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THEOREM. R(p) <1, 1.e. for all one-to-one harmonic mappings of the given an-
nulus p<|¢ | <1 onto an annulus r< Izl <1 the inequality r =R (p) <1 holds.

Proof. Choose a closed subannulus 4 of p<|§‘ l <1, for instance (1+3p)/4
= I §‘| =(3+4+p)/4. By Harnack’s inequality for positive harmonic functions
u(g,g) inp< I ¢ [ <1 there exists a constant 2> 1, depending only on p, such that
the inequalities

Eu(ts, n2) < u(ty, m1) = ku(gs, 1)

are valid for any pair of points {1 and {» in 4. The function %(£, n) =1-+x(¢, 7)
is harmonic and positive in p <|{| <1. Furthermore there must be a point {1 in
A where x(£1, 1) > and a point {» where x(£;, 72) < —r. Then

1— 7> 14 x(Es n2) = ulbe,m2) = b u(Es, ) = k11 4 (€1, 11)) > k711 7).

From these inequalities we conclude (1+47)/(1 —7) <k orr <(k—1)/(k-+1). This
implies R(p) S (k—1)/(k+1) <1, g.e.d.

Clearly the proof applies to the higher dimensional case as well. It would
be of interest to determine the exact value of R(p) and to see whether it is
identical with the number 2p/(14p?).

ON THE NUMBER OF PARTITIONINGS OF A SET OF » DISTINCT OBJECTS
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KARL MENGER, JR. AND PHILIP K. HoOPER, Computation Laboratory of Harvard University

Introduction. By partitioning a set .S we mean dividing the set into mutually
exclusive subsets. Two partitionings are considered the same if and only if every
subset in one of them is also a subset in the other. In this paper we shall investi-
gate the number of different partitionings of a set of # distinct objects.

The Difference Equation. Let us denote by P(n) the number of partitionings
of a set S of n distinct objects. Let us choose one object of S and name it a.
Consider the case that a and 7 other objects form one subset, and the remaining
n—1—1 objects are partitioned in one way or another. The result is a partition-
ing of S. After a has been chosen, the additional ¢ objects may be chosen in

()

ways. Since there are P(n—4—1) ways to partition the remaining #—¢—1 ob-

jects, there are
n—1 .
( . )-P(n—z-—l)
i
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ways to partition S in such a way that a is in a subset of order 14 1. Therefore,

i=n—1 n— 1
W oy = 3 (") p—i- 1.
=0 7
Calculation of P(n). We next describe what we believe is an efficient way of
calculating P(j) for j=1, 2, - - -, n. For simplicity, let us define P(0) =1, and
then,

P(1) = ﬁ)(i)-P(O— i) =1

=0
as required.

The value of P(n) can be computed by means of a matrix array ((4s;))
constructed according to the following rules:

1. 4y = A1
2. Aij = A+ Ae-nus-

As is well known from the study of difference tables ([1]), the entries in the
first column of ((4,;)) are given by

(2) An1 = ’i(n R 1) A1cirn.
=0 ?
Comparing Equations 1 and 2, we see that if
A = P(0), A= PQ), -+, din= Pln — 1),

then A,1=P(n). The first seven values of P(n) are computed in Table 1 below:

P)= 1 1 2 5 15 52 203

PQ)= 2 3 7 20 67 255

P3)= 5 10 27 87 322

P(4) = 15 37 114 409

P(5) = 52 151 523

P(6) = 203 674

P(7) = 877

TaBLE 1—Computation of P(1) through P(7) by means of the array ((4:;)).

The computation of P(n) from P(n—1), using the technique described
above, required #—1 additions; thus the computation of P(n) from P(0)=1
required {#(n—1)}/2 additions and no multiplications. This is far more effi-
cient than the direct use of Eq. 1 which requires as many additions, not to men-
tion multiplication and computation of binomial coefficients.
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Klein-Barmen [2] gives the following closed form for the number S(z, m)
of partitionings of a set of % distinct objects into 7 nonempty subsets (also
known as Stirling numbers of the second kind [3]);

© S, m) = == =0 (" T )=
Using this expression we can write
@ Po) = 3 e B (" o

The computation of P(z) by means of Eq. 4 is clearly far more tedious than by
the method of the present paper.

A Generating Function for P(n). The purpose of this section is to prove that
E(x)=exp(e*+x—1) is an exponential generating function for the sequence

P(1), P(2), - - - ; that is,
d"1E(x)
dxn—l a;ao-

®) P(n) =

It is convenient first to prove the following

LeEMMA.

dn—lE n
____.__(ai)_ = ¢g—lg. E a(n, k)er,

dxr? k=1
where the a(n, k) are Stirling numbers of the second kind.
Proof. By induction on #. The lemma is obvious for »=1; assume that

dn—flE(x) n—1

= ¢l Y a(n — 1, k)er=.
dam? k=1
Then
d"1E(x) d d"*E(x)
da=' dw dan?
n—1 n—1
= e‘le"”{ oaln — 1, b)kets + e+ D a(n — 1, k)e"”} .
k=1 k=1
Thus
d"1E(x)

n
= ¢l ) a(n, k)ew,

dxmv 1 k=1
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with
(6) aln, k) =kaln— 1, k) +aln—1,%k—1),
a(1, 1) = 1.

But Eq. 6 is precisely the defining relation for Stirling numbers of the second
kind, completing the proof of the lemma.
The proof of Eq. 5 now follows directly, for

d"1E(x)

dx"~1 =0

= i a(n, k) = P(n).

References

1. George Boole, Calculus of Finite Differences, Chelsea, New York, 4th ed., 1958, pp. 4-13.

2. Fritz Klein-Barmen, Uber eine bei der Zerlegung einer endlichen Menge auftretende ele-
mentare zahlentheoretische Funktion, Jber. Deutsch. Math. Verein. 62, Heft 3 (1960) 130-134.

3. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958, pp.
32-34, 48.

CLASSROOM NOTES

Ep1teD BY JoHN M. H. OLMSTED, Southern Illinois University

This department welcomes brief expository articles on problems and topics closely related
to classroom experience in courses that are normally available to undergraduate students, from
the freshman year through early graduate work. Items of interest to teachers, such as peda-
gogical tactics, course improvement, new proofs and counterexamples, and fresh viewpoints
in general, are invited. All material should be sent to John M. H. Olmsted, Department of
Mathematics, Southern Illinois University, Carbondale, Illinois.

AN ALGEBRAIC ALGORITHM FOR THE REPRESENTATION
PROBLEMS OF THE AHMES PAPYRUS

SorLomoN W. GoLowmB, California Institute of Technology

The Ahmes (or Rhind) Papyrus, a famous Egyptian mathematical document
described in [1], was largely concerned with the following problem: Given a
rational number, e.g., 5/7, express it as a sum of reciprocals of distinct integers
(thus, 5/7=1/2+41/6+4+1/21). Apparently, the Egyptians had a convenient no-
tation for reciprocals, but not for fractions in general. The picture was somewhat
complicated by the fact that they also possessed a special symbol for 2/3; but
in our treatment, we will not allow 2/3 to be used as an “admissible component.”
We prove the following.



