[
(f0 + f1Y + f2Y

2 + · · · )dXdY
Xn, Y m

]
= resX

[
fm−1dX

Xn

]
.

2. Applications

Example 1 (MacMahon’s Master Theorem). Let κ be a field, let

Xi =

n∑
j=1

aijxj ( aij ∈ κ, i = 1, 2, · · · , n ),

and let m1,m2, · · · ,mn be non-negative integers. Then the coefficient of xm1
1 · · ·xmn

n

in Xm1
1 · · ·Xmn

n is equal to the coefficient of wm1
1 · · ·wmn

n in the inverse of

D =

∣∣∣∣∣∣∣∣∣
1− a11w1 −a12w1 · · · −a1nw1

−a21w2 1− a22w2 · · · −a2nw2

...
...

. . .
...

−an1wn −an2wn · · · 1− annwn

∣∣∣∣∣∣∣∣∣ .
Proof (cf. [2]). Consider the powers series ring κ[[x1, · · · , xn]] in which the theorem
is properly stated. Let Yi = 1 +Xi. Then the required coefficient is equal to

I = res

[
Y m1

1 · · ·Y mn
n dx1 · · · dxn

xm1+1
1 , · · · , xmn+1

n

]
.

Let wi = xi/Yi (i = 1, · · · , n). Then w1, · · · , wn is a regular system of parameters
of κ[[x1, · · · , xn]]. By the transformation law, we have

I = res

[
(Y1 · · ·Yn)−1 dx1 · · · dxn
wm1+1

1 , · · · , wmn+1
n

]
.
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Since

dw1 · · ·dwn =
1

Y1 · · ·Yn

∣∣∣∣∣∣∣∣∣
1− a11w1 −a12w1 · · · −a1nw1

−a21w2 1− a22w2 · · · −a2nw2

...
...

. . .
...

−an1wn −an2wn · · · 1− annwn

∣∣∣∣∣∣∣∣∣ dx1 · · · dxn,

we get

I = res

[
D−1 dw1 · · · dwn

wm1+1
1 , · · · , wmn+1

n

]
which is the coefficient of wm1

1 · · ·wmn
n in D−1.

Let κ be a field of characteristic 0. Consider the power series rings κ[[x]] and
κ[[x, y]]. The facts that

res

[
(1 + x)ndx

xk+1

]
=

(
n

k

)
and

res

[
(1 + x)m(1 + y)ndxdy

xh+1, yk+1

]
=

(
m

h

)(
n

k

)
will be used.

Example 2 (cf. [1], (2.1)).

q∑
k=0

(−1)k
(
p

k

)
= (−1)q

(
p− 1

q

)
, p > q.

Proof.

q∑
k=0

(−1)k
(
p

k

)

=

q∑
k=0

(−1)kres

[
(1 + x)pdx

xk+1

]

=

q∑
k=0

(−1)kres

[
(1 + x)pxp−kdx

xp+1

]
(transformation law)

=res

[
(1 + x)p

∑q
k=0(−1)kxp−kdx
xp+1

]
(linearity law)

=res

[
(1 + x)p−1(xp+1 + (−1)qxp−q)dx

xp+1

]
=res

[
(1 + x)p−1(−1)qxp−qdx

xp+1

]
(linearity and vanishing law)

=res

[
(−1)q(1 + x)p−1dx

xq+1

]
(transformation law)

=(−1)q
(
p− 1

q

)
.
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Example 3 (Grosswald identity; cf. [1], (1.42)). Assume n− r ≡ 0 (mod 2).

n−r∑
ν=0

(−2)−ν
(

n

r + ν

)(
n+ r + ν

ν

)
= (−1)(n−r)/22r−n

(
n

(n− r)/2

)
.

Proof. Replacing ν by n− r − ν, we have

n−r∑
ν=0

(−2)−ν
(

n

r + ν

)(
n+ r + ν

ν

)
=

n−r∑
ν=0

(−2)r−n+ν

(
n

ν

)(
2n− ν

n− r − ν

)
.

Using the transformation law and the linearity law, we have

n−r∑
ν=0

(−2)r−n+ν

(
n

ν

)(
2n− ν

n− r − ν

)
= 2r−n

n−r∑
ν=0

res

[
(−2)ν

(
n
ν

)
(1 + x)2n−ν dx

xn−r−ν+1

]

= 2r−n
n−r∑
ν=0

res

[ (
n
ν

)
(1 + x)2n−ν(−2x)ν dx

xn−r+1

]
= 2r−nres

[ ∑n
ν=0

(
n
ν

)
(−2x
1+x ) nu(1 + x)2n dx

xn−r+1

]
= 2r−nres

[
(1− 2x

1+x )n(1 + x)2n dx

xn−r+1

]
= 2r−nres

[
(1− x2)n dx
xn−r+1

]
.

Using the linearity law and the definition of residues, we have

2r−nres

[
(1− x2)n dx
xn−r+1

]
= (−1)(n−r)/22r−n

(
n

(n− r)/2

)
.

Example 4 (Identity of Shoo; cf. [1], (2.16)).

m∑
k=0

(
m

k

)2(
n + 2m− k

2m

)
=

(
m + n

n

)2

.

Proof. Using the transformation law and the linearity law, we have

m∑
k=0

(
m

k

)2(
n+ 2m− k

2m

)

=

m∑
k=0

res

[ (
m
k

)
(1 + x)m(1 + y)n+2m−k dx dy

xm−k+1, y2m+1

]
= res

[ ∑m
k=0

(
m
k

)
(1 + y)m−kxk(1 + x)m(1 + y)n+m dx dy

xm+1, y2m+1

]
= res

[
(1 + x+ y)m(1 + x)m(1 + y)n+m dx dy

xm+1, y2m+1

]
.
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Using the transitivity law, the linearity law, and the definition of residues, we have

res

[
(1 + x + y)m(1 + x)m(1 + y)n+m dx dy

xm+1, y2m+1

]
= res

[
(1 + x)m

∑2m
k=m

(
m+n
k

)(
m

2m−k
)
(1 + x)k−m dx

xm+1

]
=

2m∑
k=m

(
k

m

)(
m + n

k

)(
m

2m− k

)
.

Using the methods as before, one can verify easily that

2m∑
k=m

(
k

m

)(
m+ n

k

)(
m

2m− k

)
=

(
m+ n

n

) m∑
k=0

(
m

m− k

)(
n

k

)
=

(
m+ n

n

)2

.

Given an element f in the maximal ideal of κ[[x]], we denote

ef := 1 + f +
f2

2!
+ · · ·+ fn

n!
+ · · ·

and

ln(1 + f) := f − f2

2
+

f3

3
− f4

4
+

f5

5
− · · · .

Then

res

[ − ln(1− x) dx
xn+1

]
=

1

n

and

res

[
eαx dx
xn+1

]
=

αn

n!

for α ∈ κ.

Example 5 (Tepper identity; cf. [1], (2.2)). Let α be an element in κ; then

r∑
k=0

(−1)k
(
r

k

)
(α− k)p =

{
0, 0 ≤ p < r,

r!, p = r.

Proof.

r∑
k=0

(−1)k
(
r

k

)
(α− k)p = res

[
p!
∑r

k=0(−1)k
(
r
k

)
ex(α−k) dx

xp+1

]
= res

[
p!(1− e−x)rexα dx

xp+1

]
= res

[
p!exα( x1! − x2

2! + · · · )r dx
xp+1

]
=

{
0, 0 ≤ p < r,

r!, p = r.
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Example 6 (cf. [1], (2.26)).

n∑
k=1

(−1)k−1

(
n

k

) k∑
j=1

1

j
=

1

n
.

Proof.

n∑
k=1

(−1)k−1

(
n

k

) k∑
j=1

1

j
=

n∑
k=1

k∑
j=1

res

[
(−1)k

(
n
k

)
ln(1 − x) dx
xj+1

]

=

n∑
k=1

k∑
j=1

res

[
(−1)k

(
n
k

)
xk−j ln(1 − x) dx
xk+1

]

=

n∑
k=1

res

[
(−1)k

(
n
k

)
(1− xk) ln(1 − x) dx
xk+1(1− x)

]

=

n∑
k=0

res

[
(−1)k

(
n
k

)
xn−k ln(1− x) dx

xn+1(1− x)

]
= res

[
(x− 1)n ln(1− x) dx

xn+1(1− x)

]
= res

[ − ln(1− w) dw
wn+1

]
(w =

x

x− 1
)

=
1

n
.
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