The Fibonacci Quarterly 1974 (12,4): 360-362

COMBINATORIAL INTERPRETATION OF AN ANALOG OF GENERALIZED BINOMIAL COEFFICIENTS

M. J. HODEL
Duke University, Durham, North Carolina 27706

1. INTRODUCTION

Defining $f_{j, k}(n ; r, s)$ as the number of sequences of nonnegative integers
(1.1)
such that

$$
\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}
$$

(1.2)

$$
-s \leqslant a_{i+1}-a_{i} \leqslant r \quad(1 \leqslant i \leqslant n-1),
$$

where r and s are arbitrary positive integers, and

$$
\begin{equation*}
a_{1}=j, \quad a_{n}=k, \tag{1.3}
\end{equation*}
$$

the author [2] has shown that the generating function

$$
\phi_{j, r, s}(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{r n i n}\{n(r+s), i+n r\} f_{j, j+n r-m}(n+1 ; r, s) x^{n} y^{m}
$$

can be expressed in terms of generalized binomial coefficients $c_{r+s}(n, k)$ defined by

$$
\begin{equation*}
\left(\sum_{h=0}^{r * s} x^{h}\right)^{n}=\sum_{k=0}^{\infty} c_{r+s}(n, k) x^{k} \tag{1.4}
\end{equation*}
$$

For the cases $r=1$ or $s=1$ we have explicit formulas for $f_{j, k}(n ; r, s)$, namely
(1.5) $f_{j, k}(n+1 ; 1, s)=\sum_{t=0}^{j} c_{s+1}(-t-1, j-t)\left[c_{s+1}(n+t, n+t-k)-\sum_{h=0}^{s-1}(h+1) c_{s+1}(n+t, n+t-k-h-2)\right]$. and
(1.6) $f_{i, k}(n+1 ; r, 1)=\sum_{t=0}^{k} c_{r+1}(-t-1, k-t)\left[c_{r+1}(n+t, n+t-j)-\sum_{n=0}^{r-1}(n+1) c_{r+1}(n+t, n+t-j-h-2)\right]$.

These formulas generalize a result of Carlitz [i] for $r=s=1$.
We now define an analog of $c_{r+s}(n, k), n>0$, by

$$
\begin{equation*}
\prod_{j=1}^{n}\left(\sum_{h=0}^{r+s} a^{(r-h) j_{x} h}\right)=\sum_{k=0}^{n(r+s)} c_{r+s}(n, k ; q) x^{k} \tag{1.7}
\end{equation*}
$$

Letting $f_{k}\left(m_{s} n ; r_{s} s\right)$ denote the number of sequences of integers
(1.8)
satisfying
(1.9)

$$
-s \leqslant a_{i+1}-a_{i} \leqslant r \quad(1 \leqslant i \leqslant n-1),
$$

where r and s are nonnegative integers,
(1.10)

$$
a_{1}=0, \quad a_{n}=k
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}=m \tag{1.11}
\end{equation*}
$$

we show in this paper that

From (1.12) we obtain a partition identity.

$$
\begin{equation*}
c_{r+s}(n, k ; q)=\sum_{m} f_{n r-k}(m, n+1 ; r, s) q^{m} \tag{1.12}
\end{equation*}
$$

2. COMBINATORIAL INTERPRETATION OF $\varepsilon_{r+s}(n, k ; q)$

From the definition of $f_{k}\left(m, n ; r_{k}\right)$ it follows that and

$$
\begin{equation*}
f_{k}(m, 1 ; r, s)=\delta_{k, 0} \delta_{m, 0} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
f_{k}(m, n+1 ; r, s)=\sum_{h=0}^{r+s} f_{k+s-h}(m-k, n ; r, s) \tag{2.2}
\end{equation*}
$$

Now (2.1) had (2.2) imply respectively

$$
\begin{equation*}
\sum_{n ; 2} f_{k}(m, 1 ; r, s) q^{m}=\delta_{k, 0} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m} f_{k}(m, n+1 ; r, s) q^{m}=\sum_{h=0}^{r+s} \sum_{m} f_{k+s-h}(m, n ; r, s) q^{m+k} \tag{2.4}
\end{equation*}
$$

Let

$$
\phi(x, y ; q)=\sum_{n=0}^{\infty} \sum_{k=0}^{n(r+s)} \sum_{m} f_{n r-k}\left(m, n+1 ; r, s / q^{m} x^{k} y^{n}\right.
$$

Using (2.3) and (2.4) we get
$\phi(x, y ; q)=1+y \sum_{h=0}^{r+s} \sum_{n=0}^{\infty} \sum_{k=0}^{(n+1)(r+s)} \sum_{m} f_{n r-k+h}(m, n+1 ; r, s) q^{m+n r-k} x^{k} y^{r}=1+y\left(\sum_{h=0}^{r+s} q^{r-h} x^{h}\right) \phi\left(x q^{-1}, y q^{r} ; q\right)$.
By iteration

$$
\phi(x, y ; q)=\sum_{n=0}^{\infty} \prod_{i=1}^{n}\left(\sum_{h=0}^{r+s} q^{(r-h) j_{x} h}\right) v^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n(r+s)} c_{r+s}(n, k ; q) x^{k} y^{n}
$$

Equating coefficients we have

$$
\begin{equation*}
c_{r+s}(n, k ; q)=\sum_{m} f_{n r-k}(m, n+1 ; r, s) q^{m} \tag{2.5}
\end{equation*}
$$

3. APPLICATION TO PARTITIONS

Assuming the parts of a partition to be written in ascending order, let $u_{r}(k, m, n)$ denote the number of partitions of m into at most n parts with the minimum part at most r, the maximum part k and the difference between consecutive parts at most r. Define $v_{r}(k, m, n)$ to be the number of partitions of m into k parts with each part at most n and each part occurring at most r times. We show that

$$
\begin{equation*}
u_{r}(k, m, n)=v_{r}(k, m, n) \quad(r \geqslant 1) \tag{3.1}
\end{equation*}
$$

Proof. It is easy to see that

(3.2)

$$
u_{r}(k, m, n)=f_{k}(m, n+1 ; r, 0)
$$

By (2.5) and (1.7) we have

$$
\sum_{k=0}^{n r} \sum_{m} f_{k}(m, n+1 ; r, 0) q^{m} x^{k}=\sum_{k=0}^{n r} c_{r}(n, n r-k ; q) x^{k}=\prod_{j=1}^{n}\left(\sum_{h=0}^{r} q^{h j_{X} h}\right)
$$

Thus the generating function for $u_{r}\left(k_{,} m_{r} n\right)$ is

$$
\begin{equation*}
\prod_{j=1}^{n}\left(\sum_{h=0}^{r} q^{h j} x^{h}\right) \tag{3.3}
\end{equation*}
$$

But it is well known (see for example [$3, p .10$] for $r=1$) that the generating function for $v_{r}(k, m, n)$ is also (3.3). Hence we have (3.1). This identity is also evident from the Ferrers graph.
To illustrate (3.1) and (3.2) let $m=7, n=4, k=3$ and $r=2$. The sequences enumerated by $f_{3}(7,5 ; 2,0)$ are $0,0,1,3,3,0,0,2,2,3$ and $0,1,1,2,3$. The function $u_{2}(3,7,4)$ counts the corresponding partitions, namely $13^{2}, 2^{2} 3$ and $1^{2} 23$. The partitions which $v_{2}(3,7,4)$ enumerates are $2^{2} 3,13^{2}$ and 124 . From the graphs
we observe that 13^{2} is the conjugate of $2^{2} 3,2^{2} 3$ is the conjugate of 13^{2} and $1^{2} 23$ is the conjugate of 124 .

REFERENCES

1. L. Carlitz, "Enumeration of Certain Types of Sequences," Mathematische Nachrichten, Vol. 49 (1971), pp. 125-147.
2. M.J. Hodel, "Enumeration of Sequences of Nonnegative Integers," Mathematische Nachrichten, Vol. 59 (1974), pp. 235-252.
3. P.A.M. MacMahon, Combinatory Analysis, Vol. 2, Cambridge, 1916.

> 为
[Continued from page 354.]

SPECIAL CASES

Putting $r=1, s=0$, we obtain the generating function for the Fibonacci sequence (see [3] and Riordan [6]). Putting $r=2, s=-1$, we obtain the generating function for the Lucas sequence (see [3] and Carlitz [1]).
Other results in Riordan [6] carry over to the H-sequence. The H-sequence (and the Fibonacci and Lucas sequences), and the generalized Fibonacci and Lucas sequences are all special cases of the W-sequence studied by the author in [4]. More particularly,

$$
\left\{H_{n}\right\}=\left\{w_{n}(r, r+s, 1,-1)\right\}
$$

and so

$$
\left\{f_{n}\right\}=\left\{w_{n}(1,1 ; 1,-1)\right\}, \quad\left\{a_{n}\right\}=\left\{w_{n}(2,1 ; 1,-1)\right\}
$$

Interested readers might consult the article by Kolodner [5] which contains material somewhat similar to that in [3], though the methods of treatment are very different.

REFERENCES

1. L. Carlitz, "Generating Functions for Powers of Certain Sequences of Numbers," Duke Math. J. 29 (4) (1962) pp. 521-538.
2. A. Horadam, "A Generalized Fibonacci Sequence, " Amer. Math. Monthly, 68 (5) (1961), pp. 455-459.
3. A. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers," Duke Math. J., 32 (3) (1965), pp. 437-446.
4. A. Horadam, "Basic Properties of a Certain Generalized Sequence of Numbers," The Fibonacci Quarterly, Vol. 3, No. 3 (October 1965), pp. 161-176.
5. I. Kolodner, "On a Generating Function Associated with Generalized Fibonacci Sequences," The Fibonacci Quarterly, Vol. 3, No. 4 (December 1965), pp. 272-278.
6. J. Riordan, "Generating Functions for Powers of Fibonacci Numbers," Duke Math. J., 29 (1) (1962), pp. 5-12.
