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We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the
characteristic series of labelled paths in the plane. The equivalence holds in the set of series in
non-commutative indeterminates. Using it, we derive direct combinatorial proofs of continued
fraction expansions for series involving known combinatorial quantities: the Catalan numbers,
the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Fulerian
numbers ... . We also show combinatorial interpretations for the coefficients of the elliptic
functions, the coefficients of inverses of the Tchebycheff, Charlier, Hermite, Laguerre and
Meixner polynomials. Other applications include cycles of binomial coefficients and inversion
formulae. Most of the proofs follow from direct geometrical correspondences between objects.

Introduction

In this paper we present a geometrical interpretation of continued fractions
together with some of its enumerative consequences. The basis is the equivalence
between the characteristic series of positive labelled paths in the plane and the
universal continued fraction of the Jacobi type. The equivalence can be asserted
in the strong form of an equality in the set of formal seri¢s in non-commutative
variables. Using this framework leads to a direct “non computational” proof.

Section 1 contains the proof of this equivalence (Theorem 1) together with a
combinatorial interpretation of the Stieltjes matrix and the Rogers polynomials. It
extends some previous results of Touchard [27] and indeperdent works f Jackson
[14], Read [32] and the author [9].

Section 2 is devoted to direct derivations of continued fraction expansions for
generating series of known combinatorial quantities. Indeed the expansiors of
series relative to many classical combinatorial quantities have integer coefficients
obeying simple laws whose origin can be combinatorially accounted for. Ir the
case of path enumerations, these expansions follow as direct consequences oi our
basic theorem. In other contexts, the proof is achieved by utilizing Theorem 1 in
conjunction with what we name systems of path diagrammes. Path diagrammes
are related to the weighted ballot sequences of Rosen [24]; they have been used
systematically by Frangon and Viennot [12, 13] to enumerate various classes of
permutations.

We show here that one system of path diagrammes bijectively corresponds to
set partitions. From this, a set of continued fraction expansions (Theorem 2) is
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derived for series involving the Bell numbers, the Stirling numbers of the second
kind, the odd factorial numbers and other related quantities. A second set
(Tkeorem 3) is obtained by exploiting th: Frangon-Viennot’s correspondence and
some of its variants [12, 13] between another system of path diagrammes and
permutations. Using it, we derive continued fraction expansions for series invclv-
ing the factorial numbers, the Euler numbers, the Eulerian numbers, the Stirling
numbers of the first kind and other quantities; extensions include the gener:lized
Eulerian and Euler numbers of order k. Conversely, Theorem 1 makes it possible
to interpret combinatorially those Jacobi type continued fractions which have
integer coefficients. As an application we show that the coefficients of the elliptic
functions cn, dn count alternating permutations partitioned according to the
number of minima of even value (Theorem 4). Finally we show as a continuation
of remarks of Section 1, how to derive generating series for Carlitz’s cycles of
binomial coefficients [2].

Section 3 is devoted to the enumerative properties of convergents of ;ontinued
fractions. The deromir:ator polynomials appear in a number of enumerating series
for p-ths and diagrammes. Their classical orthogonality relations underlie inver-
sior formulae which have the following interpretation: the matrix formed with the
coefficients of the denominator polynomials is the inverse of the Stieltjes matrix.
Considering in particular the convergents of those continued fractions introduced
in Section 2 for enumerative purposes leads to fractions involving the classical
Hermite, Charlier, Laguerre and Meixner polynomials for which combinatorial
interpretations are given (Theorem 5). In particular, we show that the Taylor
cocflicients of inverses of these polynomials enumerate various classes of permu-
tations.

It shouiC be pointed out that all the continued fraction expansions we derive
here obtain as a direct consequence of geometrical correspondences without any
computation over generating functions. Such an attitude towards enumeration
problems originates in the works of Foata and Schiitzenberger; quoting from [11]:
“Plus important nous semble la démonstration du fait que toutes les identités
classiques. .. sont seulement la traduction de propriétés trés simples des mor-
phismes d’ensembles totalement ordonnés”. Strikingly enough, as we see here,
almost all the classical expansions having integer coefficients receive simple
combinatorial interpretations.

1. Labelled paths and continued fr:ctions

1.1. The basic equivaler.ce

In this section, we prove the basic equivalence theorem relating the characteris-

tic series of certain labelled paths in the plane to the universal Stieltjes-Jacobi
continued fractions.

Paths we wish to consider here are positive paths in the x-y plane, which
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consist of only three types of steps: riscs, levels and falls. More precisely we start
with three step vectors a=(1,1), b=(1,-1), ¢=(1,0) called respectively rise
vector, fall vector and level vector; to each word u = u,u, * - - u, on the alphabet
{a, b, ¢} is associated a sequence of points MM, - - M, where M,=0=(0,0)
and for each j s.t. 1<j=n, OM, = OM,_, +y; in other words for M; =(x,, y;) and
u; = (s, )

(i) (x0, ¥0)=1(0,0),

i) (x; y;)=(%j-1, ;-1 + (s, §) for I<sj<n.

The number n is the length of u; for each j, the number y, is i..e height of point
M;; finally the height of the sequence u (or equivalently of MoM, --- M,) is
defined as maxy<;<. {y;} and is denoted by h(u) or h(MM, -+ M, )

We wish to restrict attention to certain sequences called positive paths or <imply
paths: these are sequences such that all the points in the associated sequence have
a non-negative y-ccordinate. We let 2™ denote the set of positive paths

P ={uuy - u,e{a, b, c*|j:1=<j =nfuguz - - yla=luyuy - oo - wyly
and ‘uluz ce unla = |“1“2 te unlb}'

where |x|. denotes the number of occurrences of ¢ in x.

It proves convenient for later applicatioas to consider the empty word as a
positive path of height and I 1gth equal to zero.

We now define labelled paths in which each step is indexed with the height of
the point from which it staris: if u=u, -+ u, is a positive path, and if
MM, - - - M, with M, =(x, y,) is the associated sequence of points, the labelling
of uA(u) is defined as a word over the infinite alphabet X=
{ao, ay, a2, .. }U{by, by, .. }U{cq, €15 €25 .. .} BY: A(U) = 0,0, « *v, where for 1<
jsn:vyeX and

(i) if u;=a, then v;=q,_,
(ii) if u;=Db, then v;=b, |,

(iii) if u;=c, then v,=c¢, .

We let @ = A(?") denote the set of labelled paths. The labelling operation and
the geometrical representation of paths are exemplified in Fig. 1.

We now need a few concepts from the theory of series in non-commutative
variables, whose introduction in the context of enumerative problems is due tc
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Schiitzenberger [25] (see also Raney [20] for applications to Lagrange’s inversion
formula, or Cori [6] in connection with planar graph enumerations).

We consider the monoid algebra® C{X) of formal series on the set of
non-commutative variables (alphabet) X with coefficients in the field of complex
numbers. An element of C{X)) can be written as

§= Y S U

ueX’

Sums and Cauchy products are defined in the usual way:

s+t= Y (s,+1,)u

u>Xx"*

st= ). (Z s,,tw)-u.

ueX* ‘ow=u
The valuatien of a series is defined by
val(s) = minflul; s, # 0},

with [u| denoting the length of u; conventionally val(0)=-+w. Convergence in
C{X) is introduced as follows: a sequence {s,},-o Where each s, is in C{X)), has
limit s iff

lim val(s —s,,) = +oo.

In other words, the sequence {s,} has limit s iff the coefficients of the s,
progressively stabilize starting with terms of lower order. This irduces a notion of
summability for infinite sequences.

Multiplicative inverses exist for series having a constant term different from

zero; this is in particular the case for series of the form (1 — u) with val(u) >0, for
which we have

(1-u)y'=Y u~
k=0
The element (1—u)™! is known as the quasi-inverse of wu.

Finally for every set of words S< X* we define the characteristic series of S,
which we denote char(S), by

char(S)= ) u.
ucs
For E, F subsets of X*, let E + F be an alternative notation for EUF. Let E-F
be the extension to sets of the catenation operation on words and let E*=

e+E+E-E+E-E-E+ ---with ¢ the empty word. We shall make use of the
follow ng classical iemma.

' Fr extensive definitions, we refer the reader 1 standard treatises on the subject for instance {8).
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Lemma 1. Let E, F be subsets of X*. Then
(i) char(E + F) = char(E)+ char{F) provided ENF:-{,
(ii) char(E-F) = char(E)-char(F) provided E-F has the unique facterization
property, i.e. Vu, '€ E Vv,v'e F uv=u'v' implies u=u' and v=1";
(iii) char(E*) = (1—char(E))™" rrovided the following two conditions hold:
E'NE"* = § for all j,k with j#k,
each E* has the unique factorization property.

Lemma 1 thus makes it possible to translate operations on sets of words into
corresponding operations on series provided certain non ambiguity conditions are
satisfied. We can now state

Theorem 1. Let C'"), h =0, be the formal power series:

C[h]= 1
1—ca— do| by
0
1-—c,—-al | by
a, | b

where (ulv)/w denotes uw™'v. Then
(i) the sequence {C™Y,., converges, its limit defining the infinite continued
fraction:
lim Ct"= !
he {meo o Golbi
0 a,|b,

1""C1—
a,|b
1-c,- 22102

(ii) the characteristic series of labelled paths is equal to this infinite continued
fraction:

1
char(P)=

ao!bl

l—~c0—1— _ a,| b,
@ ax| bs
l—¢c;,~———=.

Proof. For each h=0, we define the =set XW"l={c;c, ..., U
{ag, a1, ..., a,_}U{by, by, ..., b.}. The set P =P N(X"H* is also the set of all
labelled paths with height <h. We first show that

char(®')) = Ci*],

For each h, the set P is a regular or rational set [8). Indeed we have
@[Olz (CO)*s
F=(co+ age,*9y)*,

g)[Z] = (CO+ a()(cl + alcz*bz)*b])*’
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and by induction we see that for each h=0:

Plh+11 = gplhl g lh]
where ¢, is the substitution: ¢, —(c, + a,c¥, b,..). We thus have for each h=0
the following description of #"):

P = (co+aglc; +acat+* * (Cuoy+ Au_1Ciby)* - - - b)*b)*.

The series C!*! is obtained from 2™ by replacing each of the set-theoretic
operations - ,-, star operation by the corresponding series operations: +,-,
quasi-inverse. The equality C"*!=char(®?'"! follows from the observation that all
operations in the above expression for "1 are unambiguous; this fact is itself
readily proved by introducirg the sets:

Pl M=cF,
Prr-N=(c,_y+a,_, chb)* - -,
and by checking that each of the ?'*"~*! has the unique factorization property.

To complete the proof of the theozem—part (ii)—-, we notice the following
chain of inclusions:

PO PPl . .cp,
together with the property of the C!"1=char 2"

val(Ct*} - Cth~1) = 2,
which simply expresses the fact that a path of height h must have length =2h (the
shortest path of height h is aya, - - - a,_,b, - byb;). We thus have

lim C™!=char(),

h—sx

the convergence being monotonic. [

1.2. Continued fractions and power series: the Rogers polynomials

We are here considering connections between power series and continued
fractions. After Theorem 1, the scries char(®) thus appears as the non-
commutative analogue of the Jacobi type continued fraction (J-Fraction) which is
usually taken under the form [19, 30]:

1

b,2?
1-cyz—
(1] bzzz

i—C|Z - e

However here for convenience we d«fine it to be
1

ayb,2?

2
ab,z
1-cz—-12-

HX, z)=

1—6('2 -
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also denoted J(z). Similarly, the Stieltjes type continued fraction appears when

we set formally the ¢;’s to 0. If we let X' ={aq, a,,... , by, by, ...}, we define it as
1
S(X', z)=
(X Z) - aoblzz
a,b,z*
-
1_a2b3z

Each of these fractions has a power series expansion in z:
J(X,z)= ), R,z" and S(X',z)=) R.iz"
n=0 n=0
These expansions define quantities {R, },-0 and {R,}, -0 that are polynomials in
X and X' respectively; we name the R, Jacobi—Rogers polynomials, and the R,
Stielties—Rogers polynomials. These polynomials have been first considered by
Rogers [23]. A simple computation shows:

Ro=1; Ry=cy; Ry,=ci+ayh;; Ry=cp+ coaghy + agc, by + agh,cq
Ry=1; R{=0; Ry;=ayb,; R;=0; R;=aga,b,b,+ayb,aeb;;....

As will be proved later, the sum of the coefficients of R, is the nth Motzkin
number, and the sum of the coefficients ot 3, is the nth Catalan number. An
immediate consequence of Theorem 1 is:

Corollary 2. The polynomials R, and R, have the expression
R, (X)=char(? N X"), R (X)=char{? N X"),

where a=>b means that a and b are equivalent modulo the commutativity of the
indeterminates X.

This interpretation compares to Touchard’s remarks concerning the R,. In our
case, we mark both rises and falls (by a’s and b’s respectiveiy); Touchard’s
interpretation corresponds to the case where all b; are set to 1, i.e. falls are
unmarked. Indeed if we let X]=0,(X") where oy(b)=1 for all j=0, we
kave

R(Xp=%Y Y Y oo Y aac-a,
i(1=0 0<i;<iy+1 0=<iy=si+1 O<iy<i,_y+1
which is precisely Touchard’s expression of the Stieltjes-Rogers polynomials.

The Jacobi-Rogers polynomials R, are homogeneous polynomials. As a conse-
quence of Corollary 2, we now show that their coefficients have closed form
expressions.

Proposition 3A. The Jacobi—Rogers polynomials have the explicit expression:

R(X)= Y pfos..., ;Mo m)(@ob)™ -« (Gubyi) e,

h,no,....n;
My,...,.ny
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where the sum ranges over all h=0 and all sequences (ny, ..., n,; Mg, ..., M)
such that 2n,+2n,+ ** - +2n, + mg+m;+- - -+ m, =n, and p is given by
p(ng, ...,y My, ...,my,)

_ ( n )(nv+n,—1)(n—mo—2n,)(n,+nz-1) .
Mo no—l m, n,—l
. (nh—1'+nh—l\(n—m0_' ce=My_ =20y =21y \
‘\ nh_,l—i /\ mh /.

Conventional'y (%), = 8,_, where & is Kronecker’s syribol.

Prrof. The binomials

(n) (n—mo—ZnO)
my)” m, yeen

count the number of ways of inserting level steps at height 0,1,.... The
binomials

( n+n., - 1 \

n,— 1 /i
count the number of ways of associating n, points at level r to n,., points at level
r+1, in a way consistant with the rules defining paths. [

In the case of the Stieltjes—Rogers polynomials, the expression assumes a nicer
form:

Proposition 3B. The Stieltjes~Rogers polynomials have the explicit expression:
, no+n,—1\/n,+n,—1 R+ n,—1
s (X)= ¥ (o 1 )(1 2 ).__(hl h )

h=0 ne—1 n—1 n,_—1

no+---+tng=n

X (aghy)"(a;by)™ - (apby1)™.

The kth convergents J') and S'™! have similar expansions in which the index h
in the summation is restricted to the range 0,...,k—1.

1.3. Continued fractions and power series: the Stieltjes matrix

As shown by Stieltjes [25], tne relations between continued fractions and power
serizs can be described in terms of matrix equations. We show here that the
elesnents of the Stieltjes matrix also have simple combinatorial interpretations.

We first recall Stieltjes’s theorem in the form given by Wall [30, p. 203].

Theorem S. (Stieltjes’s expansion theorem for J-fractions). The ccefficients in the
J-fraction 1

2
a,z
l —CpZ —=

I_CIZ—

a,z?
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and its power series expansion D(z)=1Y,..d,z" are connected by the relations
d, =k, for all p=0 and more generally

dp+q = ko,p + (11 kl,pkl,q + alazkzgpkzgq o fOl' a“ __p, q ?0

where koo=1, k., =0 if r>s, and the k,; satisfy the matrix equation:

{kol kl] 0 O - .\
k@z k!g kzz 0 v ) =

kos ks kas ki3 }

ke 0 0 O .- 6w 1 0 0
kos ki 9 0 a ¢, 1 0
kog klz k22 0 e \0 al Cz 1

Classically, a progressive construction of the Stieltjes matrix (k, ) is used as an
easy way of expanding the J-fraction into power series; conversely recurrent
determination of the Stieltjes matrix from its first column leads to an efficient way
for computing the coefficients of the corresponding J-fraction [26, 23, 19, 30].

We now prove a non-commutative analogue of Stieltjes’ theorem. First define
for all k, =0 the sets

Pi={ueX*|aoa, - - a_ uss_; - - s, € P}

The elements of P, ; will be sometimes referred to as extended paths from
(height) k to (height) I, and we have 3 = P,

Proposition 4. In the set of infin'te matrices over C{X}, the following equality
holds:

MM=TIHA+1,
where
(T)ii = 5i—l,j; (I)ij = 3i08j0§
c a 0 0
A=]b, ¢, a 0 ---};
0 b, ¢, a,
and [ is a matrix of extended paths:
(IT);; = char(?,; N X').

In particular the sum of the first column of Ii is equal to char(%).

Proof. The proof is the matrix translation of the obvious recurrences:

for j=1 and i=0.
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Example. Writing explicitly the first elements of I, T, 4, I, the identity expressed
in Proposition 4 reads:

1 1 0 000
1 00
Co o 0 "ot o
2
cotapgh, ceaptagc, aga,
1 0 --- C a 0 0 1 g 8
< | €0 o ) by ¢, a4 0 --- + 0
/ 0 bz CZ az * O 0 0
The elements on the diagonal of M are 1, a,, 40a;, dpda,,... and the
elements immediately below are co, Codo+ o€y, Cololy + 8a1C, . ... L1

Proposition 4 trivially entails Theorem S. The proof here is achieved without
determinant manipulations and it reveals a simple combinatorial interpretation of
the Stieltjes matrix. As noticed by Rogers [23, 30, p. 204, 19], Theorem S can be
interpreted as an addition formula: if in the notations of Theorem S we let

f0)= T kousy and fi(0)= L ks

n=0 . n=r

then

flx +y) = fo(x)foy) + aof1(x)f1(y) + apa, fo x)fo(y) +- - - .

We shall see in Section 3, that allowing commutativity leads to a simple
combinatorial expression for the matrix IT7'.

2. Enumerative properties of continued fractions

The equivalence between paths and continued fractions leads to direct con-
tinued fraction expressions of generating functions relative to path enumerations.
The introduction of various classes of path diagrammes which are in natural
correspondance with set partitions ard permutations shows the process to apply in
these cases aiso. Finally the observatioas of Section 1 lead to a simple treatment
of Carlitz’s cycles of binomial coefficienis [2].

It should be emphasized here that continued fractions are introduced without
any computation over generating functions, by simply observing direct geometri-
cal correspondances between objects. The steps we take here makes it possible to
read off the properties of the enumerated objects directly on the continued
fraction. As explained in the introduction this attitude towards enumeration

proble .1s originates in the works of Schiitzerberger and Foata (see especially
f117.
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2.1. Paths in the plane

Let M, be the number of paths of length n, and let C, be the number of paths
of length 2n without level steps:

M, =card(P N X"); C, =card(® N X"").

The M, are the Motzkin numbers, and the C, the Catalan numbers: {M,}=
{1,1,2,4,9,21...} and {C,}={1,1,2,5,14,42...}. Using the morphism pu:
C{X)»— C[[z]] defined by u(a;) = pu(c;) =z for all j=0, and u(b)=2 forall j=1
i.e. counting all steps by z we get as ‘mmediate application of Theorem 1:

Proposition 5. The generating function of the Motzkin and Catalan numbers have
the expansions:

L Mz =———s
4
l-z——
Z anzn=—l-—2~' .
n=0 Z
1- 2
¥4
1-=

As is well known the generating functions have the expres:ions

1+2-vV1-2z+322
L Mz = > ; 5
n=0 4 nz=0 4
Classically, Proposition 5 is derived as a consequence of the (periodic) continued
fraction expansion for & quadratic irrationality. The expansion of the Catalan
series in the context of enumeration problems arises in [28, 1].

By utilizing various morphisms, we can derive expressions for other generating
functions. Let for instance M, , denote the number of paths in &, of length n
containing k level steps. The generating function ¥ M, u*z" is obtained by
means of the morphism:

pla)=n(b)=z; plg)=zu forall j=0, k=1.

So that:

1
k —
Y M, uz"= —

nk=0

e
1-zu——— >
1-zu——

On the other hand, as is not difficult to s.e‘e.
1+(2-uw)a- V(1 - uz)’>—42>
5 Myuten = 1 @oWa 1w der
nk=0 22

In a very similar way, we can derive an expansion of the generating function of
binary trees according to number of 1€2ves (terminology is the same as in [15]).
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We now turn to a different type of enumeration result related to the so-called
q-generations. Define the area below a path without level steps as the sum of the
height of the points in the path. The area a(u) of path u is dsfined inductively by:
a(e)=0; a(a)=j; alb) =k for all j =0, k=1; and a(xy) = a(x)+a(y) for x, y in
X*.

The area is always an odd integer. Let A, ; denote the number of paths of
length n having area k. The morphism p is defined by

pla)=2¢" and p(b)=2zq* forall j=0, k=1,
so that w(u) = z!*/q>™, Applying it to the equality given by Theorem 1, yields the
followirg result first obtained Sy Carlitz [3]:

Proposition 6. The generating function of paths partitioned according to area has
the expansion
1
Az, q)=) Ayz"qt =—————

1

1--29_

124

This continued fraction has been studied by Ramanujan (see [19, p. 126]), who
showed it i0 be expressible in terms of the g-exponential function:

_ qnzxn
Gix) 1+..§1 1-q)(1-4g%---(1-q")

2.2. Path diagrammes and set partitions

Path diagrammes are related to objects considered by J. Rosen under the name
of weighted lead ballot sequences [24]. They also appear in various forms in
works by Strehl [27] and Dumont [7]. However their systematic use in enumeration
problems relative to permutations is due to Francon and Viennot [12, 13].

Definition. A system of path diagramries is defined by an application pos: X— N
called a possibility function; a path diagramme is a couple (v, 5s) where u=
usu, - - - u, is a path and s is a sequence of integers s = s;s, * - - s, such that for all
j 0=g <pos(y).

A pain dizgiamme (u, s) where |u|= n can be represented by a path together
with a set of n points P,[j, P,|!.--- P,[;"" where the abscissae y; are integers

subjected to the condition 0<y; <pos(y).

Example. Consider the system defined by the possibility function:

pos(a;) =pos(¢c;)=j+1 and pos(b)=k+1 forall j=0, k=1.
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A diagramme belonging to this system is
d =(u; s)={aoa,c;b,a,a,b3b,¢,b; 0, 1,0,2,0,1,3,1,0,0);

it can graphically represented as in Fig. 2 with the P;’s being drawn as crosses. [

Fig. 2

Path diagrammes can also be described as words over a labelled alphabet
Y ={af, b(n ('“}i,i;o k=1

where letter x{ represents the jth possibility relative to x, € X. Thus for the
diagramme in the last example the representation (also denoted d) is

— () 1) 0 2 0 [&] Qa 0) 3.(0)
d—(ag)’a(l vc(z)’b( )s a(l )a b3)1b2)af-“. 5b0 )

Let 9 be the set of path diagrammes relative to the possibility function pos;
path diagrammes are obtained from path by substituting to each variable o, (w =
a, b or ¢) the sum of all corresponding possibilities. Thus:

Proposition 7A. The non-commutative series chrr(P) has the non-commutative
continued fraction expansion:

char(9) =

(a(O) (a)) I (b(0)+ b(B))
(a‘1°’ +- (uz )) | (b(0)+ . bgzﬁ'))

1=(c@+- - - +¢§)~
1-(cP+- -+ -

where 1+vy=pos(c,); 1+a=pos(a,); 1+ B =pos(b;); 1+ =pos(c,), et.

In the sequel, we shall freely extend to path diagramimes the terminology relative
to paths: we shall thus speak of the length and height of a diagramme; we shall
consider diagrammes withept level steps. .

The importance of path diagrammes in the context of enumeratxon problems
comes from the following:

Proposition 7B. Let D, denote the number of path diagrammes of length n relative
to a possibility function:

pos(a))=a;; pos(b)=PB; pos(c)=y,  forj=0, k=1.
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The generating function D(z) =Y., D,z" has the expansion:
1

Dz)= ooPy 2’

1—vy2—
Yo arﬁzzz

P32z 2

I—vy:2—
1"72""

Proof. 1t immediaiely follows from Proposition 7A, using the morphism u
defined by p(w{”)=z for we{a, b,c} and i,jeN. [

Path diagrammes are of interest as they can be put into simple correspondence
with many usual combinatorial objects like permutations, set partitions. . .. They
thus appear as the adequate tool for obtaining continued fraction expansions of
ordinary generating functions. Notice that any J-fraction with integral coefficients
enumerates a certain system of path diagrammes for which interpretations can be
sought (see Sections 2-3).

We now exhibit a correspondence between a system of path diagrammes and
set partitions. This correspondence extend: some previons results by Frangon
and Viennot [13] relative to involutions, i.e. to partitions into singletons and
doubletons only. We have:

Proposition 8. Set partitions of size n are in one-to-one correspondence with
diagrammes of length n relative to the possibility function defined by

pos(q;)=1i;, pos(h)=k+1: pos(c)=j+1 for all j=0, k=1.

Froof. The proof is constructive. We start with a partition = relative to a set of n
elements which we assume to be canonically numbered {1,2,...,n}, and we
construct a path diagramme (u, s) of length n. Given =, elements of [1 - - - n] are
divided into three classes:

(1) opening elements: these are elements beionging to a class of cardinality =2
which are smallest in their class;

(2) closing elements: these are elemer.ts bzlonging to a class of cardinality =2
which are largest in their class;

(3) transient elements: all other elements, i.e. either non extremal elements of
classes of cardinality =2, or elements ¢ f singleton classes.

Let v=v,v,--- v, be the unlabelled path corresponding to u; the v;’s are
defined by

t;=a if j i3 an opening element in 7,

v;=c if j is a closing element in r,

v;=b if j is a transient element in r.
Now the sequence s,s,- - - s, is constructed as follows:

(a) ii j is an opening element (equivalently if v, =a), then s;=0. Giving an
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element j and a class a ={a;<a;<-:-<a,}, we say that o overlaps with j iff
a; <j=a,; then:

(b) if j is a closing element or a transient elemnent in a class of cardinality =2,
we consider the classes ovelapping j and we arrange them according to the order
of their first elements. Let {ag <@g =<' <ag), {ap1Sap< - ay), - -be
these overlapping classes with ag, <o;;<ap;<---. If j belongs to the class
{a,1<a,,=<--}, then we set s;= ».

(c) if j belongs to a singleton class, s; is equal to the number of classes
overlapping j.

The correspondence is readily checked to yield a path diagramme consistent
with the possibility rules:

pos(a)=1;  pos(b)=k+1; posi¢)=j+1,

and it is obviously revertible. [

Example. The somewhat esoteric nature of this correspondence is easily unco-
vered by an example. Take for instance n =13, and consider the partition

w={1,7,11}{2, 4, 6, 9}{3H5, 10}{8H12, 13}.

The partition can be graphically represented in a simpie way (sce Fig. 3).

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3

On this graph, we see that {1,7,11}{2,4,6,9} and {S, 10} overlap with the
element 6. The unlabelled path of the diagramme associated to =7 is v=
0,0, * * * V3. The element 1 opens class {1, 7, 11} so: v, = a; the element 2 opens
class {2,4,6,9}, so v,=a; the element 3 is transieni (member of a singleton
class), so vs=c; 4 is also transient so v,=c,..., until v;;, which is a b since 13
closes the class {12, 13}. Thus we have

v=aaccacccbbbalb and u=aya,c,c,a,¢3¢3C3b3b,b,a0b;.

Now the sequence s,s, * - - 5,5 is also easily determined: s, = s, =0 since 1 and 2
are opening elements. At point 3, which is a singleton class, two classes are
opened; these are {1---} and {2---}, so that we 'ake s;=2. Element 4 is
transient in the second opened class, so that s,=1 (we rank classes starting fro:n
zero!). Ultimately we have s=0021010311000, and the planar representa-
tion of the diagramme (u, s) is shown in Fig. 4.
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Fig. 4

Using this correspondence, we get:

Theorem 2. Let B,, ... be the number of partitions having n, singleton classes, n,
classes of cardinality =2, and m non-singleton transient elements, then the generat-

ing function

B(uh u29 t’ Z)=

n n, M m+n,+2n
Z ’ Bnl.nz.m ul’uzzt z ! :

ny,nz.m=0
has the expansion:
ﬁ(ul’ u21 ', Z)= 1 2
1-uyz— lu,z
2
1-(u +10z - 20y 5
3uzz
1= (u, +2t)z ———
In particular:
] 1 .
(ia) ) B.z"= 172 ib) Y S(n, k)ukz"= ! T2
1-1z- = 1-uz— 2 >
1-27-22 - +uwz ==
.. . 1 . 1
(iia) Z Lz"= 5 @iib) Y Jz"= 5
1z 1z
tmz Y
1-z-— 1- 5
... 1"_§Z_

where the B, are Bell’s exponential numbers; the S(n, k) are the Stirling numbers of
the first kind; 1, counts involutions on v:; J, courts involutions or n having no fixed
point, i.e. J,,=1-3-5---2n-1); J,, ,=0.

Proof. We use the morphism:

wla)=uz; wp(b)=kz;

M(Cj) =(u+(j— 1)z,

for j=0, k=1.

The other cases are special applicaticns, for instance (ia) is derived by setting
wy=1,=t=1, (iia) by uy=u,=1, t=0. 0O
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Similar expressions hold for the (2-) associated Bell and Stirling numbers
counting partitions without singleton classes [5, vol 2 p. 57]. Call B? the number

of such partitions of a set of n elements, and S3), the number of those comprising
k classes:

1
@,n_
222
1-iz— 377
1-2z—
Y §@Pn= 1
k=0 |- luz?
1 2uz?

Notice that all these quantities have exponential generating functions of a
simple form;

zn,-’-m-ﬁ»ln2
— n, nztm —_
Bty Uz, 1, 2) = Y, Brymym UT U3 PRy
is given by:
’ z? 2% z*
B(uls u2a t, z)=exp(ulz+u2 2 +—_ —~4-.T-+ .
In particular as is well known:

z" z .

L B =exple” - 1);
+2z2 Zn_ z3/2,

Y S(n, k)u* ——=expu(e -1); ZI ex+¥/?, ZJ,,-r—l—!—e .

@z _ PRI
Y B¢ by exple* —z —1);
and
Y S3u* ——expu(e -z-1).

It is possible to use a formal Laplace-Borel-transform L(f(); u) defined by
L(t*; u)=k! u* and corresponding to the analytical expression

L{F((t); u) = j:e-'f(ru) dr,

to rephrase Theorem 2 as continued fraction expansions of the Laplace trans-
forms of some exponential series.
The continued fraction relative to the Bell numbers is implicit n several
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analytic works relative to the Charlier polynomials [4]. The continued fraction
relative to the odd factorial numbers J, is classically derived as a limiting case of
the continued fraction of Gauss which expresses the quotient of two contiguous
hypergeometric functions.

2.3. Permutations

In this section, we use a fundamental bijection due to Fran¢on and Viennot
[13, 12] between a certain system of path diagrammes ard permutations, to derive
continued fraction expansions relative to the factorial Euler and Eulerian num-
bers. We then use Theorem 1 together with a classical expansion to construct a
new interpretation of the coefficients of the elliptic functions cn, dn which is not
trivially reducible to the first known interpretation due to Viennot [29].

In order to better understand the correspondence between permutations and
path diagrammes, we first recall the representation of permutations by tournament
trees. A tournament tree is a binary tree with node labels that increase along each
branch. Given a permutation o =o,0, - 0, of [1---n], such that 1 occurs at
posiiion i, i.e. o =00, - 0,110, * * - 0,, the tournament tree associated to ¢
is obiained by putting 1 at the root and by taking as left subtreec the tournament
tree recursively associated to o, - --0,_;, and by taking as right subtree the
tournament tree recursively associated to o, - - 0,.

For instance to the permutation 0=(1,7,10,4,8,6,9,2,5,3) there corres-
ponds the tree shown in Fig. 5.

Converseiy reading the labels of the tree in left to right order gives back the
original permutation.
We now state Frangon and Viennot’s theorem [12]:

Theorem F-V. (The fundamental ccrrespondence between path diagrammes
and permutations). Permutations of [n+ 1] are in one-to-one correspondence with
path diagrammes corresponding to the possibility function

pos(a;)=j+1; pos(b)=k+1; pos(c)=2j+2 forall j=0, k=1.

Prooi. We only sketch the proof here, referring the reader to [12] for a precise
descr'ption of the correspondence.
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For ease of presentation, we shall set ¢; = c/+c]. The characteristic series for
paths char(®) then becomes a series on the alphabet

X'= {ai}jao U {bk}kzl U {C;}iao U {C'j'},'ao-
In other words level steps can be marked either by a prime (') or by a double

prime ("). Path diagrammes relative to alphabst X" can be defined in a similar
way, and we readily check that the path diagranimes corresponding to

pos(q) =j+1; pos(b )=k +1; pos(c;) =2j+2,
are in correspondence with path diagrammes defined by
pos(g;) =j+1; pos(b, )=k +1; pos(c))=j+1; pos(ch)=j+1.

Now starting with a diagramme (v, t) of length n we describe the algorithm that
cons‘ructs a tournament tree over [n+1]. Our terminology concerning binary
trees is again that of Knuth [15].

The algorithm proceeds by successive insertion of nodes 1,2,3,... starting
from an empty tree at stage 0 which corresponds to one position to be filled. At
stage j for 1<j=n, j positions are available to insert node j. If the letter v; is an
a, the node labelied by j is taken to be a double node; if v, is a b, the node j is a
leaf; if v; is a ', j is a left branching node; finally if v; is a ¢”, j is a right branching
node.

At each stage j, when the height in the path is h;, the pumber of vacant links is
1+ h; before j is inserted. If the number in the possibility sequence is s, we assign
node j at the 1+s; vacant position starting from the icit.

The construction is terminated by putting node {n+1) as a leaf in the last
vacant position after stage n. [

Example. Here again, an example will be of use. Take the diagramme (v, t) with
v=chasc,a; bya, cib,by and s=001621011;
then the sequence of partial trees shown in Fig. 6 is generated.
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As before the correspondence is useful in connection with emuneration prob-
lems. Given a permutation o = 0,0, - * - 7,, element o; said to be a maximum if
0;-1<0;>.0,,1; a minimum if 0;_,>0;<0;,,; a double rise if 0;,_,<0;<0;,; a
double fall if 0,_,>0;> 0., (conventionally 6, = 0,,,, =0). A rise in a permuta-
tion is a value o; such that 0;_,<o; ie. a risc is either a double rise or a
minimum. Obviously, the number of maxima of a permutation is equal to the
number of its minima plus one. '

Theorem 3A. Let P,_,,, be the number of permutations having k minima (hence
k +1 maxima), | double rises and m double falls. The generating function

P(u, v, W, Z) = }: Pk.l,m ukvlwm22k+l+m+l
has the expression:
P(u, v, w, z)= L 1 2us
1-1(v+w)z— > 3us?
1-2(v+w)z— - "_lz
In particular:-
G Y (n+i)zr= 1 >—
n=0 1-2z
1-22-——=5
1-4z-==2
1
. kon . .
(“) nkZBOAor&Lkd-lu z 1- zuzz ’
’ 1-1(1+u)z - Y
1-2(1+u)— ===
iii E,,. 2n+1 =____z_____ .
(i) ngo 2ne1? 1— 1-222 ’
1- 2-322
-3 ftzz
in which A, ;. is the Eulerian number counting the permutations of [? - - - n] with k

rises and E,,, ,, is the odd Euler number or tangent number counting the alternating
permutations cf [2n+1].

Proof. The proof results directly from a combination of Theorem 1 and Theorem
F-V: an a in the correspondence is associated with a minimum, a b with a

maximum, a ¢’ with a double fall and a ¢” with a double rise. We thus use the
morphism p

wla)=(j+Nuz; wp(b)=(k+1)z; plc)=(-+1vz; p(c)) =G+ Dwz.
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The special cases are obtained by setting:
Du=v=w=1;
(i) u=w,o=1;
@iii) v=w=1Lu=1,;
and rearranging the expressions. [

There is an important modification of the Frangon-Viennot correspondence
also considered in [13]1. Let S’ denote permutations where (n + 1) occurs in the
last position.

She1={01 Opi1| Oy =n+1}

The set S/, is obviously isomorphic to S,. Now permutations in S}, correspond
to trees with (n+1) at the bottom of the right branch. By the Francon-Viennot
correspondence, they are associated to diagrammes (u, s) with forbidden posi-
tions, given by

forall 1<i<n, fu=>b.: s¥k,
if uy=ci: s3]

These restrictions express on the path diagramme the fact that no ieft branching
son nor leaf different from (n + 1) can ocsur on the right branch of the tournament
tree at any intermediary stage of the construction.

Theorem 3B. The following expansions hold

..;o ntz"= 1222 ’
1—z- 52,2
1=3z-77
1
k n__ . .
nkZ;() An,ku Y4 IZHZZ ’
’ 1-uz - 32,2
1-(1+2u)z—
ZEzn22"=_—1—z-zT ;
1- 2222
1—
e 2.2
1_3 z
1
kn _ .
an.ku Z 1 - uzz »
e 1+ u)22>
1-@+u)z - LEW2E

where the A, are the Eulerian numbers; E,,, is the 2n-th Euler number of secant
number counting the alternating permutations of [2n]; s, is the Stirling number of
the first kind counting the permutations of [n] having k right-to-left minima.
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Proof. From the above remarks, S, which is in bijection with S/, , corresponds to
diagrammes relative to the possibility function:

pos(a)=j+1; pos(h)=k- pos(c))=j; pos(c)=j+1, forall j=0, k= 1.

The result follows by choosing adequate morphisms in each case. For instance
right-to-left minim: orrespond in a diagramme (u, s) to positions i such that

W=0a wu. 5=}
y,=c; and s;=j for some j=0.
The morphism which gives the Stirling numbers of the first kind is thus
plg)=pN=(j-D+wz; pb)=kz; pc)=jz forj=0,k=1. O

Theorem 3C. Let C,,, ., be the number of permutations in S, having n, cycles of
length 1 and n, cycles of length =2. The generating function

C(uh u27 Z) = Z Cnl.nz.nu;'lu;zzn

has the expansion
1
1u,z>
2(1+ uy)2?

Cluy, uy, 2)=

1"u|2"
1-Q2+u,)z—-

In pariicular for D, the number of permutations without fixed points:

2: l)nZ" ==;i:—————I5;E—’“—_.

2,2
1—22—2 z

Proof. The proof follows directly from the fundamental bijection [11, p. 13] of S,
on itself, that exchanges smallest elements of cycles and right-to-left minima.
Singleton cycles correspond to right-to-left minima that are double rises; smallest
elements of non-singleton cycles correspond to right-to-left minima that are also
minima. [0

All the quantities appearing in Theorem 3 have exponential generating func-
tions of a simple type. We mention:

s‘ A kZ”_ 1-u
nivo M n! 1-ue*—v’

2a+1 n

Y Ejpuymo tgz YE z sec z=—
S TR L1 E;,>—=secz=—;
nso 1204+ 1t =0 2" 2n! COs z

1 .
(1-n*

Y Sput* = =exp(—uln(i—1)=
nk=0 n!
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n

ny gy 2o = EXP(1 — Up)Z
chl.nz,nul uz n!"‘ (1"‘2)“’ ’
z" e ?
ZD"TJ“(l—z)'

The continued fraction expansions of the two generating series of factorial
numbers already known to Euler are limiting cases of Gauss’ continued fraction,
to which the expansion relative to the Stirling numbers also reduces. The
expansions relative to the Euler and Eulerian numbers have been derived by
Sticltjes by means of standard addition formulae on the corresponding exponen-
tial generating series, as an application of his basic theorem.

The construction in Theorem 3 can be further extended. Consider r-forests of
tournament trees such that (n +j) occurs at the bottom of the right branch of the
jth component of the forest for all je[l---n]. Such forests are bijectively
associated to the class S!%), of permutations of S’,., where values n+1, n+
2,...,n+r appears as a subsequence in that order:

S0 ={0102"* Ouiz|nH1=0,  ntr=0, D) <jp - <jp=n-+1}.

Obviously S’ is identical with S7,,,. We can modify the Frangon-Viennot
correspondence io see that r-forests of this type correspond to path diagrammes
relative to the possibility function:

pos(a;)=j+r; pos(b)=k;

. forj=0,k=1.
pos(c))=j; pos(c))=j+r d

Notice that the cardinality of S/, is expressed by the rising factorials:

card(S’)=(r),=r(r+1)- - (r+n-~1j.

Now parameters of tournament trees can be extended additively to forests. Mew
parameters are thus defined on S7,. For instance stzrting with the double nodes
and right branching simple nodes of tournament trees, the corresponding parame-
ter on forests is the total number of double nodes aid right branching cimple
nodes and for an r-forest of size n + r; it corresponds to the number of rises in the
associated permutation of S, when one does not count possitle rises of the type
(n+j;n+j+1). Call AL, the number of permutations of S;7, having k such
rises; the AY) are the Eulerian nuinbers of order r [21, 11]. Similarly, call ES, the
v umber of permutations of S42), such that the elements 1,2, 3,...,2n are either
minima or maxima, i.e. no value 1,2,...,2n can either be a double rise or a
double fall. The EY) are the Euler number of order r. Wz have

Proposition 9. The generating series for the rising facterial:, the Eulerian and Euler
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numbers of order r have the following continued fraction expansions:

1
T 122
1-(r+2)z - 20X
1
(r) kon .
ng;aoA"'ku £ 1ruz®
' 1-ruz - 20+ Duz*
1-((r+Du+ 1) —————
1
(r)
n§0 E . 1'22
1_2(r+ 1)z?

These enumeration vesults have the interest to be expressible by rth powers of
exponential generating functions:

- z" 1 -
J'Z:o(r)" n! (1- z)” nza:oEz'l 2n1

" 1-u r
A(r) uk Jndip ( ) .
Z ot \ i —uexp(z(1 — u))
The A}, are related to quantities that appear in the znumeration of permuta-
tions with restricted positions {21, 11]. For instance they are given by

(ry _
an“r an+r.n+l-—§.'.’

where the "a,, are the numbers of {11, p. 45].

From an algebraic point of view, the continued fraction of the series of the
rising factorials coincides with the expansion relative to the Stirling numbers. The
continued fractions relative to the EY, and A{) have been computed by Stieltjes
{26] and Rogers [23].

We now turn to the study of elliptic functions. The elliptic functions cn and dn
are defined [31] by

cnu, a)=cosamiu, a);  dn{u, o) =v1~-a®sin’ am(u, a}

where am(u, a) is the inverse of an el ntic integral: by definition

am(u, a)=¢ iff u= r L
, V1 aZsin’t

The functions cn(u, a) and dn(u, ) have power series expansicns:
u™"

ey, @)= ), (-1 '3

n=0

’);

u*"

dn{u, @)= 3 (1)~ *

i=0
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where C, and D, are polynomials of degree n—1 with D, the reciprocal
polynomial of C,. The noticeable fact about the C, polynomials (hence the D,) is
that they have positive integer coefficients. Furthermore, the coefficients of C,
(and D,; add up to the Euler number E,,: this corresponds to the well known
property of the elliptic functions to reduce to the hyperiwolic function when the
modulus a equals 1. Since E,, counts the number of alternating permutations
over [1---2n], the question naturally arises whether there is some natural
partitioning parameter of alternating permutations enumerated by the coefficients
of the C,’s. We prove:

Theorem 4. The coefficient C,, in the expansion of the elliptic series

u2n

) - — ne 2k
cn(y, a)-—n‘é_o( "G, ont

counts the aiternating permutations over [2n] having k minima of even value.

Proof. As is classically derived from the addition theorems for elliptic functions,
the following expansion holds:

i n n 1
Y (~1)"C,a*z? = 5
nkz=0 1+
22a2z?
1+ o 357
1+42a222

Thus C,, counts the number of path diagrammes of length 2n, relative to the
possibility function:

pos(c))=pos(c}))=0; pos(a)=j+1; pos(b,)=k forall j=0,k =1,
whose path comprises 2r letter in {a,, a;, as, .. .}U{by, b4, be, .. .}.
Equivalently, C,, counts diagrammes whose path has r letters in

{a,, as, as, . . ., since in a path a letter a,;,, is matched by a letter b,;. Notice also
that in a path like

Ay a1 b, 814283 b, 835, 5,

the ay, a3, as, ... (underlined above) occur at even positions starting from the
left. Using the Frangon—Viennot correspondence between S/, and diagrammes
of length n, we see that the a,;,, correspond to minima of even value. [J

This interpretation is distinct of the first interpretation of the coefficients of
elliptic functions given by Viennot [29].

Example. If €, is the set of alternating permutations of 2n with k even minima,
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we have:
Co={0h € o={21}; 6,,=1{2143};  6,,={4231,3142,3241,4132},

which is consistent with the known values of the C,,. O

2.4. Cycles of binomial coefficients

In this section, we use the results of part 1 to obtain a combinatorial proof of an
expression for generating series of quantities akin to Carlitz’s cycles of binomial
coefficieists [3, 22].

We consider here (planted plane) trees in the sense of Knuth [15], where each
1iode has any number of successors. The height of a node is the distance measured
in nuinber of edges from that node to the root of the tree. A tree has specification
fiys fas s+, ju) if it has size 1+j,+j,+ -+ - +j, and is formed with j, nodes of
height 1,..., j, nodes of height h. For instance the tree in Fig. 7

Fig. 7
has specification (3, 2, 1, 3).

Proposition 10.°> () The number o(ji,jo,...,ju) of trees with specification
(i1 j2» - - - » ju) has generating function

Za(jl) j2, .o ’jh)ulf‘u’f - ua‘
expressed by

A[h](ul, Uy ..oy uh) s,

and its value is

jrtia— 1) . (jh—-l+jh - 1)
i 1 jh—l -1

% roposition 10(i) has been derived independuntly by Read [32].

a(jujz, LRI jn)z (
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(ii) The number B(i,, i, ..., i,) of trees with specification (i,+1,i,+1,...,i, +
1) having their leftmost branch of height exactly h has generating function

B[h](ul, uz, cnsy uh)= z&(il’ iz, vesy ih) uil‘uif R uﬁ'
expressed by

Bm(uh cees )= Am(“h)A[zl(“h—u u,): - A[h](ul’ Ligy o« .y Up)

= 1 - 1 LI 1
1—u;, uh._.l u1
] —— —_—
l“uh
1
l_uh

and its value is

Bliy, i, ..., i,,)=(i1T52) . (in-_: +i;.)_

L In-1

Proof. The classical correspondence between path and trees associates to a tree
with specificition (j,, ja, . . . , j,) @ positive path of height h with j, occurrences of
letter a,_, matched by j, occurrences of letter b, for all 1 <<k <h. Part (i) of the
proposition follows from the expression of the Stieltjes~Rogers polynomials in
Proposition 3 using the morphism w(a;) = y;.1; p(s)=1.

The same correspondence associates to a tree with specification (i, +1;i +
1;...;i,+1) and with leftmost branch of length h, a path from h to 0 having
height h. In such a path we can single out the rightmost occurrences of letter s,
for all k:1=<k=nh, which yields the factorization

W = 5,Up—15h~1Vp-250-2 * * * V1S51Vo.

Thus the series of the u’s factorizes into a product. Writing W for the
characteristic series of the w corresponding to our description, we have

W= Vi_18,-1 "+ V151V,

where V; is the characteristic series of paths from j *o j with height <h and such
that all their points have height =j. Thus

1
p(V)=
1__31':_1_
1 M2
1
l_uh

from which the product expression of B! is derived.
The closed form expression for B(i;, iz, . ... i,) follows from a straight forward
modification of the counting argument of Proposition 3. [



152 P. Flajolet

faticipating on some of the developments of Section 3, we can see that the
successive numerators and denominators in the procuct giving B™! simplify,
leaving only the last denorrinator standing in the expression, so that
1

[’_ul, _uz, seuy _uh]

B[hl(ul’ Uzyoooy uh) =

where the cumulants [x;, x, . . . ,X, ] are defined recurrently by
[ 1=1; [xi]l=1+x;
[xh X25-049 xn]= [xb X230y xn—l]+[xl’ b TR xn—ZsI xn]'

From this follows the equality:
1
auu, +bu,+cu, +d’

Bm(u., Uzg e v ey u;,) =

where
a=[‘-u3,-.-,"'u"-2]; b=_["’u3,. . .,—u,,_I];
c= _[—uz, ceny "'u”_.z]; d =['—u2, e sy —un—l}‘
This expression is essentially Carlitz’s result [2].

3. Enumerative properties of convergents
3.1. Convergents
Starting with a J-fraction
1
I(@2)= agh,z>
a, b27.2

3

I-COZ-

1"'012""

we define the hth convergent as the (finite) fraction

1
2= agh,z?
oY1

1—~cpz =

1- (&4
The hth convergent corresponds to paths with height <h (see Section 1) and
allowing commutativity of indeterminates, one has classically

S*z)=P,(2)/Q,(2)

where P, and Q, are polynomials which satisfy a linear recurrence
P_(z)=0; Pyz)=1;

P.(2)=(1-¢,2)P,_s(2)— a,_1by2° P, _5(2);
Q_{2)=1,; Qo(2z)=1-¢yz;
C.{z) = (1-¢,2) Q- 1(2) ~ a4, b, 22 Qs -2(2).

He-= we have set conventionally J©-=0=0/1.
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The polynomials P and Q appear in a number of enumeration results relat.ve
to paths.

First consider the paths of height exactly equal to h; these have generating
function

J[h]=1[h——1]=_Ph _ Ph—] _ P,,Q,,_l—P,._IQh

Q Q.  QQ.,
Using the classical determinant identity, we have

P.Q,_,—P,_1Q,=apa, " a_1bb,--- thZh,

hence

A Z2h
Oth—l,
This result is consistent with the fact that J™"1— j*~1 counts paths of height
exactly h, which have necessarily length =72h.
Consider now paths from height h to height h whose elements are all at height
= h. Application of Theorem 1 shows that the corresponding generating function

denoted J’ has the exparsion
1

p)
by 12

J[h]_.,[h_l]z with Ah = (agbl) M (ah_lbh).

]”'/ —

1—¢,z—
2

Ap1byi2z
1= 0y — IS

we shall call it the hth truncation of the continued fraction J. The truncation J'* is
expressible by '
1 Q,-1(2)J(2) - P, _4(2)
-1 by2% Qp5(2)J(2) = P, _5(2)
Finally consider the generating series K (z) of the paths from height 0 to height
h; obviously

K, (z2)=J%z) - apzJ"(z) - a,z - - - F"(2),

Jz)=T0(zy;  TM(z)=

so that

Ki(2) = 7l Qua(2)J(2) ~ Py (2)).

blbz"'bh

In particular, paths from O to h with height h have a generating function
denoted K"}, whose expression is obtained by replacing .1(z) by P,/Q, in the
expression above:

KiM(z)=

1 P.(z)
b1b2 A bhzh (Oh—l(Z) (’h(Z)

hence using again the determinant identity:

~Pi(2);

h
E [7 7Y PEAIR / PRV 4

Q,.(z)
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We thus see that the numerator polynomials P,, and the denvminator polyno-
mials Q, appear in several enumeration formulae relative to generalized paths.
The denominator polynomniials usually have simpler expressions. The numerator
polynomials P, can be expressed by convolution of J(z) with Q,(z) as follows: for
each m =0, define the erasing operator E,, as a linear operctor from C[[z]] into

C[z] satisfying:
0 if n>m,

En(z")= {z" if n<sm.

As is readily checked val(K,(z)) = h, and thus val(Q,_,(2)J(z)— P,_,(2))=2h;
the polynomial P, _; of degree h —2 thus coincides with the first h — 1 terms in the
product Q,_,(2)J(z); hence, shifting indices, we get

P,(2)=E,_(C,(2)J(2)).

3.2, Inversion relations

We have seen the identity:
1
b.b,- - bhzh(oh—l(z)-’(z)-Ph_l(z)),

where val K,,'z) = h. Thus,
val(Q,_4(2)J(z) - P,_,(2)) = 2h.

This propeity can be rephrased as an orthogonality relation (see e.g. [30, p.
193)): Let J(z)=¥,-oR,z" be the power series expansion of J; a linear form over
C1z] is defined by

(x"y=Ry;
it can be extended to a bilinear form over C[z] by setting

™y =" =R, ..

K,(z)=

Now let
Qy_1(2)= Z Qy-1,2"

O=r<h

and define the reciprocal polynomials:

0.-k0)=2"0us(3) =L Oucr s
The Q,., are normalized (the coefficient of z* is 1) and we have
(2" | Qy_i(2)> =(z"Q, _1(z)) = (Z Q,,_L,,_,z"“>
= Y ReQu et

O=r=<h
= coefi(J(2)Q,..,(2);2"*™).
From the preceding remarks, we see that

(2°]Q,-1(2))=0 if 0<n<h=deg(Q,_,).
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Notice also for n=h the relations for K, (z)=Y, 50 k, ,2":

1 =
-5 (102,
h

Kin = b.b, b,

and in particular
(Zhlzh)=<zh I Gh-—l(z))= b.b, - - - byky, =(aoh,) - - - (ah--lbh)-,

Thus the polynomials {Q,_,},-, form an orthogonal family of polynomials with
respect to the bilinear form associated to J. The change of basis from the {z"},.,
to the {Q, . }.=¢ is thus described by

(jh-l(z) = Z Qu_1)h-r2"

O<r=<h

n _(z”|oh—-l(z»
oenen (Qn-1(2) ' Q,,_;(Z))

knw A~
z Qh-1(2)=zm0n-x-

We thus obtain:

Proposition 11. The Stieltjes matrix of extended paths normalized by columns:

§=(5,,) with3§,,=—-2"20—o
( h,n) h.n Aoy " - - A1
and the matrix of the coefficients of the denominator polynomials:
0= (Gn,) with Gy, = Q14—

are inverse of each other.

Example. The first elements of the Q and § matrices are given below when ¢; =0

for all j.
1
0 1
Ssxs= Ao 0 i
0 Ao+ A, 0 1
A2+ AgA, 0 Aot A +A, 1
1
0 i
05x5= =4 0 1
0 —Ao—Ay 0 1
Aohi 0 —Ag—A=A, O 1

Here we have set A, =ab;.,.
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The elements of the S matrix can still be interpreted as extended paths whose
falls only are marked with tke A,’s. The clements of the Q matrix also represent
certain types of paths in a lattice, as can be seen from the recurrence:

Q.. =Qy 1, cQy_1,1— Ah—loh~2,r—21
or equivalently:

Gne = qn-1,0-1~ -1~ An-1Gi—2,r

In particular when ¢;=0 for all j apart frora the sign, the coefficient g,
corresponds to paths in the x-y plane with steps given by a|; and B|? starting from
the line y = x. This observation is exactly the Euler-Mindig interpretation of the
convergents. Recently G. Viennot (private communicaiion to the author) has
given a combinatorial proof of these inversion relations based on direct path
manipulations.

3.3. Specific cases

Each system of path diagrammes has an associated family of polynomials.
Combining results from the last section with geometrical interpretations in Section
2, we obtain a few combinatorial interpretations for inverses and quotients of
classical polynomials.

Proposition 12. Let ML) be the numbe: of paths of height h and length n, and let
C'") be the number of paths of height i without level steps, we have

Q,_,(2) Q,_{2)
hl,n _ “<h-1 d [hl,n _ <h-1 2]
LM 0.z) " gc z 1(2)

where

(i) Q,(z)=(p"**~p"*3/(p~ p) with p, p the roots of the equation y>— (1~ z)y +
22=0;

(i) Quz)=(p""**=p™"*3)(p--p) with p', §' the roots of the equation y>—y+
22=0.

The cbvious proof is omitted. The polynomials Qf, are elementary variants of
the Tchebycheff polynomials. These classical results have been first established by
Krevieras [16, i7] who also found the cxpression of K" in this case. The result
appears in [1] under a different form.

We now come to partitions. Given a partition 7 of [n], define the width of 7 at
x denoted w(m, x) as the number of classes overlapping x, that is having (at least)
one element < x and (at least) one element > x; define the width of 7+ denoted by
w(mr) by:

w(7) = max{w(m x)}.

xeln])
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For instance with = ={1, 7, 11}{2, 4, 6, 9{3}3, 10}{8}{12, 13}, the width of = at
6 is equal to 3 w(wm, 6)=3 since there are exactly 3 classes overlapping 6:
{1,7,11}, {2, 4, 6,9} and {5, 10}; similarly w(r,3)=2 and o(w)=3.

Theorem 5A. Let BI"! be the number of partitions of [n] of width <h; let B¥],

denote the number of partitions of [n+ h] of width h such that 1,2, ..., h belong to
different non-singleton classes, then

P,_,(2) N h'z*
Blzm =210 apd Blhlzm = —,
n§0 Q,-1(2) mza:o Q,-1(2)

where Q,_,(2) is the hth reciprocal Charlier polynomial, and P,_,(z) is determined
by the rules of Section 3.1.

Proof. The hth Charlier polynomial is defincd by

Gla= T O+ phete=1)- - x=k+ 1),

O=k=n

and has exponential generating function

Y, C,,(z)——~e “(1+ u)*,

h=0

The corresponding three-term recurrence is
Gi(2)=(z-h)G,,(z2)—(h—1GC,5(2), h=2,

with C,=1; ¢; =x— 1. From this immediately follows that Q,_,(z)=2"G,(1/2)
for h=0. Thus the polynomials Q, are denominator polynomials associated to
the continued fraction of Theorem 2. We complete the proof by checking that the
geometrical correspondence between path diagrammes and set partitions trans-
forms the height of the diagramme into the width of the partition. [J

Involutions being special cases of partitions, *ne notion of width applies equally
well to them. The width of an involution is thus a measure of the overlap of its
cycles.

Theorem 5B. Let I be the number of involutions of [n] having width <h; let
It denote the number of involutions of [n+h] having width h and such that
1,2,....h belong to different cycles of length 2. Let I and i be the
correspondmg quantities re'~tive to involutions without fixed points. Then

P,_,(2) hiz"
Jihign = _HLZ0 apd fihigm = ,
ng() Oh—l(z) : mZ=0 Qh—l(;")

P,_(2) hlz"
plhign = —B=22 gngd Jithdm = ,
né() h-1(2) mZ;;-u h-1(2)
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where Q),._,(z)=z"H,(1/z) is the hth reciprocal Hermite polynomial and
Q,.1(z)=2"H,(1/z — 1). The numerator polynomials P,_, and Pj}_, are given by
the rules of Section 3.1.

Proci. We only need to identify the denominator polynomials. The mth Hermite
polynomial is defined by
m—2k

_ v m! RPN L
Ha@)= X m—2ii TV

and has the exponehtial generating function
Z H._( EZ__ u—u2/2
m(Z) m!-—e .

The corresponding three term recurrence relation is
H.(2)=2zH,_(z)-(h—1)H,_,(2), h=2,

with Hy(z)=1; H,(z)=z, which shows Q}_; to be identical to the reciprocal
polynoimial of H,(z). OJ

The ¢onvergents of the continued fraction relative to the series of the factorial
and secan* number can also receive combinatorial interpretations.

Given a permutation o€ ¥,, and a value x€[C - - - n] we consider the word
w(x)e{+, —}" called the signature of x in o defined by

if 0;>x,
if U;sx—

(w(x)); = { t

A cluster in a word we{+, —} is a maximal factor of w, formed with + symbols
only. We can then define the clustering of o at x denoted by cl(o, x) as the
number of clusters in w(x).

Thus with 0=649315827, the signatures w(0), w(l),... are
wiO)=+++++++++,
w(l)=++++—-++++,
w)=++r++—++—+,

wl=+++-——++ -+,
wd)=+-+—-——++—+,

wl)=+—-+—-—-—+—+,
w6)=—~r——— + -+,
will=——+—-———+4——,
w(B)= -~ +—— =~ :
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The clustering of o is defined as
cl(o) = max cl(c, x).

In the last example, the clustering of the perr.utation is equal to 4.
The clustering of a permutation measures the amount of scattering of consecu-
tive elements in the permutation. We have

Theorem 6. Let F'*1 be the number of permutations in S, having clustering < h; let
E] be the number of alternating permutations in S,, having clustering < ; then

_P,(2) Ki(z)
{h] plz) (hly2r — Zh
.EOF"“ Oh(z) and ngnE Nh(z)’

where Q,(2) is the hth reciprocal Laguerre polynomial of order 1, and N, (z) is the
hth reciprocal Meixner polynomial; P, and K, are determined from Q, and N, by
the rules of Section 3.1.

Proof. We define the mth Laguerre polynomial of order 1 by

L= % (4 m e

0sk=n k + 1

or equivalently by means of the generating series:

U1 zu
méol‘"‘(z)'nﬁ A+ P+

It satisfies the three term recurrence relation:
LY(z2)=(z-2m)LY (z)-m(m—1)L,,_,(2), with L,=1; L,=z-2.

The Meixner polynomial M, have generating function [18, 4]:

) Mh =(1+r3)""2 exp(x arctg ),

h=0
and can also be expressed as terminating hypergeometric functions. They satisfy
the three term recurrence relation:

M, .(2) = zM,(2)—h*M,_4(2), with Mo=1; M, =z

It is readily checked that in the Frangoii—Viennot correspondence, the cluster-
ing of a permutation differs by 2 from the height of the associated path
diagramme. We thus obtain the generatin; function of the {E1},,.o and {F{'}, .0
by taking the convergents of the continued fractions of path of unbounded height.
Comparison of the three term recurrence relations with those given above
completes the proof of the theorem. [
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In [10], we make explicit the inversion relations corresponding to these four
classes of polynomials and use them to compute in a simple way the double
generating functions of the elements of the Stieltjes matrices. These relations have
close relationships to the Meixner classification of orthogonal polynomials [18].

Conclesion

A natural way of continning this work is to look for other classes of com-
binatorial objects in correspondence with systems of path diagrammes. Notice for
instance that almost all the continued fraction expansions considered here have
coefficients at level k that are linear in k. Natural candidates for such an extension
are integer partitions and sequences. As shown elsewhere [33], continued frac-
tions are also a natural way of introducing various classes of g-generalisations
whose study should hopefully prove of interest.

Also a deeper investigation of the combinatorics of the addition formulae 2 la
Rogers might be of interest. Our combinatorial interpretation of the coefficients
of the elliptic functions cn, dn ultimately rzlies on the addition theorems for these
functions.

Finally the Stieltjes matrix and the matrix formed with the coefficients of the
denominator polynomials should be made explicit in each case. In [10], we use the
inversion formulae relative to the Meixner ciass of polynomials to derive an
integral expression for a linear transforin over C[[x]] associated to the Stieltjes
matrix of some of the continued fractions introduced in Section 2. The result is
related to the analysis of the behaviour of dynamic data structures in Computer
Science [10].
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