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define and factorize a modified Pascal matrix corresponding to
Bernoulli and Stirling cases.
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1. Introduction

Matrices and matrix theory are recently used in number theory and combinatorics. In particular
Pascal type lower-triangular matrices are studied with Fibonacci, Bernoulli, Stirling and Pell numbers
and other special numbers sequences. Cheon and Kim [13] factorized (generalized) Stirling matrices
by Pascal matrices and obtained some combinatorial identities. Zhang and Wang [31] gave product
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formulas for the Bernoulli matrix and established several identities involving Fibonacci numbers,
Bernoulli numbers and polynomials.

In this paper we employ matrices for degenerate Bernoulli polynomials and generalized Stirling
numbers. We define degenerate Bernoulli and generalized Stirling matrices which generalize previous
results and lead some new combinatorial identities. Some of these identities can hardly be obtained
by classical ways such as by using generating functions or counting, however they are easily come up
via matrix representations after elementary matrix multiplication.

The summary by sections is as follows: In Section 2, we define Pascal functional matrix which
is a special case of Pascal functional matrices defined in [26,32] and factorize by the summation
matrices. In Section 3, we generalize Bernoulli matrix and investigate some properties. In Section 4,
we define two types generalized Stirling matrices and obtain relationships between Bernoulli matrices
and Stirling matrices of the second type. Furthermore, degenerate Bernoulli and generalized Stirling
matrices are factorized by Pascal matrices and several identities are developed as a result of matrix
representations. In final section, we introduce some special cases of the results obtained in Section 4.

Throughout this paper we assume that i, j and n are nonnegative integers; μ, λ, w and x are real
or complex numbers.

2. Pascal matrix

Let g(t) be a formal power series of the form

g(t) =
∞∑

m=0

gm
tm

m! .

Define the multiplication matrix M(g) as the lower triangular matrix whose (i, j) entry is
gi− j/(i − j)!. The map g → M(g) is an algebra isomorphism from the formal power series to the lower
triangular Toeplitz matrices [18, Chapter 1]. Now define the diagonal matrix F = diag(0!,1!,2!, . . .)
and the Pascal matrix associated with g(t) by P (g) = F M(g)F −1. It is obvious that the set of all such
Pascal matrices is isomorphic to the algebra of lower triangular Toeplitz matrices. These matrices
satisfy

P (g)P ( f ) = P (g f ), P (g)k = P
(

gk) and P (g)−1 = P (1/g) when g0 �= 0. (1)

The n × n section of an infinite matrix P (g) is defined as the finite submatrix composed of the
first n rows and columns of P (g). Also, (1) is valid for the n × n sections.

Let Pn[λ, x] be the n × n section of the infinite Pascal matrix P (g) associated with the generating
function

g(t) = (1 + λt)x/λ =
∞∑

m=0

(x|λ)m
tm

m! ,

i.e., let Pn[λ, x] be the n × n matrix defined by

(
Pn[λ, x])i, j =

{( i−1
j−1

)
(x|λ)i− j, if i � j � 1,

0, if 1 � i < j,

where (x|λ)k = x(x − λ)(x − 2λ) · · · (x − (k − 1)λ) with (x|λ)0 = 1.
From (1) we have

Pn[λ, x + y] = Pn[λ, x]Pn[λ, y], (
Pn[λ, x])h = Pn[λ,hx] and P−1

n [λ, x] = Pn[λ,−x].
The algebraic properties of Pn[λ, x] can be found in [3,7,16,26,29,30,32]. In fact, Pn[−λ, x] is the
matrix Pn,λ[x] defined in [3] and this matrix is a special case of the generalized Pascal functional
matrices defined in [26,32]. So we will not discuss the algebraic properties of this matrix. We will
only focus on factorizing this matrix by the summation matrices. For this purpose, let us define the
n × n matrices Rn[λ, x] and Gk[λ, x] by



116 M. Can, M.C. Dağlı / Linear Algebra and its Applications 444 (2014) 114–131
(
Rn[λ, x])i, j =

⎧⎪⎨
⎪⎩

(x|λ)i−1
(x−λ|λ) j−1

, if i > j.

1, if i = j,

0, if i < j,

and

Gk[λ, x] = In−k ⊕Rk[λ, x], 1 � k � n − 1 and Gn[λ, x] = Rn[λ, x],
where the notation ⊕ denotes the direct sum of two matrices and In is the identity matrix of order n.
Furthermore, we need the (k + 1) × (k + 1) matrices

Pk[λ, x] = [1] ⊕Pk[λ, x], k � 1.

Lemma 1. For k � 1, we have

Rk[λ, x]Pk−1[λ, x] = Pk[λ, x].

Proof. We must show that

i−1∑
r= j

(x|λ)i−1

(x − λ|λ)r−1

(
r − 2

j − 2

)
(x|λ)r− j +

(
i − 2

j − 2

)
(x|λ)i− j =

(
i − 1

j − 1

)
(x|λ)i− j, (2)

for i � j, since the left-hand side of (2) is the (i, j)-entry of the matrix Rk[λ, x]Pk−1[λ, x]. We apply
induction on i. For i = j, the assertion is clear. From the known property

( i−1
j−1

) + (i−1
j

) = ( i
j

)
, it is

enough to show that

(x|λ)i−1

i−1∑
r= j

(
r − 2

j − 2

)
(x|λ)r− j

(x − λ|λ)r−1
=

(
i − 2

j − 1

)
(x|λ)i− j (3)

for i � j + 1. Suppose that (3) is true for i = m > j. For i = m + 1, we have

(x|λ)m

m∑
r= j

(
r − 2

j − 2

)
(x|λ)r− j

(x − λ|λ)r−1

= (x|λ)m

m−1∑
r= j

(
r − 2

j − 2

)
(x|λ)r− j

(x − λ|λ)r−1
+

(
m − 2

j − 2

)
(x|λ)m

(x − λ|λ)m−1
(x|λ)m− j

= [
x − (m − 1)λ

](m − 2

j − 1

)
(x|λ)m− j + x

(
m − 2

j − 2

)
(x|λ)m− j

=
(

m − 1

j − 1

)[
x − (m − j)λ

]
(x|λ)m− j =

(
m − 1

j − 1

)
(x|λ)m+1− j.

This completes the proof. �
From the definition of the matrices Gk[λ, x] and Lemma 1, we have the following factorization of

Pn[λ, x], which generalizes the result of Zhang [29, Theorem 1].

Theorem 2.

Pn[λ, x] = Gn[λ, x]Gn−1[λ, x] · · · G1[λ, x].
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Example 3.

G4[λ, x]G3[λ, x]G2[λ, x]G1[λ, x]

=
⎡
⎢⎣

1 0 0 0
x 1 0 0

x2 − xλ x 1 0
x3 − 3x2λ + 2xλ2 x2 − 2xλ x 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 x 1 0
0 x2 − xλ x 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 x 1

⎤
⎥⎦

=
⎡
⎢⎣

1 0 0 0
x 1 0 0

x2 − xλ 2x 1 0
x3 − 3x2λ + 2xλ2 3x2 − 3xλ 3x 1

⎤
⎥⎦ = P4[λ, x].

3. Degenerate Bernoulli matrices

3.1. Degenerate Bernoulli polynomials of the first kind

The higher order degenerate Bernoulli polynomials of the first kind β
(w)
m (λ, x) are defined by

means of the generating function [9](
t

(1 + λt)1/λ − 1

)w

(1 + λt)x/λ =
∞∑

m=0

β
(w)
m (λ, x)

tm

m! (4)

for λ �= 0. Clearly, β
(1)
m (λ, x) = βm(λ, x) and β

(1)
m (λ,0) = βm(λ) are the degenerate Bernoulli polynomi-

als and the degenerate Bernoulli numbers, respectively. The first few of the degenerate Bernoulli poly-
nomials are β0(λ, x) = 1, β1(λ, x) = x+ 1

2 λ− 1
2 , β2(λ, x) = x2 − x− 1

6 λ2 + 1
6 , β3(λ, x) = x3 − 3

2 x2 + 1
2 x−

3
2 x2λ+ 3

2 xλ+ 1
4 λ3 − 1

4 λ, β4(λ, x) = x4 −2x3 + x2 −4x3λ+4x2λ2 +6x2λ−4xλ2 −2xλ− 19
30 λ4 + 2

3 λ2 − 1
30 .

Explicit formulas and recurrence relations of (generalized) degenerate Bernoulli polynomials and num-
bers can be found in [1,8,9,11,19,28]. Divisibility properties [8,19,27,28] and symmetry relations [12,
22,28] are demonstrated as well.

Let B(w)
n [λ, x] be the n × n matrix defined by

(
B(w)

n [λ, x])i, j =
{( i−1

j−1

)
β

(w)
i− j (λ, x), if i � j � 1,

0, if 1 � i < j,

with the notations B(1)
n [λ, x] = Bn[λ, x] and B(1)

n [λ,0] = Bn[λ].
Since (1 + λt)1/λ → et , as λ → 0 it is evident that β

(w)
m (0, x) = B(w)

m (x) and β
(w)
m (0,0) = B(w)

m ,
where B(w)

m (x) are the higher order Bernoulli polynomials defined by(
t

et − 1

)w

ext =
∞∑

m=0

B(w)
m (x)

tm

m! .

Hence, in the limiting case λ = 0, B(w)
n [0, x] is the generalized Bernoulli matrix B(w)

n−1[x] defined in [31,
p. 1623].

It is clear that B(0)
n [λ, x] =Pn[λ, x] and B(w)

n [λ, x] is the n × n section of P (g) where g(t) is given
by (4). We then have the following theorem which can be seen from (1).

Theorem 4.

B(w+z)
n [λ, x + y] = B(w)

n [λ, x]B(z)
n [λ, y] = B(z)

n [λ, x]B(w)
n [λ, y],

B(w)
n [λ, x + y] = Pn[λ, x]B(w)

n [λ, y] = B(w)
n [λ, y]Pn[λ, x],(

B(w)
n [λ, x])k = B(kw)

n [λ,kx],(
B(w)

n [λ, x])−1 = B(−w)
n [λ,−x] = Pn[λ,−x]B(−w)

n [λ].



118 M. Can, M.C. Dağlı / Linear Algebra and its Applications 444 (2014) 114–131
The following is a consequence of Theorems 2 and 4.

Corollary 5.

Bn[λ, x] = Gn[λ, x]Gn−1[λ, x] · · · G1[λ, x]Bn[λ].

Consider the matrix

(
Bn[λ, x] − In

)h =
h∑

k=0

(
h

k

)
(−1)h−k(Bn[λ, x])k =

h∑
k=0

(
h

k

)
(−1)h−kB(k)

n [λ,kx]

for positive integer h. Since diag(Bn[λ, x] − In) = (0,0, . . . ,0) and (Bn[λ, x] − In) is a lower-triangular
matrix, it follows that (Bn[λ, x] − In)h = [0]n×n for n � h. Then

(
Bn

[
λ,

x

h

])h

= B(h)
n [λ, x] =

h−1∑
k=0

(
h

k

)
(−1)h−1−kB(k)

n

[
λ,

k

h
x

]
, for 1 � n � h.

This yields

h−1∑
k=0

(
h

k

)
(−1)h−1−kβ

(k)
m

(
λ,

k

h
x

)
= β

(h)
m (λ, x), for 0 � m < h.

By the known identity β
(h)
m (λ,1) = mβ

(h−1)
m−1 (λ) + β

(h)
m (λ) for m � 1, we have

h∑
k=0

(
h

k

)
(−1)h−kβ

(k)
m

(
λ,

k

h

)
= −mβ

(h−1)
m−1 (λ), for 1 � m < h.

Similarly, we may get

h−1∑
k=0

(
h

k

)
(−1)h−1−k(kx|λ)m = (hx|λ)m, for 0 � m < h.

3.2. Degenerate Bernoulli polynomials of the second kind

The higher order degenerate Bernoulli polynomials of the second kind α
(w)
m (λ, x) are defined by [1](

λt

(1 + t)λ − 1

)w

(1 + t)x =
∞∑

m=0

α
(w)
m (λ, x)

tm

m! . (5)

For x = 0, α
(w)
m (λ,0) = α

(w)
m (λ) are called the higher order degenerate Bernoulli numbers of the sec-

ond kind. In the limiting case λ = 0 we have α
(w)
m (0, x) = m!b(w)

m (x), where b(w)
m (x) are the higher

order Bernoulli polynomials of the second kind defined by(
t

log(1 + t)

)w

(1 + t)x =
∞∑

m=0

b(w)
m (x)tm.

It is clear from (4) and (5) that

β
(w)
m

(
1

λ
,

x

λ

)
=

(
1

λ

)m

α
(w)
m (λ, x). (6)

If L(w)
n [λ, x] denotes the n ×n section of the Pascal matrix associated with the generating function

given by (5), then
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(
L(w)

n [λ, x])i, j =
{( i−1

j−1

)
α

(w)
i− j (λ, x), if i � j � 1,

0, if i < j.

It is obvious that L(0)
n [λ, x] = Pn[1, x]. One can observe that L(w)

n [λ, x] satisfies properties given for
B(w)

n [λ, x], however, we prefer not to list them here.

4. Generalized Stirling matrices

Recall the generalized Stirling numbers of the first and of the second kinds. For nonnegative integer
m and real or complex parameters μ, λ and x, with (μ,λ, x) �= (0,0,0), the generalized Stirling num-
bers of the first kind S1(m,k|μ,λ, x) and of the second kind S2(m,k|μ,λ, x) are defined by means of
the generating functions (cf. [21, p. 372])(

(1 + μt)λ/μ − 1

λ

)k

(1 + μt)x/μ = k!
∞∑

m=0

S1(m,k|μ,λ, x)
tm

m! , (7)

(
(1 + λt)μ/λ − 1

μ

)k

(1 + λt)−x/λ = k!
∞∑

m=0

S2(m,k|μ,λ, x)
tm

m! , (8)

with the notations

S1(m,k|μ,λ, x) = S1(m,k) = S(m,k;μ,λ, x),

S2(m,k|μ,λ, x) = S2(m,k) = S(m,k;λ,μ,−x)

and the convention S1(m,k|μ,λ, x) = S2(m,k|μ,λ, x) = 0 when k > m.
As Hsu and Shiue pointed out, the definitions or generating functions generalize various Stirling-

type numbers studied previously, such as:

(i)
{

S1(m,k|1,0,0), S2(m,k|1,0,0)
} = {

s(m,k), S(m,k)
} =

{
(−1)m−k

[
m

k

]
,

{
m
k

}}
= {

S1(m,k), S2(m,k)
}

are the Stirling numbers of the first kind and of the second kind, respectively [17, Chapter 6].

(ii)
{

S1(m,k|1, λ,−x), S2(m,k|1, λ,−x)
} = {

(−1)m−k S1(m,k, x + λ|λ), S2(m,k, x|λ)
}

are the Howard degenerate weighted Stirling numbers of both kinds [20].

(iii)
{

S1(m,k|1,0,−x), S2(m,k|1,0,−x)
} = {

(−1)m−k R1(m,k, x), R2(m,k, x)
}

are Carlitz’s weighted Stirling numbers of both kinds [10].

(iv)
{

S1(m,k| − 1,0, r), S2(m,k| − 1,0, r)
} =

{[
m + r

k + r

]
r
, (−1)m−k

{
m + r
k + r

}
r

}

are the r-Stirling numbers of both kinds [6].

(v)
{

S1(m,k|1, λ,0), S2(m,k|1, λ,0)
} = {

(−1)m−k S1(m,k|λ), S2(m,k|λ)
}

are Carlitz’s degenerate Stirling numbers of both kinds [9].

(vi)
{

S1(m,k| − 1,1,0), S2(m,k| − 1,1,0)
} = {

L(m,k), (−1)m−k L(m,k)
}
,

where L(m,k) = m!
k!

(m−1
k−1

)
are the Lah numbers.

The list above may not be complete. The combinatorial interpretations of (i)–(iv) can be found
in [6,10,17,20].
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From (7) and (8), it follows that

S1(m,k|μ,λ, x) = μm−k S1

(
m,k

∣∣∣∣1,
λ

μ
,

x

μ

)
and

S2(m,k|μ,λ, x) = μm−k S2

(
m,k

∣∣∣∣1,
λ

μ
,

x

μ

)
(9)

for μ �= 0. Letting λ = 0 and x = 0 in (9), we have

S1(m,k|μ,0,0) = μm−k S1(m,k) and S2(m,k|μ,0,0) = μm−k S2(m,k). (10)

4.1. Stirling matrices of the first type

Let sn[μ,λ, x] and Sn[μ,λ, x] be the n × n matrices defined by

(
sn[μ,λ, x])i, j =

{
S1(i, j|μ,λ, x), if i � j � 1,

0, if i < j,

and

(
Sn[μ,λ, x])i, j =

{
S2(i, j|μ,λ, x), if i � j � 1,

0, if i < j

which we call generalized Stirling matrices of the first type. Then the relation (cf. [21, Eq. (3)])

i∑
k= j

S1(i,k|μ,λ, x)S2(k, j|μ,λ, x) =
i∑

k= j

S2(i,k|μ,λ, x)S1(k, j|μ,λ, x) = δi, j (11)

yields S−1
n [μ,λ, x] = sn[μ,λ, x], where δi, j is the Kronecker symbol. From (10), it is seen that

sn[μ,0,0] and Sn[μ,0,0] are the Stirling matrices S−1
n [μ] and Sn[μ] defined in [13, p. 57].

Differentiate both sides of (8) with respect to t (with x = 0) to get

∞∑
m=0

S2(m + 1, j|μ,λ,0)
tm

m! = 1

( j − 1)! (1 + λt)(μ−λ)/λ

[
(1 + λt)μ/λ − 1

μ

] j−1

=
∞∑

m=0

(μ − λ|λ)m
tm

m!
∞∑

m=0

S2(m, j − 1|μ,λ,0)
tm

m!

=
∞∑

m=0

[
m∑

k= j−1

(
m

k

)
(μ − λ|λ)m−k S2(k, j − 1|μ,λ,0)

]
tm

m! .

Thus,

S2(m + 1, j|μ,λ,0) =
m∑

k= j−1

(
m

k

)
(μ − λ|λ)m−k S2(k, j − 1|μ,λ,0).

Putting m = i − 1 gives

S2(i, j|μ,λ,0) =
i∑

k= j

(
i − 1

k − 1

)
(μ − λ|λ)i−k S2(k − 1, j − 1|μ,λ,0) (12)

which yields

Sn[μ,λ,0] = Pn[λ,μ − λ]([1] ⊕ Sn−1[μ,λ,0]). (13)
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Note that (12) reduces to the well known vertical recurrence relation

S2(i, j) =
i∑

k= j

(
i − 1

k − 1

)
S2(k − 1, j − 1)

by letting λ = 0 and μ �= 0. The counterpart of (12) is

S1(i, j|μ,λ,0) =
i∑

k= j

(
k − 1

j − 1

)
S1(i − 1,k − 1|μ,λ,0)(λ − μ|λ)k− j .

We also have

(
i − 1

j − 1

)
(μ − λ|λ)i− j =

i∑
k= j

S2(i,k|μ,λ,0)S1(k − 1, j − 1|μ,λ,0),

(
i − 1

j − 1

)
(λ − μ|λ)i− j =

i∑
k= j

S2(i − 1,k − 1|μ,λ,0)S1(k, j|μ,λ,0).

Furthermore, in consequence of (13) we have the following factorization of the matrix Sn[μ,λ,0]:

Sn[μ,λ,0] = Q n[λ,μ − λ]Q n−1[λ,μ − λ] · · · Q 1[λ,μ − λ],
where Q k[λ, x] = In−k ⊕Pk[λ, x], 1 � k � n − 1, and Q n[λ, x] =Pn[λ, x].

4.2. Stirling matrices of the second type

Let us define the second type generalized Stirling matrices Gn,h[1, λ, x] and gn,h[1, λ, x] of order n
by

(
Gn,h[1, λ, x])i, j =

⎧⎪⎨
⎪⎩

( i−1
j−1

)( i−h
j−h

)−1
S2(i − h, j − h|1, λ, x), if i > j � 1 and j � h,

1, if i = j,

0, otherwise,

and

(
gn,h[1, λ, x])i, j =

⎧⎪⎨
⎪⎩

( i−1
j−1

)( i−h
j−h

)−1
S1(i − h, j − h|1, λ, x), if i > j � 1 and j � h,

1, if i = j,

0, otherwise.

Remark 6. The lower triangular matrix whose (i, j) entry is in the form ci j S(i, j) = ci− j S(i, j) is not
in the form of lower triangular Toeplitz matrix since

S(i + 1, j + 1) = S(i, j) + (
( j + 1)λ − i + x

)
S(i, j + 1),

where S(i, j) = Sk(i, j|1, λ, x), k = 1,2 [21, Eq. (7)]. Therefore, we do not have the matrices
gn,h[1, λ, x] and Gn,h[1, λ, x] as an n × n section of P (g) associated with the generating function
g(t) given by (7) and (8), respectively.

It is obvious from (11) that gn,h[1, λ, x] = (Gn,h[1, λ, x])−1. We have
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Theorem 7.(
Gn,h[1, λ,−x])i, j = (

B(h)
n [λ, x − y]Gn,0[1, λ,−y])i, j = (

Gn,0[1, λ,−y]L(−h)
n [λ, x − y])i, j,(

gn,h[1, λ,−x])i, j = (
gn,0[1, λ,−y]B(−h)

n [λ, y − x])i, j = (
L(h)

n [λ, y − x]gn,0[1, λ,−y])i, j,

for j � h. In particular,

Pn[λ, x − y] = Gn,0[1, λ,−x]gn,0[1, λ,−y],
Pn[1, y − x] = gn,0[1, λ,−x]Gn,0[1, λ,−y].

Proof. By (4) and (8), we have(
t

(1 + λt)1/λ − 1

)h
(1 + λt)x/λ

j!
[
(1 + λt)1/λ − 1

] j

=
∞∑

m= j

(
m∑

k= j

(
m

k

)
1

m!β
(h)

m−k(λ, x − y)S2(k, j|1, λ,−y)

)
tm

=
∞∑

m= j

(
( j − h)!

j!(m − h)! S2(m − h, j − h|1, λ,−x)

)
tm

= th

j! (1 + λt)x/λ[(1 + λt)1/λ − 1
] j−h

for an integer h and j � h. Then( i
j

)
( i−h

j−h

) S2(i − h, j − h|1, λ,−x) =
i∑

k= j

(
i

k

)
β

(h)

i−k(λ, x − y)S2(k, j|1, λ,−y) (14)

or ( i−1
j−1

)
( i−h

j−h

) S2(i − h, j − h|1, λ,−x) =
i∑

k= j

(
i − 1

k − 1

)
β

(h)

i−k(λ, x − y)
j

k
S2(k, j|1, λ,−y),

which gives (Gn,h[1, λ,−x])i, j = (B(h)
n [λ, x − y]Gn,0[1, λ,−y])i, j .

It can be seen from (9) and generating functions that

S2

(
i, j

∣∣∣∣1,
1

λ
,

x

λ

)
=

(
1

λ

)i− j

S1(i, j|1, λ,−x). (15)

Thus, taking into account (6) and (15), replace (λ, x, y) by ( 1
λ
,− x

λ
,− y

λ
) in (14) to get( i

j

)
( i−h

j−h

) S1(i − h, j − h|1, λ,−x) =
i∑

k= j

(
i

k

)
α

(h)

i−k(λ, y − x)S1(k, j|1, λ,−y) (16)

or ( i−1
j−1

)
( i−h

j−h

) S1(i − h, j − h|1, λ,−x) =
i∑

k= j

(
i − 1

k − 1

)
α

(h)

i−k(λ, y − x)
j

k
S1(k, j|1, λ,−y)

which gives (gn,h[1, λ,−x])i, j = (L(h)
n [λ, y − x]gn,0[1, λ,−y])i, j . �

The theorem above shows that the Bernoulli polynomials can be expressed in terms of the Stirling
numbers.
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Corollary 8. For i � j � 0 and j � h, we have

(
i

j

)
β

(h)
i− j(λ, x − y) =

i∑
k= j

( i
k

)
( i−h

k−h

) S2(i − h,k − h|1, λ,−x)S1(k, j|1, λ,−y), (17)

(
i

j

)
α

(h)
i− j(λ, y − x) =

i∑
k= j

( i
k

)
( i−h

k−h

) S1(i − h,k − h|1, λ,−x)S2(k, j|1, λ,−y). (18)

In particular,

βi(λ, x) =
i∑

k=0

1

k + 1
S2(i,k|1, λ,−x)(λ − 1)k,

αi(λ, x) =
i∑

k=0

1

k + 1
S1(i,k|1, λ, x)(1|λ)k+1.

Note that we can equally well write the result (17) in the form(
i − m

j − m

)
β

(h−m)
i− j (λ, x − y)

=
i∑

k= j

( i−m
k−m

)
( i−h

k−h

) S2(i − h,k − h|1, λ,−x)S1(k − m, j − m|1, λ,−y) (19)

for i � j � 0 and j � max{h,m} because of

Gn,h[1, λ,−x]gn,m[1, λ,−y] = Gn,h[1, λ,−x]gn,0[1, λ,−z]Gn,0[1, λ,−z]gn,m[1, λ,−y]
= B(h)

n [λ, x − z]B(−m)
n [λ, z − y] = B(h−m)

n [λ, x − y].
Set h = y = λ = 0 and −m = l � 0 to compute any positive (integer) order of Bernoulli polynomials

(
i

j

)(
j + l

j

)−1

B(l)
i− j(x) =

i∑
k= j

(
l + k

l

)−1

R2(i,k, x)S1(l + k, l + j)

and in particular

B(i)
i =

i∑
k=0

(
i + k

i

)−1

S2(i,k)S1(i + k, i).

By (9) and Corollary 8, we have the generalized orthogonality relations

(
i

j

)
(x − y|λ)i− j =

i∑
k= j

S2(i,k|μ,λ,−x)S1(k, j|μ,λ,−y),

(
i

j

)
(y − x|μ)i− j =

i∑
k= j

S1(i,k|μ,λ,−x)S2(k, j|μ,λ,−y).

Theorem 7 also entails the following.
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Corollary 9. For i � j � 0 and j � h, we have( i
j

)
( i−h

j−h

) S2(i − h, j − h|1, λ,−x) =
i∑

k= j

(
k

j

)
S2(i,k|1, λ,−y)α

(−h)

k− j (λ, x − y), (20)

( i
j

)
( i−h

j−h

) S1(i − h, j − h|1, λ,−x) =
i∑

k= j

(
k

j

)
S1(i,k|1, λ,−y)β

(−h)

k− j (λ, y − x). (21)

In particular,

j + 1

i + 1
S2(i + 1, j + 1|1, λ,−x) =

i∑
k= j

(
k

j

)
S2(i,k|λ)αk− j(λ, x),

j + 1

i + 1
S1(i + 1, j + 1|1, λ, x) =

i∑
k= j

(
k

j

)
(−1)i−k S1(i,k|λ)βk− j(λ, x).

In consequence of Theorem 2 and Theorem 7 we have

Corollary 10.

Gn,0[1, λ,−x] = Gn[λ, x]Gn−1[λ, x] · · · G1[λ, x]Gn,0[1, λ,0]
= Gn,0[1, λ,0]Gn[1, x]Gn−1[1, x] · · · G1[1, x].

It is evident from definitions that

β
(−h)
m (λ, x) =

(
m + h

h

)−1

S2(m + h,h|1, λ,−x), (22)

α
(−h)
m (λ, x) =

(
m + h

h

)−1

S1(m + h,h|1, λ, x) (23)

for an integer h � 0. Therefore, (14), (16), (20) and (21) may be specified according to h is negative
or positive:(

h + j

j

)
S2

(
m, j + h

∣∣1, λ,−(x + y)
)

=
m−h∑
k= j

(
m

k

)
S2(m − k,h|1, λ,−x)S2(k, j|1, λ,−y), m = i + h, (24)

(
h + j

j

)
S1

(
m, j + h

∣∣1, λ,−(x + y)
)

=
m−h∑
k= j

(
m

k

)
S1(m − k,h|1, λ,−x)S1(k, j|1, λ,−y), m = i + h, (25)

( i
j

)
( i+h

j+h

) S2
(
i + h, j + h

∣∣1, λ,−(x + y)
) =

i∑
k= j

(
k

j

)
α

(h)

k− j(λ, x)S2(i,k|1, λ,−y), (26)

( i
j

)
( i+h

j+h

) S1
(
i + h, j + h

∣∣1, λ,−(y − x)
) =

i∑
k= j

(
k

j

)
β

(h)

k− j(λ, x)S1(i,k|1, λ,−y) (27)
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for i � j � 0 and arbitrary integer h � 0, and

( i
j

)
( i−h

j−h

) S2
(
i − h, j − h

∣∣1, λ,−(x + y)
) =

i∑
k= j

(
i

k

)
β

(h)

i−k(λ, x)S2(k, j|1, λ,−y), (28)

( i
j

)
( i−h

j−h

) S1
(
i − h, j − h

∣∣1, λ,−(y − x)
) =

i∑
k= j

(
i

k

)
α

(h)

i−k(λ, x)S1(k, j|1, λ,−y), (29)

(
i

h

)
S2

(
i − h, j − h

∣∣1, λ,−(y − x)
)

=
i∑

k= j

(
k

j − h

)
S2(i,k|1, λ,−y)S1(k − j + h,h|1, λ,−x), (30)

(
i

h

)
S1

(
i − h, j − h

∣∣1, λ,−(y − x)
)

=
i∑

k= j

(
k

j − h

)
S1(i,k|1, λ,−y)S2(k − j + h,h|1, λ,−x) (31)

for i � j � h � 0.
By (9), identities (24) and (25) coincide the “addition theorems” (cf. [21, Corollary 2]), and Eqs. (30)

and (31) are still valid for S1(n,m|μ,λ, x) and S2(n,m|μ,λ, x).

Remark 11. From (24)–(27) we have identities given in [24, Part 5.3.2].

Remark 12. (28) and (29) reduce to [10, Eqs. (3.2) and (5.3)] and [6, Theorems 12 and 14] taking
account of (33) and (34) given later. We also have identities that appear in [2, Theorem 5.1] and [25,
Theorem 4.4 and their results].

Remark 13. From Corollary 8 we have identities given by [6, Theorem 25], [10, Eqs. (6.3) and (6.5)]
and [17, Eq. (6.99)] (and [14, Corollary 3.3]). Additionally, by (s + r)r(s)k−r = (s + r)k , (19) gives [5,
Eq. (2.89)] for x = r = j = h = m, y = −s and λ = 0.

Remark 14. As a special case of Corollary 9, we have Carlitz’s results appearing in [10, Eqs. (3.3), (3.4),
(3.25), (5.2) and (5.8)]. Furthermore, [23, Theorem 5] is a special case of (27) for λ = y = j = 0 and
h = 1.

Remark 15. (28) gives [11, Theorem 4.1] for h = j, x = y = 0 and i = m + j.

Remark 16. The identities given by [17, Eqs. (6.15), (6.17), (6.21), (6.24), (6.25), (6.28) and (6.29)] are
the special cases of (24) for h = y = 0 and x = 1, (28) for h = 0, y = 1 and x = −1, (29) for h = y = 0
and x = −1, (17) for h = y = 0 and x = 1, (18) for h = y = 0 and x = 1, (24) for x = y = 0, (25) for
x = y = 0 and in all cases λ = 0, respectively.

Remark 17. Broder noted that Nielsen in “Traite Elementaire des Nombres de Bernoulli, Gauthier-
Villars, Paris, 1923, Chapter 12” developed a large number of formulas relating R2(n,m, x) =
S2(n,m|1,0,−x) to the Bernoulli and Euler polynomials. (Nielsen’s notation is An

m(x) = m!R2(n,m, x).)
This note reveals that identities following from our results for λ = 0 may be studied by Nielsen with
probably different notations.
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5. Applications of the results in Section 4.2

By using the results presented in (24)–(31) and Corollary 8 several identities for some related
number sequences can be deduced for the special values of h, μ, λ, x and y, and from the identities
S1(i, j|1, λ,−x) = (−1)i− j S1(i + 1, j + 1|λ) and S2(i, j|1, λ,−x) = S2(i + 1, j + 1|λ) for x = 1 − λ. In
previous section we mentioned some of them. In this section we partly specify identities given by
(24)–(31) and Corollary 8.

5.1. Carlitz’s weighted Stirling numbers

In this part we give results involving Carlitz’s weighted Stirling numbers and Bernoulli polynomials.
For λ = 0, we have from (17)

(
i

j

)
Bi− j(x) =

i∑
k= j

i

k
R2(i − 1,k − 1, x)S1(k, j), for h = 1, y = 0,

Bi(x) =
i∑

k=0

(−1)k k!
k + 1

R2(i,k, x), for h = j = 1, y = 0,

from (18)

i!bi(−x) =
i∑

k=0

(−1)i−k

k + 1
R1(i,k, x), for h = j = 1, y = 0,

(−1)i−1(i − 1)! =
i∑

k=0

(k + 1)S1(i + 1,k + 1), for h = −1, y = 1, x = j = 0,

by (23) and

S1(m,1|1,0,1) = S1(m,1) + mS1(m − 1,1) =
{

1, m = 1,

(−1)m(m − 2)!, m > 1,
(32)

which can be held from (29) for λ = h = y = 0, j = 1 and x = 1.
From (26)

i!
(i + h)! R2(i + h, j + h, x) = 1

( j + h)!
i∑

k= j

S2(i,k)b(h)

k− j(x)k!, for y = 0,

(x + 1)i+1 − xi+1

i + 1
=

i∑
k=0

S2(i,k)bk(x)k!, for h = 1, j = y = 0,

and from (27)

(−1)i− j

( i
j

)
( i+h

j+h

) R1(i + h, j + h,−x) =
i∑

k= j

(
k

j

)
S1(i,k)B(h)

k− j(x), for y = 0,

( i
j

)
( i+h

j+h

) S1(i + h + 1, j + h + 1) =
i∑

k= j

(
k

j

)
S1(i + 1,k + 1)B(h)

k− j, for y = 1, x = 0.
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5.2. r-Stirling numbers

Setting μ = −1 in (9) we have

S1(m,k|1,−λ,−x) = (−1)m−k S1(m,k| − 1, λ, x), (33)

S2(m,k|1,−λ,−x) = (−1)m−k S2(m,k| − 1, λ, x). (34)

So that

S1(m,k|1,0,−r) = (−1)m−k
[

m + r

k + r

]
r

and S2(m,k|1,0,−r) =
{

m + r
k + r

}
r

for λ = 0 and nonnegative integer x = r. Then the results presented in Section 4.2 can be specialized
in terms of r-Stirling numbers for λ = 0 and integers x and y.

In the first place note that[
m

k

]
0
=

[
m

k

]
1
=

[
m

k

]
,

{
m
k

}
0
=

{
m
k

}
1
=

{
m
k

}
.

The following are special cases of (31) for λ = 0, nonnegative integers y = p, y − x = r and j � h:

[
i + r

j + r

]
r
=

i∑
k= j

(
k

j

)[
i + p

k + p

]
p
(r − p)k− j, for h = 0, (35)

[
i + r

j + r

]
r
= 1

i + 1

i∑
k= j

(
k + 1

j

)[
i + r

k + r

]
r−1

, for h = 1, p = r − 1,

(
i

j

)
〈p + j〉i− j =

i∑
k= j

[
i + p

k + p

]
p

{
k
j

}
, for h = j, r = p + j,

where 〈m〉k =
{

m(m + 1) · · · (m + k − 1), k > 0,

1, k = 0
and we use that

S2(k,m|1,0,m) = (−1)k−m S2(k,m) = (−1)k−m
{

k
m

}
.

Additionally, for p = r − 1 and p = r + 1 in (35) we get recurrences

[
i + r

j + r

]
r
=

i∑
k= j

(
k

j

)[
i + r − 1

k + r − 1

]
r−1

,

[
i + r

j + r

]
r
=

i∑
k= j

(−1)k− j
(

k

j

)[
i + r + 1

k + r + 1

]
r+1

,

respectively. The identities above reduce to [17, Eq. (6.16) and (6.18)] for r = 1 and r = 0, respectively.
Some identities deduced from (30), for λ = 0, nonnegative integers y = p, y − x = r and j � h, are

{
i + r
j + r

}
r
=

i∑
k= j

(
k

j

){
i + p
k + p

}
p
(r − p)k− j, for h = 0,

{
i + p − 1
j + p − 1

}
p−1

= 1

j!
i∑

k= j

(−1)k− j
{

i + p
k + p

}
p

k!, for h = 0, r = p − 1, (36)
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{
i − 1 + r
j − 1 + r

}
r
= 1

i( j − 1)!
i∑

k= j

(−1)k− j k!
k − j + 1

{
i + r
k + r

}
r
, for h = 1, p = r, (37)

{
i − 1 + r
j − 1 + r

}
r
= 1

i( j − 1)!
i∑

k= j

(−1)k− j
{

i + r + 1
k + r + 1

}
r+1

k!Hk− j+1, for h = 1, p = r + 1,

where
[m+1

2

] = m!Hm and

Hm = 1 + 1

2
+ 1

3
+ · · · + 1

m
.

By (32), we also have

i

j

{
i − 1 + r
j − 1 + r

}
r
−

{
i + r − 1
j + r − 1

}
r−1

= − 1

j!
i∑

k= j+1

(−1)k− jk!
(k + 1 − j)(k − j)

{
i + r − 1
k + r − 1

}
r−1

(38)

for h = 1 and p = r − 1. Additionally, regular Stirling numbers of the second kind satisfy

{
i
j

}
= 1

j!
i∑

k= j

(−1)k− j
{

i + 1
k + 1

}
k!, for j � 0, p = 1 in (36)

= 1

i( j − 1)!
i∑

k= j

(−1)k− j k!
k − j + 1

{
i + 1
k + 1

}
, for j � 1, r = 1 in (37)

= 1

( j − i)( j − 1)!
i∑

k= j+1

(−1)k− jk!
(k − j + 1)(k − j)

{
i
k

}
, for j � 1, r = 1 in (38).

The following are special cases of (17) for λ = 0, nonnegative integers y = p, x = r and j � h:

(
i

j

)
Bi− j(p) =

i∑
k= j

(−1)i−k i

k

{
i
k

}[
k + p

j + p

]
p
, for h = 1, r = 1,

Bi(r) =
i∑

k=0

(−1)k k!
k + 1

{
i + r
k + r

}
r
, for h = j = 1, p = 0,

(
i + 1

j

)
=

i∑
k= j

(−1)i−k(k + 1)

{
i + p
k + p

}
p−1

[
k + p

j + p

]
p
, for h = −1, r = p − 1,

(
i + 1

j

)
=

i∑
k= j

(−1)k− j(k + 1)

{
i + 1 + p
k + 1 + p

}
p

[
k + p

j + p

]
p
, for h = −1, r = p.

Moreover, from (17) for λ = y = 0, h = j = 1 and x = 1 − i, we have

Bi(i + 1) =
i∑

k=0

(i − k)!
i − k + 1

{
i + k

i

}
k

by making use of R2(m,k,−x) = (−1)m−k R2(m,k, x − k) and Bm(1 − x) = (−1)m Bm(x).
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5.3. Hyperharmonic numbers

The hyperharmonic number of order r denoted by Hr
m is defined by

Hr
m =

m∑
k=1

Hr−1
k

for r,m � 1, H0
m = 1

m for m � 1, and Hr
m = 0 for r < 0 or m � 0 [4].

A generating function for the hyperharmonic numbers is

−(1 − x)−r ln(1 − x) =
∞∑

n=1

Hr
nxn.

It follows from (7) and (33) that

m!Hr
m =

[
m + r

1 + r

]
r
= S1(m,1| − 1,0, r) = (−1)m−1 S1(m,1|1,0,−r).

A combinatorial proof of this fact can be found in [4, Theorem 2]. Thus, we have from (27)

i!Hr
i+1 =

i∑
k=0

(−1)k Bk

[
i + r

k + r

]
r
, for h = 1, y = r, x = j = λ = 0,

i!Hr−1
i+1 =

i∑
k=0

Bk

[
i + r

k + r

]
r
, for h = x = 1, y = r, j = λ = 0,

i!Hr+p
i =

i∑
k=1

k

[
i + r

k + r

]
r
pk−1, for j = 1, y = r, y − x = r + p � 0, h = λ = 0,

i!H p
i =

i∑
k=1

k

[
i

k

]
pk−1

and from (29)

Hr−m
i =

i∑
k=1

(−1)i−k

(i − k)! (m)i−k Hr
k

for j = 1, y = r, y − x = r − m � 0 and h = λ = 0. This gives

i∑
k=1

(
i − k + p − 1

p − 1

)
Hr

k = H p+r
i , for m = −p < 0, (39)

i∑
k=1

kHr
k = (i + 1)!Hr+1

i − i!Hr+2
i , for p = 2.

(39) is Eq. (7) of [4] and thereby [4, Theorem 1] (see also [15, Theorem 5]) for r = 0.

5.4. Lah numbers

For λ = 1 and x = 0 in (33) and (34), we have

S1(m,k|1,−1,0) = (−1)m−k L(m,k) and S2(m,k|1,−1,0) = L(m,k).
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Then, it follows from (18), (26) and (30) that

(
i − j + m − 1

i − j

)
=

i∑
k= j

(−1)k− j
(

i + m − 1

k + m − 1

)(
k − 1

j − 1

)
, for x = y = 0, h = −m < 0,

(
i + h

j + h

)
=

i∑
k= j

(
i

k

)(
h

k − j

)
, for x = y = 0, h � 0,

(
i − h + 1

j − h + 1

)
=

i∑
k= j

(−1)k− j
(

i + 1

k + 1

)(
k − j + h − 1

h − 1

)
, for x = 0, y = 1 − λ, j � h � 1,

and λ = −1, respectively.
In general, for arbitrary x and y, we have

S2(m, j|1,−1,−x) = (−1)m− j S1(m, j|1,−1,−x) =
(

m

j

)
〈x + j〉m− j,

β
(h)
m (−1, x) = (−1)mα

(h)
m (−1,−x) = 〈x − h〉m.

Then (18), (28) and (30) reduce to

〈x − h − y〉i− j =
i− j∑
k=0

(
i − j

k

)
(−1)k〈y + j〉k〈x − h + j + k〉i− j−k,

〈y + j + x − h〉i− j =
i− j∑
k=0

(
i − j

k

)
〈y + j〉k〈x − h〉i− j−k,

〈y + j − x − h〉i− j =
i− j∑
k=0

(
i − j

k

)
(−1)k〈x + h〉k〈y + j + k〉i− j−k,

respectively.
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M. Can, M.C. Dağlı / Linear Algebra and its Applications 444 (2014) 114–131 131
[17] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison–Wesley, 1990, sixth printing.
[18] P. Henrici, Applied and Computational Complex Analysis, vol. 1, J. Wiley, 1974.
[19] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996) 175–185.
[20] F.T. Howard, Degenerate weighted Stirling numbers, Discrete Math. 57 (1985) 45–58.
[21] L.C. Hsu, P.J. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998) 366–384.
[22] H. Liu, W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power

sums, Discrete Math. 309 (2009) 3346–3363.
[23] P.G. Todorov, On the theory of the Bernoulli polynomials and numbers, J. Math. Anal. Appl. 104 (1984) 309–350.
[24] W. Wang, T. Wang, Generalized Riordan arrays, Discrete Math. 308 (2008) 6466–6500.
[25] W. Wang, Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl. 364

(2010) 255–274.
[26] Y. Yang, C. Micek, Generalized Pascal functional matrix and its applications, Linear Algebra Appl. 423 (2007) 230–245.
[27] P.T. Young, Congruences for degenerate number sequences, Discrete Math. 270 (2003) 279–289.
[28] P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, J. Number Theory 128

(2008) 738–758.
[29] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997) 51–60.
[30] Z. Zhang, M.X. Liu, An extension of generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998)

169–177.
[31] Z. Zhang, J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (2006) 1622–1632.
[32] X. Zhao, T. Wang, The algebraic properties of the generalized Pascal functional matrices associated with the exponential

families, Linear Algebra Appl. 318 (2000) 45–52.

http://refhub.elsevier.com/S0024-3795(13)00769-6/bib624B6E757468s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib6248656E72696369s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623133s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623138s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623137s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623132s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623132s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623234s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib62323361s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623233s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623233s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623136s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623130s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623135s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623135s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib6232s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623232s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623232s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib6237s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623230s1
http://refhub.elsevier.com/S0024-3795(13)00769-6/bib623230s1

	Extended Bernoulli and Stirling matrices and related combinatorial identities
	1 Introduction
	2 Pascal matrix
	3 Degenerate Bernoulli matrices
	3.1 Degenerate Bernoulli polynomials of the ﬁrst kind
	3.2 Degenerate Bernoulli polynomials of the second kind

	4 Generalized Stirling matrices
	4.1 Stirling matrices of the ﬁrst type
	4.2 Stirling matrices of the second type

	5 Applications of the results in Section 4.2
	5.1 Carlitz's weighted Stirling numbers
	5.2 r-Stirling numbers
	5.3 Hyperharmonic numbers
	5.4 Lah numbers

	Acknowledgement
	References


