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Abstract

We consider an identity relating Fibonacci numbers to Pascal’s triangle discovered by G.E. Andrews. Several authors provided
proofs of this identity, most of them rather involved or else relying on sophisticated number theoretical arguments. We present a new
proof, quite simple and based on a Riordan array argument. The main point of the proof is the construction of a new Riordan array
from a given Riordan array, by the elimination of elements. We extend the method and as an application we obtain other identities,
some of which are new. An important feature of our construction is that it establishes a nice connection between the generating
function of the A-sequence of a certain class of Riordan arrays and hypergeometric functions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this article we provide a new proof of an identity of Andrews, based on Riordan arrays. Several authors have
already proved this identity using different types of argument (references are given below). Our reason to give a further
proof is that we believe our idea is new and interesting on its own.

In our approach we establish a nice connection between the generating function of the A-sequence of a certain class
of Riordan arrays and hypergeometric functions. This new connection with hypergeometric functions is probably in
itself interesting and is one of the main features of this work. Our method involves constructing a new Riordan array
from a given Riordan array by eliminating entire rows and parts of the remaining rows. In the proof of the identity of
Andrews, this construction is applied to Pascal’s triangle, but for the sake of illustrating the usefulness of our method,
we make additional applications to Pascal’s triangle as well as to other Riordan arrays, for example, Catalan’s triangle,
obtaining a few more identities.

As a generalization of Pascal’s, Catalan’s, Motzkin’s, and other triangles, Rogers introduced in 1978 [16] the concept
of renewal array, which was further generalized to Riordan array by Shapiro et al. in 1991 [19]. Among other applications
Riordan arrays turned out to be an extremely powerful tool in dealing with combinatorial identities. Sprugnoli in [20]
used Riordan arrays to find several combinatorial sums in closed form and also to determine their asymptotic value.
For additional applications of Riordan arrays to the evaluation in closed form of sums involving binomial, Stirling,
Bernoulli, and harmonic numbers, see [24]. The Riordan array technique has also been employed to show that two
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combinatorial sums are equivalent, regardless of whether they have a closed form expression or not (see [23]). An
important problem that has occupied mathematicians for a long time is the inversion of combinatorial sums (see [15]).
The concept of Riordan array provided a powerful tool to prove a large class of inversions (see, for example, [4,22]).

The paper is organized as follows. In the introduction we recall some basic results needed in the sequel. In Section 2
we develop our method of extracting new Riordan arrays from a given one. We also establish a connection between a
certain class of Riordan arrays and hypergeometric functions. The ideas of Section 2 are applied in Section 3 to give a
new proof of the identity of Andrews. Section 4 is devoted to additional applications of our method. As an illustration of
our ideas, further identities are obtained. Identities of this type can often be proved directly, using generating functions
and Lagrange’s Inversion Formula. To show how this can be done, in Section 5 we give a direct proof of one of the
identities obtained previously.

We begin by recalling Lagrange’s Inversion Theorem, which is an important element needed in our study. Several
forms of Lagrange’s Inversion Formula exist (see [13]). We summarize some of them below.

Theorem 1.1 (Lagrange’s Inversion Theorem, Merlini et al. [13]). Suppose that a formal power series w = w(t) is
implicitly defined by the relation w = t�(w), where �(t) is a formal power series such that �(0) �= 0. Then,

[tn](w(t))k = k

n
[tn−k](�(t))n. (1)

Equivalently, for any formal power series F(t),

[tn]F(w(t)) = 1

n
[tn−1]F ′(t)(�(t))n. (2)

In terms of generating functions,

G([tn]F(t)(�(t))n) =
[

F(w)

1 − t�′(w)

∣∣∣∣w = t�(w)

]
. (3)

The above notation, i.e., [f (w)|w = g(t)], means replacing w by g(t) in f (w), and given any sequence (bn), G(bn)

stands for its generating function G(bn) =∑∞
n=0 bnt

n.
A Riordan array is an infinite lower triangular array D = {dn,k}n,k �0 defined by a pair of formal power series

D = (d(t), h(t)), for which

dn,k = [tn]d(t)(th(t))k ∀n, k�0. (4)

Here [tn]g(t) denotes the coefficient of tn in g(t). Pascal’s triangle is an example of a Riordan array. In this case,
d(t)=h(t)=1/(1− t) and dn,k = (n

k

)
. One of the main results of the theory of Riordan arrays is the following theorem.

Theorem 1.2 (Sprugnoli [20], Theorem 1.1). Let D = (d(t), h(t)) be a Riordan array and f (t) =∑
fkt

k a formal
power series. Then,

∞∑
k=0

fkdn,k = [tn]d(t)f (th(t)). (5)

A Riordan array D = (d(t), h(t)) is called proper if h0 = h(0) �= 0. In [16], Rogers pointed out that proper Riordan
arrays can be alternately characterized by a pair d(t) = ∑

n dn,0t
n, the generating function of the first column, and

A(t) =∑
akt

k , the generating function of the A-sequence, such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · ∀n, k�0. (6)

If D = (d(t), h(t)) is a proper Riordan array, then ord((th(t))k) = k, for every k, where for any non-zero formal power
series g(t) the order ord(g(t)) is the index of the first non-zero coefficient of g(t). Therefore, there exists a unique
sequence (ak), called the A-sequence of the Riordan array, such that

h(t) = a0 + a1th(t) + a2(th(t))2 + · · ·
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[i.e., the formal power series A(t) = a0 + a1t + a2t
2 + · · · , referred to as the generating function of the A-sequence,

is such that h(t) = A(th(t))]. Multiplying by d(t)(th(t))k , we obtain

t−1d(t)(th(t))k+1 = a0d(t)(th(t))k + a1d(t)(th(t))k+1 + a2d(t)(th(t))k+2 + · · ·
and applying [tn] to both sides, (6) follows.

The converse is also true and we state it as the following theorem.

Theorem 1.3 (Sprugnoli [20], Theorem 1.3). Let D = {dn,k}n�k �0 be an infinite triangle such that d0,0 �= 0 and
for which (6) holds for some sequence (ak) with a0 �= 0. Then D is a proper Riordan array (d(t), h(t)), where
d(t) =∑∞

n=0 dn,0t
n is the generating function of the first column and h(t) is the unique solution of

h(t) = A(th(t)), (7)

for A(t) = G(ak) =∑
akt

k the generating function of the sequence (ak). Moreover,

[tn−1]h(t) = 1

n
[tn−1](A(t))n. (8)

Proof. Since a0 �= 0, by Lagrange’s Inversion Formula (1) with w := th(t), k = 1 and � = A, (7) defines a unique
formal power series h(t), for which (8) holds. We have to verify that given n,

dn,k = [tn]d(t)(th(t))k ,

for all k. By induction, suppose this holds for some n. Then,

dn+1,k+1 =
∑
j �0

ajdn,k+j =
∑
j �0

aj [tn]d(t)(th(t))k+j

= [tn]d(t)(th(t))kA(th(t)) = [tn]d(t)(th(t))kh(t)

= [tn+1]d(t)(th(t))k+1. �

2. Construction of a new Riordan array

We now describe a process of obtaining new Riordan arrays from a given Riordan array, which corresponds to
eliminating rows from the original array, eliminating the first elements from the remaining rows, and shifting them to
the left. For a fixed p we keep one of every p rows.

Theorem 2.1. Given a proper Riordan array {dn,k}n,k �0, for any integers p�2 and r �0, d̃n,k=dpn+r,(p−1)n+r+k, for
n, k�0, defines a new Riordan array. Moreover, the generating function of the A-sequence of the new array is (A(t))p,
where A(t) is the generating function of the A-sequence of the given Riordan array.

Proof. Let A(t) = a0 + a1t + a2t
2 + · · · be as in (6). If p = 2, for r = 0, 1 we have

d̃n+1,k+1 = d2n+2+r,n+k+2+r =
∞∑
i=0

aid2n+1+r,n+k+i+1+r

=
∞∑
i=0

∞∑
j=0

aiaj d2n+r,n+k+i+j+r

and, therefore,

d̃n+1,k+1 =
∞∑

�=0

�∑
i=0

aiar−id2n+r,n+k+�+r ,
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i.e.,

d̃n+1,k+1 =
∞∑

�=0

�∑
i=0

aiar−i d̃n,k+�.

Hence,

d̃n+1,k+1 =
∞∑

r=0

br d̃n,k+r where
∞∑

k=0

bkt
k = (A(t))2.

By Theorem 1.3, {d̃n,k}n,k �0 is a Riordan array and B(t) = (A(t))2 is the generating function of its A-sequence. If
p�3 an iteration of the argument applies. �

For example, beginning with Pascal’s triangle, for p = 3 and r = 1, we obtain the Riordan array

1
4 1
21 7 1

120 45 10 1
715 286 78 13 1

2002 1001 560 120 16 1
27132 11628 3876 969 171 19 1

· · · · · ·

in which dn,k =
(

3n+1
2n+k+1

)
and, by Theorem 2.1,

dn+1,k+1 = dn,k + 3dn,k+1 + 3dn,k+2 + dn,k+3.

In what follows we use the generalized hypergeometric series, defined by

pFq

(
a1, . . . , ap

c1, . . . , cq

∣∣∣∣ t
)

=
∞∑

n=0

(a1)n · · · (ap)n

(c1)n · · · (cq)n
· tn

n! ,

where (a)n stands for the Pochhammer symbol

(a)n = �(a + n)

�(a)
=
{

1 if n = 0,

a(a + 1) · · · (a + n − 1) if n�1.

The hypergeometric series is characterized by the fact that its constant term is 1 and, setting An = (a1)n···(ap)n
(c1)n···(cq )n

tn, the
ratio of consecutive terms is

An+1

An

= (a1 + n) · · · (ap + n)

(c1 + n) · · · (cq + n)
· t

n + 1
.

In order to apply Theorem 2.1 we need the following result, which establishes an interesting connection between
Riordan arrays and hypergeometric functions.

Theorem 2.2. If the generating function of the A-sequence of a proper Riordan array is A(t) = (1 + t)q , with q ∈ N,
then h is the hypergeometric function

h(t) = qFq−1

⎛
⎜⎝

q

q
,
q + 1

q
, . . . ,

2q − 1

q
q + 1

q − 1
,
q + 2

q − 1
, . . . ,

2q − 1

q − 1

∣∣∣∣∣∣∣
qqt

(q − 1)q−1

⎞
⎟⎠ , (9)
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also given by

h(t) =
∞∑

n=1

1

(q − 1)n + 1

(
qn

n

)
tn−1 =

∞∑
n=1

1

qn + 1

(
qn + 1

n

)
tn−1. (10)

Moreover,

(h(t))s = qFq−1

⎛
⎜⎝

sq

q
,
sq + 1

q
, . . . ,

(s + 1)q − 1

q
sq + 1

q − 1
,
sq + 2

q − 1
, . . . ,

(s + 1)q − 1

q − 1

∣∣∣∣∣∣∣
qqt

(q − 1)q−1

⎞
⎟⎠ , (11)

for every s ∈ R. Consequently,

(h(t))s =
∞∑

n=0

qs

(q − 1)n + qs

(
q(n + s) − 1

n

)
tn

and, therefore,

[tj ](th(t))s = [tj−s](h(t))s = qs

(q − 1)j + s

(
qj − 1
j − s

)
. (12)

Proof. If A(t) = (1 + t)q , by (8), Theorem 1.3,

[tn−1]h(t) = 1

n
[tn−1](1 + t)qn = 1

n

(
qn

n − 1

)
= (qn)!

((q − 1)n + 1)!n! .

Therefore,

h(t) =
∞∑

n=1

1

(q − 1)n + 1

(
qn

n

)
tn−1 =

∞∑
n=0

1

(q − 1)n + q

(
qn + q

n + 1

)
tn. (13)

The series (13) is hypergeometric as its constant term is 1 and, setting An = (qn+q)!
(n+1)!((q−1)n+q)! t

n, the ratio of consecutive
terms is

An+1

An

= (qn + q + 1)(qn + q + 2) · · · (qn + 2q)

((q − 1)n + q + 1)((q − 1)n + q + 2)) · · · ((q − 1)n + 2q − 1)
· t

n + 2

=

(
n + q + 1

q

)(
n + q + 2

q

)
· · ·
(

n + 2q

q

)
(

n + q + 1

q − 1

)(
n + q + 2

q − 1

)
· · ·
(

n + 2q − 1

q − 1

) · n + 1

n + 2
· t

n + 1
· qq

(q − 1)q−1

=

(
n + q

q

)(
n + q + 1

q

)
· · ·
(

n + 2q − 1

q

)
(

n + q + 1

q − 1

)(
n + q + 2

q − 1

)
· · ·
(

n + 2q − 1

q − 1

) · 1

n + 1
· qqt

(q − 1)q−1
.

Thus, (9) follows immediately.

Note that h(t) = Bq (t)−1
t

, where Bq is the generalized binomial series, given by

Bq(t) =
∞∑

n=0

1

qn + 1

(
qn + 1

n

)
tn,

for which we have

(Bq(t))r =
∞∑

n=0

r

qn + r

(
qn + r

n

)
tn, (14)
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for any real r (see [6, p. 201, and also 13], where in Theorem 2.1 this is obtained from Lagrange’s Inversion Theorem,
using (3)). From (14), by the same argument used for the series (13), it follows that, for any r ∈ R,

(Bq(t))r = qFq−1

⎛
⎜⎝

r

q
,
r + 1

q
, . . . ,

r + q − 1

q
r + 1

q − 1
,
r + 2

q − 1
, . . . ,

r + q − 1

q − 1

∣∣∣∣∣∣∣
qqt

(q − 1)q−1

⎞
⎟⎠ . (15)

On the other hand, since h(t) = A(th(t)) = (1 + th(t))q = (Bq(t))q , replacing r by qs in (15), we have (11) for any
s ∈ R and, therefore, (12) holds. �

Remark. From (15), we obtain the remarkable identity

⎡
⎢⎣qFq−1

⎛
⎜⎝

1

q
,

2

q
, . . . ,

q

q
2

q − 1
,

3

q − 1
, . . . ,

q

q − 1

∣∣∣∣∣∣∣
qqt

(q − 1)q−1

⎞
⎟⎠
⎤
⎥⎦

r

= qFq−1

⎛
⎜⎝

r

q
,
r + 1

q
, . . . ,

r + q − 1

q
r + 1

q − 1
,
r + 2

q − 1
, . . . ,

r + q − 1

q − 1

∣∣∣∣∣∣∣
qqt

(q − 1)q−1

⎞
⎟⎠ (16)

for powers of a hypergeometric function, which is essentially contained in (5.60) of [6] but is not explicitly stated in
the literature. Indeed, the literature does not refer to many instances in which a product of hypergeometric functions is
also hypergeometric. In Section 5 we obtain two more identities involving a product of hypergeometric functions.

3. The identities of Andrews

We now apply the procedure described in Theorem 2.1 of extracting new Riordan arrays from a given one to provide
a new proof of some identities obtained by Andrews in [1], namely

Fn =
∞∑

k=−∞
(−1)k

(
n − 1

� 1
2 (n − 1 − 5k)�

)
(17)

and

Fn =
∞∑

k=−∞
(−1)k

(
n

� 1
2 (n − 1 − 5k)�

)
, (18)

where (Fn) is the sequence of Fibonacci numbers, defined by F0 =0, F1 =1, and Fn+2 =Fn+1 +Fn. Different proofs of
(17) and (18) were given by Gupta in [7] and by Hirschhorn in [9,10]. They are all rather involved, though elementary,
and they are specifically designed to deal with the case of Pascal’s triangle. As indicated in [7,9], identities (17) and
(18) are equivalent to

F2n+1 =
∞∑

j=−∞

[(
2n + 1
n − 5j

)
−
(

2n + 1
n − 5j − 1

)]
, (19)

F2n+2 =
∞∑

j=−∞

[(
2n + 2
n − 5j

)
−
(

2n + 2
n − 5j − 1

)]
, (20)
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and

F2n+2 =
∞∑

j=−∞

[(
2n + 1
n − 5j

)
−
(

2n + 1
n − 5j − 2

)]
, (21)

F2n+1 =
∞∑

j=−∞

[(
2n

n − 5j

)
−
(

2n

n − 5j − 2

)]
, (22)

respectively. In [2] Andrews proves these identities in the context of identities of the Rogers–Ramanujan type (see
also [11]). In [3], identities (19) through (22), as well as several other similar identities for trinomial coefficients and
Catalan’s triangle, have been proved in a very elementary and direct way.

We now prove (20) to illustrate how identities (19) through (22) can be obtained by a Riordan array technique.
Replacing n by n − 1 in (20), it suffices to show that

F2n =
∞∑

j=−∞

[(
2n

n − 5j − 1

)
−
(

2n

n − 5j − 2

)]
. (23)

We start with a visualization of Pascal’s triangle in which alternate rows have been removed and only non-vanishing
binomial numbers are represented:

1
+1 2 1

−1 +4 6 4 1
1 −6 +15 20 15 6 −1

1 8 −28 +56 70 56 28 −8 +1
1 10 45 −120 +210 252 210 120 −45 +10 1

+1 12 66 220 −495 +792 924 792 495 −220 +66 12 1
· · · · · ·

Identity (23) corresponds to adding in each row the elements marked with a plus sign and subtracting the ones marked
with a minus. By symmetry, we can represent this sum using only the right-hand side of the above table, which by

Theorem 2.1 is the following Riordan array d̃n,k =
(

2n
n+k

)
with marked plus and minus entries.

1
2 +1
6 +4 −1

20 +15 −6 −1
70 +56 −28 −8 +1
252 +210 −120 −45 +10 1
924 +792 −495 −220 +66 12 +1

· · · · · ·
In order to prove (23), we wish to evaluate the sum

Sn =
∞∑

j=−∞

[(
2n

n − 5j − 1

)
−
(

2n

n − 5j − 2

)]
,

i.e.,

Sn =
∞∑

k=0

[(
2n

n + 5k + 1

)
−
(

2n

n + 5k + 2

)
−
(

2n

n + 5k + 3

)
+
(

2n

n + 5k + 4

)]
.
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In terms of the Riordan array d̃n,k =
(

2n
n+k

)
, n, k�0, we have

Sn =
∞∑

k=0

fkd̃n,k , (24)

where

f (t) =
∑

fkt
k = t − t2 − t3 + t4 + t6 − t7 − t8 + t9 + · · · = t − t2 − t3 + t4

1 − t5
.

For Pascal’s triangle the generating function of the A-sequence is 1 + t , since
(

n+1
k+1

)
= (

n
k

) +
(

n
k+1

)
. Hence, by

Theorem 2.1, the generating function of the A-sequence for {d̃n,k} is

A(t) = (1 + t)2. (25)

Either using Theorem 2.2 or noting that it follows from (7) that h(t) satisfies

t2h2 + (2t − 1)h + 1 = 0, (26)

we obtain h(t) = 1−2t−√
1−4t

2t2 . Therefore, {d̃n,k} is the Riordan array characterized by the pair (d(t), h(t)), where

d(t) =
∞∑

n=0

(
2n

n

)
tn = 1√

1 − 4t

and

h(t) = 1 − 2t − √
1 − 4t

2t2
. (27)

By Theorem 1.2, Sn given by (24) satisfies Sn = [tn] d(t)f (th(t)). Note that

f (t) = t − t2 − t3 + t4

1 − t5
= t (1 − t)(1 − t2)

(1 − t)(1 + t + t2 + t3 + t4)
= t−1 − t

t−2 + t−1 + 1 + t + t2
.

Setting w := th(t), by (26) w and w−1 are the roots of the equation

y2 + 2t − 1

t
y + 1 = 0.

Hence,

w−1 + w = 1 − 2t

t
, w−1 − w =

√
1 − 4t

t

and

w2 + w−2 = (w + w−1)2 − 2 = 1 − 4t + 2t2

t2
.

Therefore,

f (th(t)) = f (w) =

√
1 − 4t

t

1 − 4t + 2t2

t2
+ 1 − 2t

t
+ 1

= t
√

1 − 4t

1 − 3t + t2

and, finally,

d(t)f (th(t)) = t

1 − 3t + t2
. (28)
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It is well known that both sequences of Fibonacci numbers F2n and F2n+1 satisfy the recurrence relation xn = 3xn−1 −
xn−2 and have generating functions

t

1 − 3t + t2
=

∞∑
n=0

F2nt
n

and

1 − t

1 − 3t + t2
=

∞∑
n=0

F2n+1t
n,

respectively (see [12, p. 230]). Hence, Eq. (28) implies that

d(t)f (th(t)) =
∞∑

n=0

F2nt
n,

from which (23) and (20) follow.
Identities (19), (21), and (22) can be obtained in a similar way. For (19) and (21) we eliminate the even-numbered

rows of Pascal’s triangle

1
1 3

1 5 10
· · · 35

· · · · ·

∣∣∣∣∣∣∣∣∣

1
3 1

10 5 1
35 21 7 1
126 84 36 9 1

· · · · · ·
and consider the right-hand side of what remains, obtaining by Theorem 2.1 a Riordan array for which

d(t) =
∞∑

n=0

(
2n + 1
n + 1

)
tn = 1

2t

(
1√

1 − 4t
− 1

)

and

h(t) = 1 − 2t − √
1 − 4t

2t2
.

4. Further identities

In this section, to illustrate the usefulness of the construction considered in Theorem 2.1, we apply it to obtain a
few more identities via our Riordan array approach. Some of these identities are well known, while others are not.
We believe that identities (37) and (39) are new. We need one more property of Riordan arrays, which generalizes a
well-known property of Pascal’s triangle.

Theorem 4.1. If D = (d(t), h(t)) is a Riordan array, then for any integers k�s�1 we have

dn,k =
n∑

j=s

dn−j,k−s[tj ](th(t))s . (29)

Proof. From (4), it follows that dn,k = [tn]d(t)(th(t))k−s(th(t))s . Hence,

dn,k =
n∑

j=s

([tn−j ]d(t)(th(t))k−s)([tj ](th(t))s),
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i.e.,

dn,k =
n∑

j=s

dn−j,k−s[tj ](th(t))s . �

One particular case of (29), for s = 1, is

dn,k =
n∑

j=1

hj−1dn−j,k−1, (30)

where h(t) =∑
hkt

k . For example, in the case of Pascal’s triangle, since hk = 1 for all k, we obtain the well-known
identity

n∑
j=1

(
n − j

k − 1

)
=
(

n

k

)
. (31)

More generally, for Pascal’s triangle, we have

[tj ](th(t))s = [tj ] t s

(1 − t)s
= [tj−s](1 − t)−s =

( −s

j − s

)
(−1)j−1 =

(
j − 1
s − 1

)

and, therefore, (29) becomes

n∑
j=s

(
n − j

k − s

)(
j − 1
s − 1

)
=
(

n

k

)
,

which is (5.26) of [6, p. 169], and contains (31) as a particular case.
We now apply formulas (29) or (30) to Riordan arrays obtained by the method described in Theorem 2.1.

Example 4.1. For fixed integers p�2 and r �0, starting with Pascal’s triangle and deleting p − 1 rows after each line
kept, as described in Theorem 2.1, we obtain the Riordan array

dn,k =
(

pn + r

(p − 1)n + r + k

)
=
(

pn + r

n − k

)
.

Note that dn,0 =
(

pn+r
(p−1)n+r

)
= (

pn+r
n

)
and

d(t) =
∞∑

n=0

(
pn + r

n

)
tn =

∞∑
n=0

(pn + r)!
n!((p − 1)n + r)! t

n. (32)

This is a hypergeometric series. By the same argument used for the series (13), we get

d(t) = pFp−1

⎛
⎜⎝

r + 1

p
,
r + 2

p
, . . . ,

r + p

p
r + 1

p − 1
,

r + 2

p − 1
, . . . ,

r + p − 1

p − 1

∣∣∣∣∣∣∣
ppt

(p − 1)p−1

⎞
⎟⎠ .

For p = 2 and r = 0, 1, another expression in closed form for (32) is

d(t) =
∞∑

n=0

(
2n + r

n

)
tn = 1√

1 − 4t

(
1 − √

1 − 4t

2t

)r

(see [13], Corollary 2.2).



4256 E.H.M. Brietzke / Discrete Mathematics 308 (2008) 4246–4262

In this example, the function h is given by (9) or, equivalently, by (10) with q =p. Combining (29) and (12) it follows
that

n∑
j=s

ps

(p − 1)j + s

(
pj − 1
j − s

)(
p(n − j) + r

n − j − k + s

)
=
(

pn + r

n − k

)
. (33)

In the particular case s = 1, (33) becomes

n∑
j=1

p

(p − 1)j + 1

(
pj − 1
j − 1

)(
p(n − j) + r

n − j − k + 1

)
=
(

pn + r

n − k

)
,

or,

n∑
j=1

1

pj + 1

(
pj + 1

j

)(
p(n − j) + r

n − j − k + 1

)
=
(

pn + r

n − k

)

and, finally, adding
(

pn+r
n−k+1

)
to both sides,

n∑
j=0

1

pj + 1

(
pj + 1

j

)(
p(n − j) + r

n − j − k + 1

)
=
(

pn + r + 1
n − k + 1

)
. (34)

It would be nice to find a combinatorial interpretation for (34), since there are several interpretations for the generalized

Catalan number 1
pj+1

(
pj+1

j

)
= 1

(p−1)j+1

(
pj
j

)
(see [6, p. 360, 8]).

Setting j = i + s, x = ps, y = pk − ps + r , and replacing n by n + k, identity (33) becomes

n∑
i=0

x

x + pi

(
x + pi

i

)(
y + p(n − i)

n − i

)
=
(

x + y + pn

n

)
,

which is (5.62) of [6].

Example 4.2. We now consider Catalan’s triangle dn,k = k+1
n+1

(
2(n+1)
n−k

)
, for n, k�0,

1
2 1
5 4 1

14 14 6 1
42 48 27 8 1
132 165 110 44 10 1
429 572 429 208 65 12 1

· · · · · ·
This array was introduced in [18] and has a nice interpretation in terms of pairs of paths on a lattice. On the

bidimensional lattice Z2, consider all paths that start at the origin, consist of unit steps, and are such that all steps go
east or north. The length of a path is the number of steps in the path. The distance between two paths of length n with
end-points (an, bn) and (a′

n, b
′
n), respectively, is |an − a′

n|. Two paths are said to be non-intersecting if the origin is
the only point in common. Let B(n, k), for 1�k�n, denote the number of pairs of non-intersecting paths of length n
whose distance from one another is k. The array defined by dn,k = B(n + 1, k + 1) is called Catalan’s triangle. It is

shown in [18] that B(n, k) = k
n

(
2n

n−k

)
and that

B(n − 1, k − 1) + 2B(n − 1, k) + B(n − 1, k + 1) = B(n, k).



E.H.M. Brietzke / Discrete Mathematics 308 (2008) 4246–4262 4257

Therefore, by Theorem 1.3, dn,k = k+1
n+1

(
2(n+1)
n−k

)
is a Riordan array and (25) is the generating function of its A-sequence.

The first column of this triangle is formed by

dn,0 = 1

n + 1

(
2(n + 1)

n

)
= 1

n + 2

(
2(n + 1)

n + 1

)
= Cn+1,

where Cn = 1
n+1

(
2n
n

)
=
(

2n
n

)
−
(

2n
n−1

)
is the nth Catalan number. We then have

d(t) = h(t) = 1 − 2t − √
1 − 4t

4t2
.

For fixed integers p�2 and r �0, we consider the Riordan array

d̃n,k = dpn+r,(p−1)n+k+r = (p − 1)n + r + k + 1

pn + r + 1

(
2(pn + r + 1)

n − k

)
, (35)

for which, by Theorem 2.1, the generating function of the A-sequence is A(t) = (1 + t)2p. By Theorem 2.2, it follows
that for the Riordan array (35) we have

(h(t))s = 2pF2p−1

⎛
⎜⎝

2ps

2p
,

2ps + 1

2p
, . . . ,

2p(s + 1) − 1

2p
2ps + 1

2p − 1
,

2ps + 2

2p − 1
, . . . ,

2p(s + 1) − 1

2p − 1

∣∣∣∣∣∣∣
(2p)2pt

(2p − 1)2p−1

⎞
⎟⎠

and

[tj ](th(t))s = [tj−s](h(t))s = 2ps

(2p − 1)j + s

(
2pj − 1
j − s

)
. (36)

From (29) and (36) it follows that

n∑
j=s

2ps

(2p − 1)j + s

(
2pj − 1
j − s

)
(p − 1)(n − j) + r + k − s + 1

p(n − j) + r + 1

(
2(p(n − j) + r + 1)

n − j − k + s

)

= (p − 1)n + r + k + 1

pn + r + 1

(
2(pn + r + 1)

n − k

)
, (37)

for every integers s�k�n, p�1, and r �0. Identity (37) is probably new.

Example 4.3. In [14] the following variant of Catalan’s triangle arises as an example of the infinite matrix associated
to a generating tree

dn,k =
{ k + 1

n + 1

(
2n − k

n

)
if 0�k�2n,

0 if 0�2n < k.

1
1 1
2 2 1
5 5 3 1

14 14 9 4 1
42 42 28 14 5 1
132 132 90 48 20 6 1

· · · · · ·
In this case,

dn+1,k+1 = dn,k + dn,k+1 + dn,k+2 + · · · + dn,n
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and, thus,

A(t) = 1 + t + t2 + · · · = 1

1 − t
.

From (7) it follows that h(t) satisfies th2 −h+1=0 and, therefore, h(t)= 1−√
1−4t

2t
. But this is precisely the generating

function of the Catalan numbers, which form the first column of the triangle. Hence,

d(t) = h(t) = 1 − √
1 − 4t

2t
.

Note that

1 − √
1 − 4t

2t
= 2F1

⎛
⎝

1

2
,

2

2
2

1

∣∣∣∣∣∣ 4t

⎞
⎠ .

It follows from (16) that

(h(t))s = 2F1

(
s

2
,
s + 1

2
s + 1

∣∣∣∣∣ 4t

)
=

∞∑
n=0

s

2n + s

(
2n + s

n

)
tn.

For fixed integers p�2 and r �0, we consider the Riordan array d̃n,k = dpn+r,(p−1)n+k+r . Then, for n�0,

d̃n,k = (p − 1)n + k + r + 1

pn + r + 1

(
(p + 1)n + r − k

pn + r

)

if 0�k�(p + 1)n + r , and d̃n,k = 0 otherwise. By Theorem 2.1, the generating function of the A-sequence of {d̃n,k}
is Ã(t) = 1/(1 − t)p. By (8), the h-function h̃ of {d̃n,k} satisfies

[tn−1]h(t) = 1

n
[tn−1](A(t))n = 1

n
[tn−1](1 − t)−pn

= (−1)n

n

( −pn

n − 1

)
= (pn + n − 2)!

n!(pn − 1)!
and, therefore,

h̃(t) =
∞∑

n=1

1

(p + 1)n − 1

(
(p + 1)n − 1

n

)
tn−1 =

∞∑
n=0

((p + 1)n + p − 1)!
(n + 1)!(pn + p − 1)! t

n.

The function h̃ is hypergeometric. By the same argument used for the series (13), we have

h̃(t) = p+1Fp

⎛
⎜⎝

p

p + 1
,
p + 1

p + 1
, . . . ,

2p

p + 1
p + 1

p
,
p + 2

p
, . . . ,

2p

p

∣∣∣∣∣∣∣
(p + 1)p+1

pp
t

⎞
⎟⎠ .

It follows from (16) that

h̃(t) =
⎡
⎢⎣p+1Fp

⎛
⎜⎝

1

p + 1
,

2

p + 1
, . . . ,

p + 1

p + 1
2

p
,

3

p
, . . . ,

p + 1

p

∣∣∣∣∣∣∣
(p + 1)p+1

pp
t

⎞
⎟⎠
⎤
⎥⎦

p

and also

(h̃(t))s = p+1Fp

⎛
⎜⎝

sp

p + 1
,
sp + 1

p + 1
, . . . ,

sp + p

p + 1
sp + 1

p
,
sp + 2

p
, . . . ,

sp + p

p

∣∣∣∣∣∣∣
(p + 1)p+1

pp
t

⎞
⎟⎠ , (38)
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for any s ∈ R. It is straightforward from (38) that

(h̃(t))s =
∞∑

n=0

sp

(p + 1)n + sp

(
(p + 1)n + sp

n

)
tn

and, therefore,

[tj ](th̃(t))s = [tj−s](h̃(t))s = sp

(p + 1)j − s

(
(p + 1)j − s

j − s

)
.

Thus, by Theorem 4.1,

n−k+s∑
j=s

ps

(p + 1)j − s

(
(p + 1)j − s

j − s

)
(p − 1)(n − j) + k − s + r + 1

p(n − j) + r + 1

(
(p + 1)(n − j) + r − k + s

p(n − j) + r

)

= (p − 1)n + k + r + 1

pn + r + 1

(
(p + 1)n + r − k

pn + r

)
, (39)

for s�k�n. Setting j = i + s, x = ps, y = pk − ps + r , and replacing n by n + k, identity (39) can be rewritten as

n∑
i=0

x

(p + 1)i + x

(
(p + 1)i + x

i

)
(p − 1)(n − i) + y + 1

p(n − i) + y + 1

(
(p + 1)(n − i) + y

n − i

)

= (p − 1)n + x + y + 1

pn + x + y + 1

(
(p + 1)n + x + y

n

)
. (40)

Note that, for fixed n�k�s�0 and r �0 integers, our argument only proves (40) for special values of x and y, namely
of the form x = ps and y = p(k − s) + r , with p�2 an integer. As usual, this is enough to guarantee that (40) holds
for all x and y real, since both sides of (40) are polynomials in p.

Identity (40) seems to be new, though it resembles the old formula

n∑
i=0

x

zi + x

(
zi + x

i

)
y

z(n − i) + y

(
z(n − i) + y

n − i

)
= x + y

zn + x + y

(
zn + x + y

n

)
(41)

due to Rothe [25] and Hagen [26] (see (3.142), in Gould’s collection [5], or (5.63) in, [6]).

5. Final comments

Often identities of the same type as the ones obtained in Section 4 can be proved directly employing generating
functions, Lagrange’s Inversion Formula, and standard Riordan array techniques. Indeed, in [21] Sprugnoli provides
this kind of proof to most of the identities appearing in Gould’s large collection [5]. As an example, we give a direct
proof of (40) along these lines. First note that

(p − 1)n + y + 1

pn + y + 1

(
(p + 1)n + y

n

)
=
(

1 − n

pn + y + 1

)(
(p + 1)n + y

n

)

=
(

(p + 1)n + y

n

)
−
(

(p + 1)n + y

n − 1

)
= [tn](1 + t)(p+1)n+y − [tn−1](1 + t)(p+1)n+y

= [tn](1 − t)(1 + t)y(1 + t)(p+1)n.

On the other hand, by Lagrange’s Inversion Formula (3),

G([tn](1 − t)(1 + t)y((1 + t)p+1)n) =
[

(1 − w)(1 + w)y

1 − t (p + 1)(1 + w)p

∣∣∣∣w = t (1 + w)p+1
]

=
[

(1 − w)(1 + w)y+1

1 − pw

∣∣∣∣∣w = t (1 + w)p+1

]
.
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Hence,

A(p, y; t) :=
∞∑

n=0

(p − 1)n + y + 1

pn + y + 1

(
(p + 1)n + y

n

)
tn

=
[

(1 − w)(1 + w)y+1

1 − pw

∣∣∣∣∣w = t (1 + w)p+1

]
. (42)

By Theorem 2.1 of [13], we have the following identity for the function given by (14)

(Bp+1(t))
x =

∞∑
n=0

x

(p + 1)n + x

(
(p + 1)n + x

n

)
tn

= [(1 + w)x |w = t (1 + w)p+1]. (43)

Combining (42) and (43) yields

(Bp+1(t))
x · A(p, y; t) = A(p, x + y; t) (44)

and, therefore, applying [tn] to both sides, (40) holds. Identity of Rothe–Hagen (41) mentioned above follows from the
application of [tn] to both sides of the equality (Bp(t))x+y = (Bp(t))x · (Bp(t))y . It is interesting to observe that (44)
implies that A(p, y; t) is a function of exponential type on y, as the ratio A(p, x + y; t)/A(p, y; t) does not depend
on y. As a matter of fact, by (42) and (43),

A(p, y; t) = (2 − Bp+1(t))Bp+1(t)

1 + p − pBp+1(t)
(Bp+1(t))

y .

We can restate (44) in terms of hypergeometric functions. If we consider the general term

An = (p − 1)n + y + 1

pn + y + 1

(
(p + 1)n + y

n

)
tn

of the power series in (42) and calculate the ratio of consecutive terms, we find

An+1

An

=

(
n + y + 1

p + 1

)(
n + y + 2

p + 1

)
· · ·
(

n + y + p + 1

p + 1

)
(

n + y + 2

p

)(
n + y + 3

p

)
· · ·
(

n + y + p + 1

p

) ·
n + y + p

p − 1

n + y + 1

p − 1

· 1

n + 1
· (p + 1)p+1t

pp
,

from which it follows that

A(p, y; t) = p+2Fp+1

⎛
⎜⎝

y + 1

p + 1
,
y + 2

p + 1
, . . . ,

y + p + 1

p + 1
,
y + p

p − 1
y + 2

p
,
y + 3

p
, . . . ,

y + p + 1

p
,
y + 1

p − 1

∣∣∣∣∣∣∣
(p + 1)p+1t

pp

⎞
⎟⎠ .

Finally, identity (44) can be stated in terms of hypergeometric functions as

p+1Fp

⎛
⎜⎝

x

p + 1
,
x + 1

p + 1
, . . . ,

x + p

p + 1
x + 1

p
,
x + 2

p
, . . . ,

x + p

p

∣∣∣∣∣∣∣
(p + 1)p+1t

pp

⎞
⎟⎠

· p+2Fp+1

⎛
⎜⎝

y + 1

p + 1
,
y + 2

p + 1
, . . . ,

y + p + 1

p + 1
,
y + p

p − 1
y + 2

p
,
y + 3

p
, . . . ,

y + p + 1

p
,
y + 1

p − 1

∣∣∣∣∣∣∣
(p + 1)p+1t

pp

⎞
⎟⎠

= p+2Fp+1

⎛
⎜⎝

x + y + 1

p + 1
,
x + y + 2

p + 1
, . . . ,

x + y + p + 1

p + 1
,
x + y + p

p − 1
x + y + 2

p
,
x + y + 3

p
, . . . ,

x + y + p + 1

p
,
x + y + 1

p − 1

∣∣∣∣∣∣∣
(p + 1)p+1t

pp

⎞
⎟⎠ .
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Of course this identity looks simpler if we further replace (p + 1)p+1t/pp by t, but then the coefficients of the
corresponding developments in power series are no longer integers.

By a similar argument, (37) can be rephrased as

n∑
i=0

2x

(2p − 1)i + 2x

(
2pi + 2x − 1

i

)
(p − 1)(n − i) + y + 1

p(n − i) + y + 1

(
2(p(n − i) + y + 1)

n − i

)

= (p − 1)n + x + y + 1

pn + x + y + 1

(
2(pn + y + 1)

n

)
. (45)

Also as above, we find

C(p, x; t) :=
∞∑

n=0

2x

(2p − 1)n + 2x

(
2pn + 2x − 1

n

)
tn

= [(1 + w)2x |w = t (1 + w)2p],

D(p, y; t) :=
∞∑

n=0

(p − 1)n + y + 1

pn + y + 1

(
2(pn + y + 1)

n

)
tn

=
[

(1 − w)(1 + w)2y+2

1 + (1 − 2p)w

∣∣∣∣∣w = t (1 + w)2p

]
.

Hence, C(p, x; t) = (�(t))x and D(p, y; t) = �(t)(�(t))y , where �(t) = C(p, 1; t) and �(t) = (2 − C(p, 1
2 ; t))

C(p, 1; t)/(2p + (1 − 2p)C(p, 1
2 ; t)). Therefore,

C(p, x; t) · D(p, y; t) = D(p, x + y; t). (46)

Applying [tn] to both sides, (45) follows. Using the same argument as above, we can show that

C(p, x; t) = 2pF2p−1

⎛
⎜⎝

2x

2p
,

2x + 1

2p
, . . . ,

2x + 2p − 1

2p
2x + 1

2p − 1
,

2x + 2

2p − 1
, . . . ,

2x + 2p − 1

2p − 1

∣∣∣∣∣∣∣
(2p)2p t

(2p − 1)2p−1

⎞
⎟⎠= (B2p(t))2x

and

D(p, y; t) = 2p+2F2p+1

⎛
⎜⎝

2y + 3

2p
,

2y + 4

2p
, . . . ,

2y + 2p + 2

2p
,
y + p

p − 1
,
y + 1

p
2y + 3

2p − 1
,

2y + 4

2p − 1
, . . . ,

2y + 2p + 2

2p − 1
,
y + 1

p − 1
,
y + p + 1

p

∣∣∣∣∣∣∣
(2p)2pt

(2p − 1)2p−1

⎞
⎟⎠ .

Hence, by (46), another identity involving a product of hypergeometric functions can be derived.
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