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We show that the universal continued fraction of the Stieltjes-Jacobi type is equivalent to the 
characteristic series of labelled paths in the plane. The equivalence holds in the set of series in 
non-commutative indeterminates. Using it, we derive direct combinatorial proofs of continued 
fraction expansions for series involving known combinatorial quantities: the Catalan numbers, 
the Bell and Stirling numbers, the tangent and secant numbers, the Euler and Eulerian 
numbers.. . . We also show combinatorial interpretations for the coefficients of the elliptic 
functions, the coefficients of inverses of the Tchehycheff, Charlier, Hermite, Laguerre and 
Meixner polynomials. Other applications include cycles of binomial coefficients and inversion 
formulae. Most of the proofs follow from direct geometrical correspondences between objects. 

htMdPl!tIOU 

In this paper we present a geometrical interpretation of continued fractions 
together with some of its enumerative consequences. The basis is the equivalence 
between the characteristic series of positive labelled patlhs in the plane and the 
universal continued fraction of the Jacobi type. The equivalence can be asserted 
in the strong form of an equality in the set of formal series in non-commutative 
variables. Using this framework leads to a direct “non computational” proof. 

Section 1 contains the proof of this equivalence (Theorem I) together with a 
combinatorial interpretation of the Stieltjes matrix and the Rogers polynomials. It 
extends some previous results of Touchard [27] and independent works .,jf Jackson 
[14], Read [32] and the author [9]. 

Section 2 is devoted to direct derivations of continued fraction expansions for 
generating series of known combinatorial quantities. Indeed the expansi0r.s of 
series relative to many classical combinatorial quantities have integer coefficients 
obeying simple laws whose origin can be combinatorially accounted for. Ir the 
case of path enumerations, these expansions follow as direct consequences oi our 
basic theorem. In Dther contexts, the proof is achieved by utilizing Theorem 1 in 
conjunction with what we name systems of path diagrammes. Path diagrammes 
are related to the weighted ballot sequences of Rosen [24]; they have been used 
systematically by Franeon and Viennot [12,13] to enumerate various classes of 
permutations. 

We show here t.hat one system of path diagrammes bijectively corresponds to 
set partitions. From this, a set of continued fraction expansions (Theorem 2) is 
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derived for series involving the Bell numbers, the Stirling numbers of the second 
kind, the odd factorial numbers and other related quantities. A second set 
(Theorem 3) is obtained by exploiting th:: Francon-Viennot’s correspondence and 
some of its variants [12,13] between another system of path diagrammes and 
permutations. Using it, we derive continued fraction expansions for series invelv- 
ing the factorial numbers, the Euler numbers, the Eulerian numbers, the Stirling 
numbers of the first kind and other quantities; extensions include the generalized 
Eulerian and Euler numbers of order k. Conversely, Theorem 1 makes it possible 
to interpret combinatorially those Jacobi type continued fractions which have 
integer coefficients. As an application we show that the coefficients of the elliptic 
functions cn, dn count alternating permutations partitioned according to the 
number of minima of even value (Theorem 4). Finally we show as a continuation 
of remarks of Section 1, how to derive generating series for Carlitz’s cycles of 
binomial coefficients 123. 

Section 3 is devoted to the enumerative properties of convergents of continued 
fractions. The denominator polynomials appear in a number of enumerating series 
for prths and diagrammes. Their classical orthogonality relations underlie inver- 
sion formulae which have the following interpretztion: the matrix formed with the 
coefficients of the denominator polynomials is the inverse of the Stieltjes matrix. 
Considering in particular the convergents of those continued fractions introduced 
in Section 2 for enumerative purposes leads to frictions involving the classical 
Hermite, Charlier, Laguerre and Meixner polynomials for which combinatorial 
interpretations are given (Theorem 5). In particular, we show that the Taylor 
cmfficients of inverses of these polynomials enumerate various classes of permu- 
tations. 

It shoulS be pointed out that all the continued fraction expansions we derive 
here obtain as a direct consequence of geometrical correspondences without any 
computation over generating functions. Such an attitude towards enumeration 
problems originates in the works of Foata and Schttzenberger; quoting from Ill]: 
“Plus important nous semble la demonstration du fait que toutes les identites 
classiques. . . sont seulement la traduction de proprietds t&s simples des mor- 
phismes d’ensembles totalement ordonnbs”. Strikingly enough, as we see here, 
almost all the classical expansions having integer coefficients receive simple 
combinatorial interpretations, 

1. Labelled paths and continued frmctlons 

1.1. nte basic equivaleme 

In this section, we prove the basic equivalence theorem relating the characteris- 
tic series of certain labelled paths in the plane to the universal Stieltjes-Jacobi 
continued fractions. 

Psths we wish to consider here are positive paths in the x-y plane, which 
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consist of only three types of steps: rises, levels and falls. More precisely we start 
with three step vectors u = (1, I), B = (I, -l), c = (1,O) called respectively rise 
vector, fall vector and level vector; to each word w = LQU~ l u - u,, on the alphabet 
{a, 6, c} is associated a sequence of points M&f1 l * - Ad, where ikf,, = 0 = (0,O) 
and for each j s.t. 16j s n, OM, = OM,,, + ui; in other wordls for Afi = (x,, yi) and 
uj = (Si, Q: 

(0 (x0, yd = lo, 01, 
(ii) (Xj, Yj)=(Xj-1, Yj_,)+(Sj, fj) for lCj< ?L 
The number n is the length of u; for each j, the number yi is Lie height of point 

Mi ; finally the height of the sequence u (or equivalently of k&M, - - * A&) is 
defined as maxOcjQn yj { } and is denoted by ft (u) or ft!MJ4’, l l l M,) 

We wish to restrict attention to certain sequences called positive paths or” :imply 
park: these are aSequences such that all the points in the associated sequence have 
a non-negative y-ccordinate. We let 8’ denote the set of positive paths 

8’={u1u2 “‘u”E{a,b,c}* Jj:PSj Sn,)M,U2..*U,la~JU,U**.‘.~l~ 
and Ju1u2 0 l l 4 = lulu2 0 * * u,lb}. 

where lxlC denotes the number of occurrences of c in 1~. 
It proves convenient for later applications to consider the empty word as a 

positive path of height and 1~ agth equal to zero. 
We now define labelled paths in which each step is indexed with the height of 

the point from which it starts: if u = u, . l 8 u, is a positive path, and if 

MJ% * l * M, with M, = (5, y,) is the associated sequence of points, the labelling 
of u, h(u) is defined as a word over the infinite alphabet X = 
{a,, al, a2,. . .)U{b,, b2,. . .}U{c,, cl, c2, . . .} by: A(u) = u1v2 1 l •~), where for 1 G 
jSn:u,EX, and 

(i) if Uj = a, then u, =y ay,_,r 
(ii) if u, = b, then u, = by,_,, 

(iii) if ui = c, then V, = cY,_,. 
We let 9 = A@+) denote the set of labelled paths. The V.abelling operation and 

the geometrical representation of paths are exemplified irr Fig. 1. 
We now need a few concepts from the theory of series in non-commutative 

variables, whose introduction in the context of enumerative problems is due to 

a a b b c ec ah a a b b b 

ao al b2 bl co ao 5 al b2 “I a.l % b2 bl 

Fig. 1 



128 P. Flajolet 

Schiitxenberger [25] (see also Raney 1201 for applications to Lagrange’s inversion 
formula, or Cori [6] in connection with planar graph enumerations). 

We consider the monoid algebra’ C{(X)) of formal series on the set of 
non-commutative variables (alphabet) X with coefficients in the field of complex 
numbers. An element of C((X)) can be written as 

s= c %.U. 
YEXC 

Sums and Cauchy products are defined in the usual way: 

s+r= c (s,+t,)*u 
U=A’ 

s*t= c 
UEX* 

( c s+. 
UW’U 

The ualt:azicn of a series is defined by 

val(s) = min{lul; So # 01, 

with ]u] denoting the length of u; conventionally val(0) = -t-m, Convergence in 
Cam is introduced as follows: a sequence (s,},,~ where eaclh s,, is in C{(X)), has 
limit s iff 

lim val(s - s,) = +=. n-05 

In other words, the sequence {s,) has limit s iff the coefhcients of the s, 
progressively stabilize starting with terms of lower order. This induces a notion of 
summability for infinite sequences. 

Multiplicative inverses exist for series having a constant tezn different from 
zero; t:his is in particular the case for series of the form (1 - u) with val( u) > 0, for 
which we have 

(1 - u)-’ = 1 uk. 
k=Q 

The element (1 - u)-’ is known as the quasi-inverse of u. 
Finally for every set of words S c: A’ we define the characteristic series of S, 

which we denote char(S), by 

char(S) = c u. 
uos 

For E, F subsets of xx, let E + F be :Jn alternative notation for E U F. Let E-F 
be the extension to sets of the catenation operation on words and let E” = 
E+E+E.E+E+E-E+ l - l with E the empty word. We shall make use of the 
follow 3g classical lemma. 

’ far extensive definitions, we refer the reader :o standard treatises on the subject for instance [Sl. 
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Lemma 1. Let E, F be subsets of X*. Then 
(i) char(E + F) = char(E) +char(F) provided E fl F := #I, 

(ii) char(E.F) = char(E)c provided E-F has the unique factorization 
property, i.e. Vu, U’ E E Vu,v' E F uv = u’v’ implies u = u’ and v = v’; 

(iii) char(E*) = (1 -char(E))-’ r_rovided the following two conditions hold: 
I? n Ek = $3 for ail j,k with if k, 
each Ek has the unique factorization property. 

Lemma 1 thus makes it possible to translate operations on sets of words into 
corresponding operations on series provided certain non ambiguity conditions are 
satisfied. We can now state 

Theorem 1. Let C Ih3, h a 0, be the formal power series: 

clhl= 1 

l-c,- a01 bl 

l-C*-- al I b2 
. . , 

where (ulv)/w denotes uw-‘21. Then 

(i) the sequence {(?“I} h2O converges, its limit defining the infinite continued 
fraction: 

lim Cchl = 1 
h-r- 

1,-c,-- 
ao I h 

l-c,- 
al I b2 

a2 I h 1 -cz-- . . . 

(ii) the characteristic series of Zabelled paths is equal to this infinite continued 
fraction: 

char(S) = 
1 

l-co- 
aO/bI 

l-c,- 
a1 lb2 

a2 I bx l-c,--. 
. . . 

Proof. For each h 30, we define the rret Xthl = {co, cl, . . . , c,,}U 

{ ao, al,. . . , ah_I}U{bI, b2,. . . , bh}. The set @hl= sn(tihJ)* is also the set of ah 
labelled paths with height oh. We first show that 

char(91h1) = chJ . 

For each h, the set Pchl is a regular or rational set [8]. lndeed we have 

@O’ = (CO)*, 

P’ = (co + a,c,” &I)“, 

grzl = (co + Q&C~ + a,c2*b2)*b,)*, 
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and by induction we see that for each h 20: 

g)Ch+ll=g)[hlo#d 

where trc, is the substitution: cI,+(ch +~Z,c~+~bh.,,). We thus have for each h 20 

the folk~wing description of @“]: 

gPlh* = (co+ 4()(c, + al( cp+ * * * (ch-, -I- ah_&,,)* * ’ * b2)*bl)*. 

The series Cc”’ is obtained from grhl by replacing each of the set-theoretic 

operations d , - , star operation by the corresponding series operations: +, - , 

quasi-inverse. The equality Cth ’ = char(Pchl fa4lows from the observation that all 

operations in the above expression for PLhl are untimbiguous; this fact is itself 

readily proved by introducir,g the sets: 

9th. hl= cr, 

@h+h-‘l=(Ch-,+‘$,_, &,)* ’ - -, 

and by checking that each of the 9[‘” h-k1 has the unique factorization property, 
To complete the proof of the tkeosem-part (ii)-, we notice the following 

chain of inclusions: 

together with the property of the Clhl = char PLhl: 

val(Crhr- C[h-ll) = 2h, 

which simply expresses the fact that a path of height h must have length 22h (the 
shortest path of height h is a@, . . s ah-lbh . b,b,). We thus have 

lim Cfhl= char(B), 
h-- 

the convergence being monotonic. El 

1.2. Continued fractions and power series: the Rogers polynomials 

We are here considering connections between power series and continued 
fractions. After Theorem 1, the series char(S) thus appears as the non- 
commutative analogue of the Jacobi type continued fraction (J-Fraction) which is 
usually taken under the form [ 19,301: 

1 

1 - c,,z - 
b,z2 - 

b2z2 
i-C,3-- 

. . . 

However here for convenience we d&ne it to be 

J(X, 2) = 
1 

1 - C,,L - 
a,,b,z2 ’ 

7 
~_clt-P’b,“- 

. . * 
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also denoted J(z). Similarly, the Stieltjes type continued fraction appears when 
we set formally the Cj’S to 0. If we let X’ = {a,, a,, . . . , b,, bl, . . .), we define it as 

S(X’, 2) = 
1 

l-, 
U,b~2 - 

l- 
u&?2 

1 
u2 b3t2 -- 

. . . 

Each of these fractions has a power series expansion in z: 

J(x, z) = c R”Z” and S(X’, z) = c Rhz”. 
n2Q n*o 

These expansions define quantities {R,},,. and {RL),,, that are polynomials in 
X and X’ respectively; we name the R, Jacobi-Rogers polynomials, and the R,!, 
Stielfjes-Rogers polynomials. These polynomials have been first considered by 
Rogers [23]. A simple computation shows: 

RO= 1; Rl=c,; R2=c;+ugb,; R,=c;+c,u,b,i-u,c,b,+u,b,c, 

I 
R;=l; R;=O; R;=u,b,; R;=O; R;=uou,b2b,+u,b,u,b,;.... 

As will be proved later, the sum of the coeficients of R, is the nth MotLkin 
number, and the sum of the coefficients of .“’ LZn is the nth Catalan number. An 

immediate consequence of Theorem 1 is: 

Corollary 2. The polynomials R, and RA have the expression 

R,(X) =char(P n X” j, R:(X) = chart9 n X’” ), 

where a = b means that u and b are equivalent module the commututivity of the 
indeterminutes X. 

This interpretation compares to Touchard’s remarks concerning the Rk. III our 
case, we mark both rises and falls (by u’s and b’s respectiveiy); Touchard’s 
interpretation corresponds to the case where all hi are set to 1, i.e. falls are 
unmarked. Indeed if we let Xi = aI where a,(bi) = 1 for all i 20, we 
have 

which is precisely Toruchard’s expression of the Stieltjes-Rogers polynomials. 
The Jacobi-Rogers polynomials R, are homogeneous polynomials. As a conse- 

quence of Corollary 2, we now show that their coefficients have closed form 
expressions. 

Proposition 3A. The Jucobi-Rogers polynomials have the explicit expression: 

R,(X) = c p(n,, . . . , nh; mo, . . . , mh)(aobl)“o’ ’ ’ (uhbj,+l)‘ahc~r 
h,no.....n~; 
ma,...,Wl 
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where the sum ranges over all h 3 0 and all sequences (n,, . . . , n,; m,, . . . , m,,) 

such that 2n,+2n13- ~~~+2nh+m0-i-rn,+~~ .+m,,=n, and p is given by 
pt%, . . . , 6 &I,. . . , mh) 

nh-l-+ nh-1 I( n-ma-’ - ‘-mh_l-%o’ - ‘-2nh_l . . . 
nh-I -1 mh 

Conventional$ \_!,A = i&_ 1 where S is Kronecker’s syr,tbol. 

Prwf. The binomials 

( 

n 
1 ( 

n-m,-2n, 
, 

) 
, . . . 

4 4 

count the number of ways of inserting level steps at height 0, 1, . . . . The 
binomials 

( 
n,+n,+,-l\ 

n,-1 /; 

count the number of ways of associating n, points at level r to n,,* points at level 
r + 1, in a way consistant with the rules defining paths. 0 

In the case of the Stieltjes-Rogers polynomials, the expression assumes a nicer 
form: 

ProposRio~~ 3B. The Stieltjes-Rogers polynomials have the explicit expression: 

R&(X’) = 1 ( 
no+nl -1 n,+n,-1 

I( 
nh-I + bth - 1 

ha0 no-l n,-1 ” ) ( 
. 

nh-l - 1 J 
no+-. -+r&=n 

X (a,b,)“~(a, b2)“l* - .(ahbh+,)“h. 

The kth convergents .Jtkl and S tkl have similar expansions in which the index h 
in the summation is restricted to the range 0, . . . , k - 1. 

1.3. Continued fractions and power series: the Stieltjes matrix 

As shown by Stieltjes [26], tne relations between continup,d fractions and power 
series can be described in terms of matrix equations. We show here that the 
ele:;lents of the Stiehjes matrix also have simple combinatorial interpretations. 

We first recall Stieltjes ‘s theorem i:, !ihe form given by Wall [30, p. 2031. 

Theorem S. (Stieltjes’s expansion theorem for J-fractions). The ceeficienits in the 
J-fraction 

1 

1 - co2 -- 
a,z* 

l-c&.!!Z 
. . . 
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and its power series expansion D(z) =Y 4npOd,,zn are connected by the relations 
dP = kO+ for all p 20 and more generally 

d P+4 = k,,+, + alkl,pkl,q + a,a,k,,Pk,,q + - . - for all ,p, q z=O 

where ko,-, = 1, k,,, = 0 if r > s, and the k,,, satisfy the matrix equation: 

i 

k 01 h 0 0 --- 

k 02 k,, kzz 0 - -- = 

k 03 h3 kzs k33 * *. 
. . . 1 

i 

koO 0 0 0 0.. 

1 

( 

co 1 0 0 a’* 
k 01 kIl 3 0 -** - a,, cl 1 0 s-m . 

k 02 k12 kz2 0 . - - 
\ 

0 a, c2 1 .** 
. . . . . I 1 

Cladcally, a progressive construction of the Stieltjes matrix (k,.,) is used as an 
easy way of expanding the J-fraction into power series; conversely recurrent 
determination of the Stieltjes matrix from its first column leads to an efficient way 
for computing the coefficients of the corresponding J-fraction [26,23,19,30]. 

We now prove a non-commutative analogue of Stieltjes’ theorem. First define 
for all k, 2 20 the sets 

$$,l ‘{u E x* 1 o&’ ’ ’ ak-lus&I’ ’ ’ s1 e 8). 

The elements of Pk., will be sometimes referred to as extended paths from 
(height) k to (height) Z, and we have 9 = Po,o. 

Proposition 4. In the set of infin;te matrices over C{(X)), the following equality 
h:,lds: 

where 

(T)ij = 6i-l,j; (I)ij = 40sjO; 

A=! I’ ; ;I :-/j; 

. . . 

and i7 is a matrix of extended paths: 

(l7), = cha+Yoj 17 xi). 

In particular the sum of the first column of ZI is equal to chlar(9). 

Proof. The proof is the matrix translation of the obvious recurrences: 

~0.j n Xi+l =(4”osj_, nX’)+ +(S’o,j f~x’)cj +(Po,j+l nXi)bj+l, 

for i>l and iz0. 



134 P. FZajoZer 

Example. Writing explicitly the first elements of I7, T, A, Z, the identity expressed 

in Proposition 4 reads: 

1 1 0 . . . 

CO a0 0 . . . 

cf + sob, ~~a~-+ aOcl a,a, .-- 

co QQ 0 0 --- 

b1 cl al 0 - - - 

0 b2 c2 a2 l - l 

. . . 

The elements on the diagonal of M are 1, a,, agal, aOala,, . . . and the 
elements immediately below are co, ~,a,+ uocl, couo~l + noa,c2, . . . . 0 

Proposkm 4 trivially entails Theorem S. The proof here is achieved without 
determinant manipulations and it reveals a simple combinatorial interpretation of 
the Stieltjes matrix. As noticed by Rogers [23, 30, p. 204, 191, Theorem S can be 
interpreted as an addition formula: if in the notations of Theorem S we let 

then 

f(x + Y) =fo(x%(y)+ a,MxMy)+ w*f2l~)f2(Y)+~ * - - 

We shall see in Section 3, that allowing commutativity leads to a simple 
combinatorial expression for the matrix ZZ-‘. 

2. Enrrmeratfve properties of co&w~ fractions 

The equivalence between paths and continued fractions leads to direct con- 
tinued fraction expressions of generating functions relative to path enumerations. 
The introduction of various classes of path diugrammes which are in natural 
correspondance with set partitions apd permutations shows the process to apply in 
these cases also. Finally the observatio:ls of Section 1 lead to a simple treatment 
of Qrlitz’s cycles of binomial coefficierir-, [LX]. 

It should be emphasized here that continued fractions are introduced without 
any computation over generating functions, by simply observing direct geometri- 
cal correspoadances between objects. T41e steps we take here makes it possible to 
read off the properties of the enumerated objects directly on the continued 
fraction. As explained in the introduction this attitude towards enumeration 
problc ~;IS originates in the works of Schiitzenbergcr and Foata (see especially 
[l 11::. 
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2.1. Paths in the plane 

Let A#,, be the number of paths of length n, and let C, be the number of paths 
of length 2n without level steps: 

M,, = card(p n X”); C,, = card( 9 n X’2n). 

The M,, are the Motzkin numbers, and the C, the 
(1, 1,2,4,9,21. . .} and {C,}={l, I, 2,5,14,42.. .}. 

Catalan numbers: {M,,} = 
Using the morphism p : 

C((x))+ q[z]] defined by p(ai) = y(q) = z for all j b 0, and p(bi) = z for all j 2 1 
i.e. counting all steps by z we get as Fmmediate application of Theorem 1: 

Proposition 5. The generating function of the Motzkin and Catalan numbers have 
the expansions : 

c M,z” = 
1 

._ . . 

na ~-z--L 
n 

~__z_LZ 
. . . 

c cnzZn = 
1 

?I==0 1 
z2 * 

_-_ 

B 
Z2 

-- 
. . . 

As is well known the generating functions have the expre%ions 

c f&Z” = 
l+z-Ji=ZZ~~ l--J1 

?I=0 22 ’ 
c c,zn = -2;-. 

II*0 

Classically, Proposition 5 is derived as a consequence of the (periodic) continued 
fraction expansion for ii quadratic irrationality. The expansion of the Catalan 
series in the context of enumeration problems arises in [28,1]. 

By utilizing various morphisms, we can derive expressions for other generating 
functions. Let for instanlce M,,k denote the number of paths in 9, of length n 
containing k level steps. The generating function C M,,k~dk~n is obtained by 
means of the morphism: 

Pic(aj)= p(bk) z Z; p(Cj)= zw for all j>O, k> 1. 

So that: 

c M,,kUkZn = - 
1 

- 2 * 
n.kz=O ;I 

l-zu--- 

I-zu-g . . . 

On the other hand, as is not difficult ‘to see 

Z 
M 

n,k 
UkZ”_ 1+(2-u)a-.- J(l-uz)2-422 _ ---:- 

22 
. 

n.kaO 

In a very similar way, we can derive.: an expansion of the generating function of 
binary trees according to number of 16’aves (terminology is the same as in [15]). 
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We now turn to a different type of enumeration result related to the so-called 
q-generations. Define the urea below a path without level steps as the sum of the 
height of the points in the path. The area a(u) of path u is defined inductively by: 
ar(e) = 0; a(q) = j; a(&) = k for dl j 20, k 3 1; and a&y) = a(x) + a(y) for x, y in 
x*. 

The area is always an odd integer. L.et An,k denote the number of paths of 
length n having area k. The morphism p is defined by 

&)=zq’ and p(bk)=zqk for all i>O, kal, 

so that p(u) = z M q *(“). Applying it to the equality given by Theorem 1, yields the 
following result first obtained 5y Carlitz [3]: 

Pko~osMon 6. The generating function of paths partitioned nccording to area has 
the expansion 

A(z, q)= c A,&qk = l2 1 . 
l- zq 

1 
z2q3 --- 

1 z2qs -- 
. . . 

This continued fraction has been studied by Ramanujan (see [19, p. 126]), who 
showed it io be expressible in terms of the q-exponential function: 

d n 

G(x)=l+ c 
“ZZI (1 -q)(l-“,2;. * - (l-q”)’ 

2.2. Path diagrammes and set partitions 

Path diagramrues are related to objects considered by J. Rosen under the name 
of weighted lead ballot sequences [24]. They also appear in various forms in 
works by Strehl[273 and Dumont CT]. However their systematic use in enumeration 
problems relative to permutations is due to FranGon and Viennot [12,13]. 

D&Non. A system of path diagrummes is defined by an application pos : X-s N 

called a possibility function; a path diagramme is a couple (u, s) where u = 

kU2 - * - x: is a path and s is a sequence of integers s = sls2 * - - s, such that for all 
i O~~j<poS(Uj). 

. :._ A par.. 5+3mrne (u, s) where jul =v n can be represented by a path together 
with a set of n points PI I;, P,]:, - - - P,,j;;:.-’ where the abscissae y,: 
subjected to the condition 0 c yi < pos(c+). 

are integers 

E e. Consider the system defined, by the possibility function: 

pOS(qj) = pOS(Cj) = j + 1 and POS(&) = k + 1 for all i 2 0, kal. 
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A diagramme belonging to this system is 

d = (u; s) = ia 0 12 2 1 2 3 2 1 O¶ a c b a a b b c b * 0, 1,0,2,0,1,3,1,0,0); 

it can graphically represented as in Fig. 2 with the Pi’s being drawn as crosses. Cl 

Fig. 2 

Path diagrammes can also be described as words over a labelled alphabet 

Y=,{@‘, bf’, c~)}i,j~O kz=l 

where letter x;y’ represents the jth possibility relative to x1 EX. Thus for the 
diagramme in the last. example the representatioln (also denoted d) is 

d = (ahO’, f2yy CT’, by’, ay, bi3’, by’, p, bgy. 

Let 9 be the set of path diagrammes relative to the possibility function pos; 
path diagrammes are obtained fro.m path by substituting to each variable ui (w = 
u, b or c) the sum of all corresponding possibilities. Thus: 

Proposition 7A. The non-commututiue series chrr(9) has the non-cornmutatiue 
continued fraction expansion : 

1 

char@) = 
.c 

l.+f’+. . .+Q)- 
(af’+ * - - + ab”‘) 1 (by’+ ’ * ’ + by’) 

1-(cp’)+. . ~+ctv’l)_(a~o’+ 
. . . + +“) I(@‘+ . . . + @3”) 

1 . . . 

where 1 + y = pos(c,); 1+ a = poda,); 1 + p =: pos(b,); 1 + y’ = POS(C,), etc. 

In the sequel, we shall freely extend to path diagrammes the terminology relative 
to paths: we shall thus spe3k of the length and height of a diagramme; we shall 
consider diagrammes without level steps . . . 

The importance of path diagrammets in the context of enurheration problems 
comes from the following: 

Proposition 7B. Let Dn derlote the number of path diagrummes of length n relative 
to a possibility function: 

pOS( Ui) = aj ; pOS( bk ) = Pk ; pOS( Cj) = Yi for@O, kal. 
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The generating function D(z) = CnaO Dnz” has the expansion: 

D(r) =: - 
1 

%I%Z2 
. 

l-y&-- 
cY1&Z2 

l-y:z--A-- 
c&z2 

1. - y2i -- . . . 

Proof. Xt immedial:ely follows from Proposition 7A, using the morphism p 
defined by ~I#)) = z for o E {a, b, c} and ,i, j E N. 0 

Path diagrammes are of interest as they can be put into simple correspondence 
Ywith many usual combinatorial objects like permutations, set partitions. . . . They 
thus appear as the adequate tool for obtaining continued fraction expansions of 
or&nary generating functions. Notice that any J-fraction with integral coeficients 

enumerates a certain system of path diagrammes for which interpretations can be 
sought (see Sections 2-3). 

We now exhibit a correspondence between a system of path diagrammes and 
set partitions. This correspondence extend’; some previous results by Franson 
and Viennot [13] relative to involutions, i.e. to partitions into singletons and 
doubletons only. We have: 

Prop&ion 8. Set partitions of size n are in one-to-one correspondence with 
diagrammes of length n relative co the possibility function defined by 

pOS(aj)= '1; pOS(bk)=k+l: pOS(Cj)=j+l for all j20, k> 1. 

F%oof. The proof is constructive. We start with a partition 7r relative to a set of n 
elements whi;:h we assume to be canonically numbered { 1,2, . . . , n}, and we 
construct a path diagramme (w, s) of length n. Given n; elements of [l - - - n] are 
divided into three classes: 

(1) opening elements: these are elements belonging to a class of cardinaiity 22 
which are smai!est in their class; 

(2) closing elements: these are elemerlts belonging to a class of cardinaiity 3 2 
which are largest in their class; 

(3) fransien,? elements: ail other elements, i.e. either non extremal elements of 
classes of cardinaiity 2 2, or elements cf singleton classes. 

Let U=Ultl*“’ U, be the uniabelled path corresponding to u ; the Dj’S are 
defined by 

Uj = a if j is an opening element in r5 
Dj = c if j is a closing element in r, 
oj =.b if j is a transient element in r. 

Now the sequence s,s2 * - - s,, is constructed as ~oilows: 
(a) if j is an opening element (equivalently if Vj = a), then sj = 0. Giving an 
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element j and a class ar = {cyi c a1 s - - - s as}, we say that ar overlaps with j iff 
a,<j~o~; then: 

(b) if j is a closing element or a transient element in a class of cardinality H, 
we consider the classes ovelapping j and we arrange them according to the order 
of their first elements. Let {arol GCY~~G. * m 9aoJ, {aI1 ~a12~ - * * aIs,), * - - be 
these overlapping classes with aol < al1 < cyzl C - * - . If j belongs to the class 

{ff”J c (Y&J G - - *), then we set si = V. 
(c) if j belon gs to a singleton class, si is equal to the number of classes 

overlapping j. 
The correspondence is readily checked to yield a path diagramme consistent 

with the possibility rules: 

pos( ai) = 1; pos( b&J = k + 1; pOS(Cj)=j+ 1, 

and it is obviously revertible. q 

Example. The somewhat esoteric nature of this correspondence is easily unco- 
vered by an example. Take for instance n = 13, and consider the partition 

w = {1,7,l1){2,4,6,9}{3}{5,1O}{8}{1?, 13). 

The partition can be graphically represented in a simpie way (see Fig. 3). 

123456789 10 I1 12 13 
I I 

On this graph, we see that {1,7, 11}{2,4,6,9} and (5, 10) overlap with %e 
element 6. The unlabelled path of the diagramme associated to T is 2, = 
u1212 s - * 2113. The element 1 opens class { 1,7,11} so: zll = a ; the element 2 opens 

class {2,4,6,9}, so t)2 = a; the element 3 is transient (member of a singleton 
class), so u3 = c; 4 is als;a transient so u4 = c, . . . , until o13 which is a b since 13 
closes the class {12,13}. Thus we have 

u=aaccacccbbbab and u=a a c c a cc c b b b a b 0122233332101’ 

Now the sequence s1s2 - - - sl, is also easily determined: s1 = s2 = 0 since 1 and 2 

are opening elements. At point 3, which is a singleton class, two classes are 
opened; these are (1 - - -} and (2 - - -1, so that we * ake s3 = 2. Element 4 is 
transient in the second opened class, so that sq = 1 (;qe rank classes starting frown 
zeroi). Ultimately we have s = 0 0 2 10 10 3 1 10 0 0, dsnd the planar representa- 

tion of the diagramme (u, s) is shown in Fig. 4. 
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Fig. 4 

Using this correspondence, we get: 

Tb=m 2. h Pn,,n,,m be the number of partitions having n, singleton classes, n2 
classes of cardinality B 2, and m non-singleton transient elements, then the generat- 
ing function 

p(u,, u2, t, 2)’ c /3”*,nf,m u;l l.42 fmzm+n~+2”~ 
nl,nZ.m*O 

has rhe expansion: 

P(u*, U2,b 2) = 
1 

l-u~z- 
1u2z2 

1-(u,+lr)z- 
2u,z” 

3U2Z2 
l-(u,+2t)z--- 

. . . 

In particular: 

(ia) c B,,z” = 
1 

l-lz- 
1z2 

1_2z_222 
. . . 

(iia) C 1”~” = - 

l-z- 

’ lz2 

*_z_222 
. . . 

(ib) c S(n, k)u’z” =- 
1 

l-uz- luz2 ;.,, 
2&;: 

1 - (1 + u)z -- . . . 

(iib) C J,z” = 
1 

iz2 

l-- 

1 
2Z2 

_- 

1.. 3Z2 -__ 
. . . 

where the B,, are Bell’s exponential numbers; the S(n, k) are the Stirling numbers of 
the first kind ; I, counts involutions on rr; J, coupb involutions on n having no fixed 
point, i.e. .Jzn = 1 i 3 * 5 * - = (2n - 1); Jzfl_ I = 0. 

Proof, We use the morphism: 

P(~ji=~Z; p(&)=kx; pkcj)=(u1+(j_l)f)Z, 

The ather cases are special applications, for instance (ia) 
24, = I 2 = t = 1, (iia) by uI = u2 = 1, s =O. q 

for j>O, kal. 

is derived by setting 
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Similar expressions hold for the (Z-) .associated Bell and Stirling numbers 
counting partitions without singleton classes [S, vol 2 ‘p. 571. Call B(,2) the number 
of such partitions of a set of n elements, and S ‘,“k the number of those comprising , 

k classes: 

c n 
@z” = 1 

#I30 
l- 

lz2 

l-12- 
2z2 

l-2z_3rZ 
. . . 

c n 
cpzn = - 1 

n,kaO l-- 
ltiz” * 

l- lz_2uzz 
. . . 

Notice that all these quantities have exponential generating functions of a 
simple form; 

is given by: 

/3(u,, u2, t, z)=exp(U1z+f.42($+$+$+. - -)). 

In particular as is well known: 

C I&$ = exp(e’ - 1); 
. 

x S(n, k)u*$=expu(e’-1); x ~,,$=e~+~‘/2; 
. . 

x J~$=~zzI~; 

C BF)$=exp(e’-z- 1); 

and 

C S’.f~u*$=expu(e’-z-1). 
. 

It is possible to use a formal Laplace-Borel-transform L(f(r); U) defined by 
L(tk ; u) = k! uk and corresponding to the analytical expression 

ufw; u) = J-e-y-w, dr, 
0 

to rephrase Theorem 2 as continued fraction expansions 
forms of some exponential series. 

The continued fraction relative to the Bell numbers 

Of the Laplace trans- 

is implicit rn several 
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analytic works relative to the Charlier polynomials [4]. The continued fraction 
relative to the odd factorial numbers J, is classically derived as a limiting case of 
the continued fraction of Gauss which expresses the quotient of two contiguous 
hypergeometric functions. 

2.3. Permutations 

In this section, we use a fundamental bijection due to Francon and Viennot 
[13,12] between a certain systeni Of path diagrammes acd permutations, to derive 
continued fraction expansions relative to the factorial Euler and Eulerian num- 
bers. We then use Theorem 1 together with a classical expansion to construct a 
new interpretation of the coefficients of the elliptic functions cn, dn which is not 
trivially reducible to the first known interpretation due to Viennot [29]. 

In order to better understand the correspondence between permutations and 
path diagrammes, we first recall the representation of permutations by tournament 
frees. A tournament tree is a binary tree with node labels that increase along each 
branch. Given a permutation CT = ~~~~ - * - a, of [l - l l n], such that 1 occurs at 
posiibn i, i.e. B =L CrlU2 ’ ’ * Ui_llUi+* * * * u,, the tournament tree associated to u 
is obtained by putting 1 at the root and by taking as left subtree the tournament 
tree recursively associated to u1 - - . Ui_1, and by taking as right subtree the 
tournament tree recursively associated to ui+l * - - a,. 

For instance to the permutation u = (1,7,10,4,8,6,9,2,5,3) there corres- 
ponds the tree shown in Fig. 5. 

Conversely reading 
original permutation. 

Fig. 5 

the labels of the tree in left to right order gives back the 

We now state Francon and Viennol’s theorem 1121: 

‘I’ILBHIRB F-V. (The fundamental wwespondence between path diagrammes 
and permutations). Permutations of [n i 1] are in one-to-one correspondence with 
path diagrgmmes corresponding fo the ,pssibility function 

~QS(aj)=j+l; &b~)=k+l; yOS(Cj)=2j+2 for all ja0, ka 1. 

Roo& We only sketch the proof here, referring the reader to [12] for a precise 
descr’,ation of the correspondence. 
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For ease of presentation, we shall set cj = ci + c’,!. The characteristic series for 
paths char(p) then becomes a series on the alphabet 

xv= {"j)j3sOu~h~k~l U{C~lj*OU{C~}jaO. 

In other words level steps can be marked either by a prime (‘) or by a double 
prime (“). Path diagrammes relative to alphab% X” can be defined in a similar 
way, and we readily check that the path diagrammes corresponding to 

pos(@ = j + 1; pon~(b,J = k + 1; pOS(Cj)-2j+2, 

are in correspondence with path diagrammes defined by 

pos(Gj) = j-t- 1; pos( 6k) = k + 1; pos(c$ = j + 1; pos(c7) = j + 1. 

Now starting with a diagramme (u, t) of length n we describe the algorithm that 
cons:ructs a tournament tree over [n I- 11. Our terminology concerning binary 
trees is again that of Knuth [15]. 

The algorithm proceeds by successive insertion of nodes 1,2,3,. , . starting 
from an empty tree at stage 0 which corresponds to one position to be filled. At 

stage j for 1 s s n, j positions are available to insert node j. If the llettler Uj is a.n j 
a, the node labelled by j is taken to be a double node; if Vj is a b, the node j is a 
leaf; if vi is a c’, j is a left branching node; finally if Uj is a c”, j is a right blranching 
node. 

At each stage j, when the height in the path is hi, the nlrmber of vacant links is 

1 + hj before j is inserted. If the number in the possibility sequf,nce is si, we assign 
node j at the 1 +si vacant position starting from the rtit. 

The construction is terminated by putting node (n + 1) as a leaf in the last 
vacant position after stage n. Cl 

Example. Here again, an example will be of use. Take the diagramme (u, t) with 

u = c; a& a, b2 Q, c!j b2 bl and s = 0 0 10 2 10 1 1; 

then the sequence of partial trees shown in Fig. 6 is generated. 

- 

-$- ,& 
1 

- 2 
‘\ 

&? 

4 3 .lJ 
E 

6 5 

8 9 

Fig. 6 
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As before the correspondence is useful in connection with emuneration prob- 

lems. Given a permutation u = ala:? - - - u,,, element Uj said to be a rnaximusn if 

u,-* <Uj >.a,.,; a MliUlU??l if Ui-l ‘>Uj<Uj+l; a double tise if Uj-ldUj<Uj+l; a 
double fall if U~_~ >a, >u~+~ (conventionally u. = u,+~ = 0). A rise in a permuta- 
tion is a value uj such that Uj-1 C Uj, i.e. a rise is either a double rise or a 
minimum. Obviously, the number of maxima of a permutation is equal to the 
number of its minima plus one. 

TheorFm 3A. Let P,.,,,,,, be the number of permutations having k minima (hence 
k -I- 1 maxima), I double risp~ and m double falls. The generating function 

P(u, v, w, 2) = r, PkJ”, Uk;v’Wmz2k+‘+m+’ 

has the expression: 

P(Y v, w, Z)’ 
1 

l-l(o+w)z- 
1*2uz= . 

1 - 2(u + w)z - 
2 * 3uz2 

. . . 

In particulae- 

(ii) 

(iii) 

c (n+l)!z”= 
1 

n-0 
l-22- 

1.232 ; 

3.23 

1 - l(l+ U)Z -- 1*2uz2 ; 

1-2(1+u)- 2 - 3uz= 
. . . 

CIE 2n+,Z2”+’ = 
Z 

I820 ,_ l-222 ; 

l- 
2.32” 

1 3.4z2 -- 
. ; . 

in which A,+ is the Eulerian number counting the permutations of [7 * * n] with k 
rises and E2,,_+] is the odd Euler number (nr tangent number counting the alternating 
permutations cf [2n + 11. 

Proof. The proof results directly from a combination of Theorem 1 and Theorem 
F-V: an a in the correspondence is associated with a minimunr, a b with a 
maximum, a c‘ with a double fall and a c” with a double rise. We thus use the 
morphism p 

j.k(a,)=(j+l)uz; p(bk) = (k + 1Lz; p(C;) = (j” l)vz; p(c;) = (j+ 1)~. 
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The special cases are obtained by setting: 
(i) u=u=w=l; 

(ii) u = w, u = 1; 
(iii) u=w=l,u=l; 

and rearranging the expressions. q 

There is an important modification of the Francon-Viennot correspondence 
also considered in [133. Let Sk,, denote permutations where (n + 1) occurs in the 
last position. 

%a+, = {WI “‘un+Jun+,=n+l}. 

The set Sk,, is obvjously isomorphic to S,. Now permutations in Sl,,, correspond 
to trees with (n + 1) at the bottom of the right branch. By the Francon-Viennot 
correspondence; they are associalted to diagrammes (u, s) with forbidden posi- 
tions, given by 

for ah 1 s i S I?, if Ui = bk : Si # k, 

if Ui = Cy: si + j_ 

These restrictions express on the path diagramme the fact that no ieft branching 
son nor leaf different from (n + 1) can occur on the right branch of the tournament 
tree at any intermediary stage of the construction. 

Theorem 3B. The following expansions hold 

c 1 ,. 
n! zn = 

n*O l--Z- 
.].2z2 ; 

~-~r-2222 
. . . 

c A ukzn= 
1 

n,k AZ2 , 
n.k*O l-uz ---. 

22z2 
I-(1+2u)z-- . . 0 

c E2nz2” = 12g-- ; 

l- 
22z2 

I--.. 

, _w 
. . . 

c G,kUki? = 
1 - 

UZ2 
, 

l-242--- 

1-(2+u)z- 
(1+ u)2z2 

. . . 

where the An,k are the Eulerian numbers; E2,, is the 2n-th Euler number of secant 
number counting the alternating permutaarions of [2n]; s,,k is the Stirling number of 
the first kind counting the permutations of [n] hauing k right-to-left minima. 
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Proof. From the above remarks, S,, which is in bijection with Sl,,, corresponds to 
diagrammes relative to the possibility function: 

pos(u,)=j+l; pos&)= k* pos(c$=j; pos(c’i’)=j+l, for allja0, ~cZ-1. 

The result follows by choosing adequate morphisms 
right-to-left minimi prrespond in a diagramme (u, s) 

4 = ai 4~1 Si = j, 

ui L= C; and Si = j for some j>O. 

in each case. For instance 
to positions i such that 

The morphism which gives tZ>e Stirling numbers of the first kind is thus 

~(a,) = ~(c’;) = ((j- l)+ u)r; CL(&) = kz; I = jz for js0, k>l. Cl 

lIMorem 3c L.er C,,,“,,, be the number of permutations in S,, having n, cycles of 
length 1 and n, cycles of length >2. The generating function 

C&V U2r z) = c G,.n~.&ew 

has the expansion 

au,, uz, z) = 
1 

1 u,z? 
. 

1-u1z- 

I -(2+u&z- 
2(1+ u*)z2 

. . . 

In particular for D,, the number of permutations without fixed points: 

c D,,z” = 
1 

l- 
1zz2 -* 

~_22_22r2 
. . . 

Proof. The proof follows directly from the fundamental bijection [ll, p. 131 of S,, 
on itself, that exchanges smallest elements of cycles and right-to-left minima. 
Singleton cycles correspond to right-to-left minima that are double rises; smallest 
elements of non-singleton cycles correspond to right-to-left minima that are also 
minima. El 

All the quantities appearing in Theorem 3 have Px.ponential generating func- 
tions of a simple type. We mention: 
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cc Zn n,.n*,nm@ ; = expb+ - u& 
(1 _ *)+ , 

c D$=&. 

The continued fraction expansions of the two generating series of factorial 
numbers already known to Euler are ‘limiting cases of Gauss’ continued fraction, 
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to which the expansion relative to the Stirling numbers also reduces. The 
expansions relative to the Euler and Eulerian numbers have been derived by 
Stieltjes by means of standard addition formulae on the corresponding exponen- 
tial generating series, as an application of his basic theorem. 

The construction in Theorem 3 can be further extended. Consider r-forests of 
tournament trees such that (n+j) occurs at the bottom of the right branch of the 
jth component of the forest for all je [l - l - n]. Such forests are bijectively 
associated to the class S$$:‘, of permutations of Sl,,, where values n + 1, n + 

2 ,***, n + r appears as a subsequence in that order: 

St(l) - 
n+r -{~,~*“.~“+*In+l=Uj,“‘n+r=Uj,~j~<j~”’<j,=nfr}. 

Obviously Sl,ct?I is identical with Sl,,,. We can modify the FranGon-Viennot 
correspondence to see that r-forests of this type correspond to path diagrammes 
relative to the possibility function: 

pOS(aj) = j + r; pOS(6,) = k; 

pos(c$ = j; pos(c7) = j + r 
for ja0, ks’l. 

Notice that the cardinality of Sl,‘$ is expressed by the rising factorials: 

card(S’,‘:‘,) = (r), = r(r+ 1) . l . (r+ n - 1). 

Now parameters of tournament trees can be cxtended additively to forests. New 
parameters are thus defined on S,,‘?,. For instance strrting with the double nodes 
and right branching simple nodes of tournament itrees, the corresponding parame- 
ter on forests is the total number of double nodea MZ ri,sht branching simple 
nodes and for an r-forest of size n + r; it corresponds 6, the number of rises in the 
associated permutation of S;:), when one doss Tot count possMe rises of the type 
(n+j;n+j+l). Call A , ‘,‘L the nuj:gber of permutations of S$r having k such 

rises; the A(,; are the Eulerian n&&ers of order r [21, 1 I]. Similarly, call EyA tile 
~.umber of permutations of S$zt’!, s:lch that the elements 9,2,3, . . . ,2n are either 
minima or maxima, i.e. no value 1,2,. . . , 2n can either be a double rise or: a 
double fall. The E$ are the Euler number of order r. We have 

Proposition 9. The generating series for the rising factwiak, the Eulerian and Euler 
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numbers of order r have the following cmtinued fraction expansions: 

c (r),z’) = 
1 

?I*0 lrz2 ; 
I -’ rz - 

I-(r+2)z- 
2(r + l)z* 

. . * 

c 
A$&” = 

1 

n.k ==(I l-ruz- 
1 ruz* 

l-((r+l)U+l)i:- 
2(r + 1)uz’ 

. . . 

c EF32” = 
1 

n-0 l- 
lrz2 * 

1 2(r+ 1)z2 
. . . 

These enumeration results have the interest to be expressible by rth powers of 
exponential generating functions: 

Iz (rln$=&; 
n ro . 

z E$g=sec'z; 
na0 . 

c . n,=( A’,‘iuk I” 1-u 
n.k a0 . I- M exp(z(1 - u)) 

): 
The AZ:: are related to quantities that appear in the Znumeration of permuta- 

tions with re?rricted positions 121,111. For instan’ce they are given by 

J% = r - ‘%+r,n+l-by 

where the ran,p are the numbers of [I 1, p. 451. 
From an algebraic point of view, the continued fraction of the series of the 

rising factorials coincides with the expansion relative to the Stirling numbers. The 
continued fractions relative to the EgL and A , ‘,‘i have been computed by Stieltjes 
[26] and Rogers 1231. 

We now Porn to the study of elliptic functions. The elliptic functions cat and dn 
are defined [31] by 

cn(u, a) = cos am(r.4, (Y); dnt’u, ar) = fir cy sin’ am(u, cu:tl 

where am(u, (Y I is the inverse of an elk:ptic integral: by definition 

I 

& 
am(u,cu)=4 iff u= - 

dt 

,,) JiT. * a2 sin* t 

The functions cn!u, (u) and dn(u, a) have power series expansicns: 
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where C, and 0, are polynomials of degree n - 1 with 0, the reciprocal 
polynomial of C,. The noticeable fact about the C,, polynomials (hence the 0,) is 
that they have positive integer coefficients. Furthermore, the coefficients of C, 
(and ID,,) add up to the Euler number Ezn : thus corresponds to the well known 
property of the elliptic functions to reduce to the hyperbolic function when the 
modulus (Y equals 1. Since E 2n counts the number of alternating permutations 
over [l l - * 2n], the question naturally arises whether there is some natural 
partitioning parameter of alternating permutations enumerated by the coefficients 
of the Cn’s. We prove: 

Theorem 4. 171~ coeficient C,,, in the expansion of the elliptic series 

counts the aItemating perwwtations over [2n] having k minima of even value. 

Proof. As is classically derived from the addition theorems for elliptic functions, 
the following expansion holds: 

c (-l)nCn,ko2k;!2” = ;2,2 ' 

n,kaO l-f- 

1+- 
22a2%2 

, + IJ2z2 

42a!“z2 
1+- * . . 

Thus C,,, counts the number of path diagrammes of length 2n, relative to the 
possibility function: 

pos(c;) = pos(c;) = 0; pos(ai) = j + 1; pos(b,) = k foraltja0, k>l, 

whose path comprises 2r letter in {a,, a3, a,, . . .}U{b,, b4, I.++, . . .). 

Equivalently, C,,, counts diagrammes whose path has t letters in 

1 aI, a,, 6, . . . 3, since in a path a letter a2j+l is matched by a letter b2j. Notice also 
that in a path like 

aabaaabsss 0-l 2-l 2-3 4 3 2 I 

the a,, a3, a,, . . . (underlined above) occur at even positions starting from the 
left. Using the Francon-Viennot correspondence betwe:en Sk,, and diagrammes 
of length n, we see that the azj+l correspond to minima of even value. q 

This interpretation is distinct of the first interpretation of the coefficients of 
elliptic functions given by Viennot 1291. 

Example. If %,,,r is the set of alternating permutations of 2n with k even minima, 



150 P. Flajokt 

we have: 

%I,* = (01; %,,o={21}; Oz,,, = (2143); %*.I = {4231,3142,3241,4132), 

which is consistent with the known values of the G,. Cl 

2.4. C@s of binomial coefficients 

In this section, we use the results of part 1 to obtain a combinatorial proof of an 
expression for generating series of quantities akin to Carlitz’s cycles of binomial 
coefficieMs [3,22]. 

We consider here (planted plane) trees in the sense of Knuth [15], where each 
erode hat any number of successors. The height of a node is the distance measured 
in nuknber of edges from that node to the root of the tree. A tree has specification 

‘iI* j2 ,...,j,,) if it has size l+j,+j,+ *.* + j,, and is formed with j, nodes of 
height II., . . . , jh nodes of height h. For instance the tree in Fig. 7 

Fig. 7 

has specification (3,2,1,3). 

l%typsMon 1O.2 (i) The nilAmber a(j,, j2,. . . , jh) of trees with specification 
C/G, li2r . . . , jk) has generating function 

I&, j2,. . . , jh)u#z& - - - u$ 

expressed by 

Afhl(uI, u2,*.. 9 Uh)’ 
1 --. - , 

1 UI - -._. 
1 _A”_ 

,I . 

1 

and its value is 
1 - u,, 

’ T soposirion 10(i) has been derivod independmtly by Read [32]. 
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(ii) The number p(il, ip, . . . , ih) of trees with specification (il + 1, iz+ 1, . . . , ih t 
1) having their leftmos,st branch of height exactly h has generating function 

B[h’(ul, u2 , . . . , ~4~) = C/3(il, iz, . . . , ih) u$u$ l * l uk 
expressed by 

BLh’(U*, . . . . ud = Ac%JdAC2’(u,-,, u,,) ’ l l ACh'(ul, u2, . . . , uh) 
1 1 1 .- 

’ =l-w,’ 1 u,,_l .’ 1 up -- 
b-u,, -TT: 

1 

and its value is 

Ph, i2, . . . , ih) 

Proof. The classical correspondence between path and trees associates to a tree 
with specification (jl, j2, . . . , j,,) a positive path of height h with jk occurrences of 
letter ak_l matched by jk occurrences of letter bk for all 1 Sk G h. Part (i) of the 
proposition follows from the expression of the Stieltje,s-Rogers polynomials in 
Proposition 3 using the morphism p(q) = %+,; CL(&) = I. 

The same correspondence associates to a tree with specification (i, + 1; i + 

1;. . . ; ih + 1) and1 with leftmost baanch of length h, a path from h to 0 having 
height h. In such a path we can single out the rightmost occurrences of letter sk 
for all k : 1 G k d h, which yields the factorization 

w = ~&,-l~,,-lv,,-2&,_2 ’ * ’ 2’1s12)O. 

Thus the series of the u’s factorizes into a product. Writing W for the 
characteristic series of the w corresponding to our description, we have 

w= s,,Vh_1sh-, * ’ * v,s,‘yO, 

where Vi is the characteristic series of paths from j to j with height G h and such 
that all their points have height 2 j. Thus 

PCvj) = 

1 

l- 
uj+l 

l_!iS 
. . . 

1 

1 - U,, 

from which the product expression of BChl is derived. 
The closed form expression for P(ir, i2, . . . , i,) follows 

modification of the counting argument of Proposition 3. 

frolm a straight forward 

0 
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/Aicipating on some of the developments 
successive numerators and denominators in 
leaving only the last denominator standing in 

of Section 3, we can see that the 
the product giving Bthl simplify, 
the expression, so that 

Btk’(U,, cl2 
1 

**--, “)= c --u,, -&, . . . , -uk] 

where the cumulants [x,, x2,. . . ,x,,] are defined recurrently by 

[ ]=k [x,]= 1+x,; 

1 Xl, x2, * * *, %I = cx,, x2, * * * , &-,I + [XI, x2, * * ’ , &t-2$ x,1. 

From this follows the equality: 

Btk’(u,, u2 
1 

*a*‘, WA= au,u,+bu,+cu,,+d’ 
where 

a = [-up,. 0.) -z&J; b=-[-u3,...,-un_l]; 

c = -[-u2, . . . , --z&-J; d =[-u2,. . . , -u,_J. 

This expression is essentially Carlitz’s result [2]. 

3. Eammtive properties of convergents 

3.1. Conuerge:nrs 

Starting with a J-fraction 

J(z) - 
1 

a0blZ2 ’ 
1 -c&Z-- 

a, b2z2 
l-c,z-- . . . 

we define the hth conoergent as the (finite) fraction 

Jfk’(Z) = 
1 

QUb,Z2 * 
l-C&- - . . .3 

The hth convergent corresponds to paths with height i h (see Section 1) and 
allowing commutativity of indeterminates, one has classically 

-+“(r) = P&)/Q&) 

where Ph and Qk are polynomials which satisfy a linear recurrence 

P_,(z) = 0; P,(z) = 1; 

~,,(r)=(l-C,Z)P,_,(Z)-a,_,bkZ2d,_2(Z); 

Q_:(r) = 1; Q&z) = 1 - c,,s; 

Qk(z)=(1-ckz)Qk-~(z)---(b~z2Q~-2(z). 

He,*2 we have set conventionally #-‘I = 0 = O/l. 
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The polynomials P and Q appear in a number of enumeration results nelat;ve 
to paths. 

First consider the paths of height exactly equal to h; these have generatirlg 
function 

8, J%-1 p,,Qr.-l -pi -1Qh JC~l=JCh-11=___-= 

Q, QM QhQh- I----- 
Using the classical determinant identity, we have 

PhQh-l - .Ph-IQh = aOal . * * ah-lblb2 * . a bhz2h, 

hence 

#hl_JEh-II= AhZ2h 

Qdk-l’ 
with hh = (a&,) * * * (a,_,&). 

This res$ult is consistent with the fact that J chl-Jch-‘l counts paths of height 
exactly h, which have necessarily length 23,h. 

Consider now paths from height h to height h whose elements are all at height 
L h. Application of Theorem 1 shows that the corresponding generating function 
denoted J/” has the exparsion 

$hl= 1 

I--chz- 
ahbh+IZ2 ’ 

I-Ch+l- 
ah+1 h+2z2 b 

. . . 

we shall call it the hth truncation of the continued fraction J. The truncation Jlh’ is 
expressible by 

‘J’“‘(z) = J(z); J’h’(z) = 
1 Qh-,(Z)J(Z)--ph-l(Z) 

ah-l&z2 Qr,_.z(z)J(z)--ph_2(z)’ 

Finally consider the generating series &,(z) of the paths from height 0 to height 
h ; obviously 

K,,(z) = J”‘(Z) a a,zJ”‘(z) - 412 - . - J”‘(Z), 

so that 

In particular, paths from 0 to h with height h have a generating function 
denoted #‘I, whose expression is obtained by replacing .r(z) by ph/Qh in the 
expression above: 

I@‘(z) = 
1 

Ma * ’ * bhZh Qh-l(z) Oh(Z) 
=h,,_,(Z)); 

hence using again the determinant identity: 
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We thus see that the numerator polynomids P,,, and the denminutor polyno- 
mials Q,, appear in several enumeration f:armulae relative to generalized paths. 
The denominator polynomials usually have simpler expressions. The numerator 
polynomials Ph can be expressed by convolution of J(z) with Q,,(z) as follows: for 
each m ~0, define the erasing operator Em as a linear operator from q[z]] into 
c[z ] satisfying: 

As is readily checked val(&(z)) = h, and thus val(Q,,_I(z)J(z)-P,_,(z)) = 2h; 
the polynomial P’-I of degree h - 2 thus coincides with the first h - 1 terms in the 
product Q,,_,(t)J(z); heace, shifting indices, we get 

4(z) = %-,G (Mz)). 

3.2. Inversion relations 

We have seen tke identity: 

KhcZ)=b b 

1 

* l - b,,z 
h(Qh-,(r)J(~)-P,-,(z)), 

12 

where val K,, !t) = h. Thus, 

valCQ~._,(r)J(z)-P,_,(r))=2h. 

This property can be rephrased as an orthogonality relation (see e.g. [30, p. 
1931): Let J(Z) = ~,,&,z” be the power series expansion of J; a. linear form over 
c[z] is de%ted by 

(P) = H,; 
it can be extended to a bilinear form over c[z] by setting 

(Xm~X”)=(Xm+n)= K,,,. 

Now let 

QMW =o~;s~~Q~-~,,f 

and define the reciprocal polynomials: 

The ah_ 1 are normalized (the coefficient of zh is 1) and we have 

(zn 1 (f&&P = (z”~,_,(z:) =. (~Qh_l,h_rzn+r) 

= 1 RntrQit-..:r,-r 
Osrsh 

=coeff(J(2)Qh_.,(z);rh+"). 

From the preceding remarks, we see that 

(z~]&~(z))= 0 if 0~ n s h == deg(Q,_,). 
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Notice also for n s h the relations for K,,(z) = Ena0 k,#: 

k 
1 

h*n =&b,. . . bh (Z”l~h-l(d)r 

and in particular 

(Z”IZ”) =(Zh 1 &.,(i:)) = b,b, * - * b&h = (a,b,) - * ’ (ffh._lbh)., 

Thus the polynomials {ah _ I),, a0 form an orthogonal family of polynomials with 
respect to the bilinear form associated to J. The change of basis from the {z~},~,, 

to the @h-l&=, is thus described by 

We thus obtain: 

Proposition 11. 7%~ Stieltjes matrix of extended paths normalized by columns: 

s= (&,) with &, = 
k 
h’” 

aoal ’ * ’ &,-I’ 

and the matrix of the coefficients of the denominator polynomials: 

d = (4h.r) with qh,r = Qh-l,h-rt 

are inverse of each other. 

Example. The first elements of the 0 and 5 matrices are given below when Cj = 0 
for all j. 

Here we hap/e set hi = ajbj+l. 
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The elements of the !? matrix can still be interpreted as extended paths whose 
falls only are marked with ttLe A,%. The elements of the 0 matrix also represent 
certain typc:s of paths in a lattice, as can be seen from the recurrence: 

Qr,., = Q,rI,, - c..Q,,-,,,-I -A,,-IQ,,-m-2, 
or equivalently: 

qh,r = dh-Q-1 -Chiih-I,, - hh-l~lr-2.r~ 

In particular when ci = 0 for all j apart from the sign, the coefficient q,,,, 

corresponds to paths in the x-y plane with steps given by a[: and PI: starting from 
the !ine y = X. This observation is exact”;y the Uuler-Mindig interpretation of the 
convergents. Recently G. Viennot (privat, p communication to the author) has 

eiven a combinatorial proof of these inversion relations based on direct path 
manipulations. 

3.3. Spe@c cases 

Each system of path diagrammes has an associated family of polynomials. 
Combining results from the last section with geometrical interpretations in Section 
2, we obtain a few combinatorial interpretations for inverses and quotients of 
classical polynomials. 

RopositIo~ 12. Let MI,h] be the number of paths of height h and length n, and let 

C’,“’ be the number of paths of height h without level steps, we have 

where 

(8 QI, (2) = (ph +3 - oh+‘/@ - @> with p, @ the roots of the equation y* - (1- z)y + 
z*=o; 

(ii) Qb(z) = (@+3-~rh+3 )/(p-- 6) with p’, 6 the roots of the equation y*- y + 
z2=o. 

The obvious proof is omitted. The polynomials Qi are elementary variants of 
the Tchebycheff polynomials. These claAca1 results have been firs? established by 
Krevieras [16, l73 who also found the t:xpression of J$‘] in this case. The result 
appears in [l] under a different form. 

We now come to partitions. Given a partition P of [n], define the width of ‘K at 
x denoted o(~, x) as the number of classes overlapping x, that is having (at least) 
one element 9 x and (at least) one element > x; define the width of 7r denoted by 
w(a) by: 

W(T) := max(o(7r. x)}. 
xelnl 
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For instance with v = {1,7,11}{2,4,6,9}{3}~~5,1O}{8}{12, 13}, the width of ?r at 
6 is equal to 3 w(m, 6) = 3 since there are exactly 3 classes overlapping 6: 
(1,7, ll}, {2,4,6,9} and (5, 10); similarly w(‘r~, 3)=2 and o(~)=3. 

Theorem SA. Let Bc,“] be the number of partil’ions of [n] of width s 11; let &-jh 
denote the number of partitions of [n + h] of width h sucih that 1,2, . . . , h belong to 
different non-singleton classes, then 

‘h-d’) and C m 
h!2:h &hlp = _-_ 

oh-l(z) ma0 Qh-dd’ 

where Qk_I(z) is the hth reciprocal Char&r polynomial, alnd ph_1(z) is determined 
by the rubs of Section 3.1. 

Proof. The hth Charlier polynomial is defined by 

ch(z)= 1 
Osksn 

(-l)“-~‘(kn)xl(x-l). * *(X-k++), 

and has exponential generating function 

C C,(r)$=e-U(l+U)X. 
h-0 . 

The corresponding three-term recurrence is 

C,,(z)={?h)C&,(z)-(h-l)C,_,(t), ha2, 

with Co= 1; c1 = x - 1. From this immediately follows that Qh__ ,(z) = z”C,,( l/z) 

for h 2 0. Thus the polynomials Qh are denominator polynomials associated to 
the continued fraction of Tbeorem 2. We complete the proof by checking that the 
geometrical correspondence between path diagrammes and set partitions trans- 
forms the height of the dialgramme into the width of the partition. 0 

Involutions being special cases of partitions, the notion of width applies equally 

well to them, The width of’ an involution is thus a measure of the overlap of its 
cycles. 

Theorem 5B. Ler Ith1 be the number of involutions of [n J having width s h; let 
Irih denote the nurlfiber of involutions of [n+ h] having width h and such that 
1,2,. . . ) h belong to different cycles of length 2. Let 1:“’ and i:,[“’ be the 
corresponding quantities rp ‘ntive to involutions wirhout fixed points. Then 

C n 
IbIt” = ‘h-1(‘) and c m 

jV$m = 
h!Z” 

ne0 Qh- Ad ma0 Q,,-I(i )’ 
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where Qi._I(z)= thHh(l/z) is the hth reciprocal Hemite polynomial and 
&,(z) = t:“H,(l/z - 1). The numerator polynomials Ph-l and Pi_, ure given by 
the rules of Seclim 3.1. 

Pro&. We only need to identify the denominator polynomials. The mth Hermite 
polynomial is defined by 

and has the exponential generating function 

The corresponding three term recurrence relation is 

with I;&,(z)= 1; H,(z)= z., which shows Q;_, to be identical to the reciprocal 
polynomial of Hh (2). Cl 

The ccnvergents of the continued fraction relative to the series of the factorial 
and secant number can also receive combinatorial interpretations. 

Given a permutation u E gC,, and a value x E [C - . l n] we consider the word 
w(x) E { + , -)” called the sz’gnamre of x in u defined by 

A cluster in a wore <WE{+, -) is a maximal factor of w, formed with + symbols 
only. We can then define the clusfering of CT at x denoted by cl(a, X) as the 
number of clusters in w(x). 

Thus with u = 6 4 9 3 15 3 2 7, the signatures w(O), w(l), . . . are 

w(O)=+++++++i-+, 

w(l)=++++-++++, 

w(2)=+-+++-++--+, 

w(3)=+++--++-+, 

w(4)= +--+--++-+, 

w(5)=+-+---+-+, 
w(6)=--+---+-+, 

w(7)= _- +---+--, 

~?(g)~__~-f_~~~_~~~ 

~(9)=---_--_--~ 
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The clustering of cr is defined as 

cl(a) = m,ax cl(u, x). 

In the last example, the clustering of the permutation is equal to 4. 

The clustering of a permutation measures the amount of scattering of consecu- 
tive elements in the permutation. We have 

g%reorem 6. Let PC,“] be the number of permutations in S,, having clustering < h ; let 
EL:] be the number of alternating permutations in S,, having clustering < h; then 

c p,, z,, _ ph(z) and 

n+l 
c @lz2” =a 

ilZ-0 Q&) n 
n*n Nh (2)’ 

where Qh(z) is the hth reciprocal Laguene polynomial of order 1, and IV,,(z) is the 
hth reciprocal Meixner polynomial; P,, and K,, are determined from Qh an,d & by 
the rules of Section 3.1. 

Proof. We define the mth Laguerre polynomial of order 1 by 

or equivalently by means of the generating 

C Lel($$=&exp&. 
ma0 

series: 

It satisfies tbe three term recurrence relation: 

L:‘(z)= (z -2m)Lg’_,(z)- m(m - l)L,_,(z), with La0 = 1; L1 = z -2. 

The Meixner polynomial & have generating function [18,4]: 

c M,$= (1 + t2)-“2 exp(x arctg t), 
hs0 - 

and can also be expressed as terminating hypergeometric functions. They satisfy 
the three term recurrence relation: 

Mh+l(z) = zM,(z)- h2Mh_,(z), with MO = 1; Ml = 2. 

It is readily checked that in the Francorl-Viennot correspondence, the cluster- 
ing of a permutation differs by 2 from the height of the associated path 
diagramme. We thus obtain the generating function of the {E!fl)nao and {F[,“q,,o 
by taking the convergents of the continued fractions of path of unbounded height. 
Comparison of the three term recurrence relations with those given above 
completes the proof of the theorem. q 
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In [lo], we make explicit the inversion relations corresponding to these four 
classes of polynomials and use them to compute in a simple way the double 
generating functions of the elements of the Stieltjes matrices. These relations have 
close relationships to the Meixner classification of orthogonal polynomials [18]. 

A natural way of continuing this work is to look for other classes of com- 
binatorial objects in correspondence with systems of path diagrammes. Notice for 
instance that almost all the continued fraction expansions considered here have 
coefficients at level k that are linear in k. Natural candidates for such an extension 
are integer partitions and sequences. As shown elsewhere [33], continued frac- 
tions are also a natural way of introducing various classes of q-generalisations 
whose study should hopefully prove of interest. 

Also a deeper investigation of the combinatorics of the addition formulae B la 
Rogers might be of interest. Our combinatorial interpretation of the coefficients 
of the elliptic functions cn, dn ultimately r&es on the addition theorems for these 
functions. 

Finally the Stieltjes matrix and the matrix formed with the coefficients of the 
denominator polynomials should be made explicit in each case. In [lo], we use the 
inversion formulae relative to the Meixner class of polynomials to derive an 
integral expression for a linear transform over C[[x JJ associated to the Stieltjes 
matrix of some of the continued fractions introduced in Section 2. The result is 
related to the analysis of the behaviour of dynamic data structures in Computer 
Science [lOJ. 
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