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Combinatorial Properties of
Generalized Binomial Coefficients

Chal Benson and Gail Ratcliff

ABSTRACT. The generalized binomial coefficients discussed in this paper were
first studied in the context of spherical functions for Gelfand pairs associated
with the Heisenberg group. We now define generalized binomial coefficients in
a more general context, and show that they satisfy most of the combinatorial
properties obtained for Gelfand pairs. The results depend on an isometric
involution defined on polynomials on C™.

1. Introduction

Our initial study of generalized binomial coefficients involved the Heisenberg
group H, =V xR, V =2 C" [BR98]. Any subgroup K C U(V) acts on V, giving
automorphisms of H,,. We say that (K x H,, K) is a Gelfand pair if the convolu-
tion algebra of K-bi-invariant functions on K x H, is commutative. Equivalently,
the convolution algebra of K-invariant functions on H,, is commutative.

Generic representations of H, act on Fock space F, the completion of C[V]
with respect to the inner product

(pq) = / p(e)a@e /2 az,

where the measure d? on C* = R?" is normalized so that fe*‘2‘2/2 dz = 1. The
unitary group acts on JF by intertwining operators, namely k - p(z) = p(k~1z). By
a theorem of Carcano [Car87], (K x H,,K) is a Gelfand pair if and only if the
action of K on C[V] is multiplicity free.

Spherical functions for the Gelfand pair (K x H,,, K) are the K-invariant eigen-
functions for the K-invariant, left-H,-invariant differential operators on H,. We
have several algorithms for computing the spherical functions. Let 7 be the stan-
dard representation of H,, on F. Given u,v € F, define the matrix coefficient

(1.1) D (u,v)(z,t) = (w(z,t)u, v).
Let
(1.2) CVl=> Va
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be the multiplicity free decomposition with respect to the action of K. Given a
unit vector v, € V,, define

%(z,t):/ch(va,ua)(kz,t)dk.

Then ¢, is a spherical function. Alternatively, let d, = dimV, and {v; : i =
1,...,dq} be an orthonormal basis of V,,. Then

d
| da
P = @ ;‘D(Uiyvi)-
Let P(V) = C[V] ® C[V]. Define two inner products on the space P(V):

(D a)F = / p(2,3)a(m D) 12z,

We define a canonical basis for the K-invariant polynomials P (V)% by
1
Palz,Z) = T Zvi(z)vi(z),

for each a € A. These invariant polynomials are related to the K-spherical functions
by

Da(z,t) = eitqa(z,i)ef‘z‘z/‘l,
where ¢, € P(V)E, go = const. po+L.0.T.

Thus the sets {p, : @ € A} and {q, : @ € A} are both bases for the space of
K-invariant polynomials. The p,’s are orthogonal with respect to (,)., while the
go’s are orthogonal with respect to (,)r.

In the current work, we replace the space P(V)¥ with a subspace V C P(V)
which is invariant under the Laplacian, and under multiplication by |z|2. We define
an involution 7 : V — V, which can be described in four ways. Given a (,).-
orthogonal basis of homogeneous polynomials {pa }, we define another family {¢, =

Tpa . We write
w=3] 5 |0,
B

o
are called
)

where || is the degree of homogeneity of pg in Z. The coefficients {

generalized binomial coefficients.

In Section 2, we discuss the motivating example of the Gelfand pair (U(n) x
H,,,U(n)), where the p,’s are monomials, the g,’s are Laguerre polynomials, and
the generalized binomial coefficients are the usual binomial coefficients.

The transformation 7 is introduced in Section 3, and we show that it can
be defined in four very different ways. In Section 4, we derive the combinatorial
properties of generalized binomial coefficients, which were previously known only
for Gelfand pairs. [BR98].

We calculate generalized binomial coefficients for several examples in Section
5, namely the Gelfand pair (U(n) x H,,U(n)), monomials, monomial symmetric
functions, and Schur polynomials.
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2. Motivating example

Let V. = C*, K = U(n). Then C[V] = > ., Vin, where V,, is the space
of homogeneous polynomials of degree m. Throughout this paper, we will use

multinomial notation, so that for a,b € N, z* = 2{* ... 2% |a| = a1 + ... + an,

=z'...z
al = ai!...a,!, and (§) = a!/bl(a — b)! provided b; < a; for all j.

The monomials {z%/v2lelal : |a|] = m} form an orthonormal basis of V,,,
yielding the canonical invariants p,, = (n — 1)!4™/2™(m 4+ n — 1)!, where v(z) =
|z|2. The spherical functions are then given by ¢, = (n — 1)!L%"!(v/2), where
L"=1 is the Laguerre polynomial of degree m and order n — 1. Explicitly L"~! =
PRy (”:)(—:13)7/(] +n —1)l. (See (5.1) for a proof in the current context.) The
two families of invariant polynomials are related by

G = i <7§> (=1)*py.

k=0

For general Gelfand pairs (K x Hj, K), we have the decomposition (1.2). Writing
la| =m if V,, C V,,, we have

=Y | 5] 0"

1BI<|al

The coefficients { @ } are called ” Generalized Binomial Coefficients.”

B

There are many interesting combinatorial properties of Generalized Binomial
Coefficients which motivate this work. These were first derived in [Yan] [BR9S§],
with a different treatment in [BRO4].

3. General Setting
We replace the space P(V)¥ with a subspace V C P(V) satisfying:

(1) V has a (, ).-orthogonal basis of homogeneous polynomials {p, : @ € A}.
We write |a] = m if p, is homogeneous of degree m in Z. The set A is
given the partial order « < ( if and only if |a| < |5].

(2) A:V =V, where A=37"_, 0;0; is the real Laplacian.

(3) If p €V, then yp € V, where v(z) = |z|.

Now define the operator 7 : P(V) — P(V) by
T(p) = e *2p(z, 7).

Clearly, we have 7 : V — V. The operator 7 was defined in [BR04] in the context
of multiplicity free actions. We have since realized that the results are applicable
in this more general setting. We will show that there are three additional ways to
define the operator 7. First, define the symplectic Fourier transform

flw) = [ sz memas

PROPOSITION 3.1. (pe~7/2)"= T (p)e~7/?
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PROOF. We calculate 7 (p) for monomials p(z) = 27"
Tp(z,%) = (—1)ltle28 2070

o)l o
1)l 2%8 9 27"

c\ 1p!
\b\ a Zafczbfc
Z c(a— b (b—o)!

On the other hand,
(pe/?)"= (=20)"(20)%e "/
= (20) brae=7/2

_ Z < ) (20)¢29) ((28)1’*66*7/2)
-5 (e e

a—c)

— Z \b\ )‘ ‘a‘b‘ Zafczbfcef'y/2
b —o)l(a—¢)!

O
Since the symplectic Fourier transform is its own inverse, we immediately see:

PROPOSITION 3.2. 7 is an involution on P(V).

We can also define 7 in terms of the matrix coefficients (1.1) for the Fock space
representation of the Heisenberg group.

PROPOSITION 3.3.
®(u,v) = T (uv)e /4

PRrROOF. Note that our normalization of the measure results in f 20700 1212/2q5 =
2lelg!, and distinct monomials are orthogonal. Let u(z) = 2%, v(z) = z°. Then

B(u,v)(2) = (r(z, 0)u,v)
/ (z,0)u(w )( Ye ~lwl?/2 g
B /u(w + 2)e e TE 2y (el 2 i

= el / (w+ 2@t e v 2e w2 gy,

:e*\z\z/‘l/Z( )

:67\2\2/4/Z< ) ¢ a— c—bz w/2 e 1w /2
\l\

=e Il /4Z< ) /wcz“ cwbFwte= w1 2qm

2 ~
¢ a—cyy b 2-w/267\w\ /2dw
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\l\ 2
- 4 a c=l c+l—b _—|w 2 7~
6H/§<c> ST z/w wle W24
Z D=l e 1— 22 /4

\ lalb!
\b\ a pa—czb—c —|z|°/4
Z cl(a —o)l(b—¢)!

:T(uﬂ)ef‘ I /4,
as shown in the proof of Proposition 3.1. (]
PROPOSITION 3.4. T : (P(V),{(,)«) = (P(V),{(,)#) is an isometry.

PROOF.

(T (uv), T(u'0)r = (@(u,v)e"", D(u,v)e”*) £
= (®(u, v), ®(u', ")) 2
<u7U'>< V')
= (uv, u'v').

O

PROPOSITION 3.5. The family {Tp, : a € A} is obtained, up to constants, from
{Pa : @ € A} by Gram-Schmidt orthogonalization with respect to the inner product
(,)F and the partial order.

PRrROOF. Note that Tp, = (—1)l*le=24p, = (—1)/*/p,+L.0.T. Thus span{p; :
18] < |a|} = span{7Tps : |8] < |a|}. Since the p,’s are orthogonal with respect to
(, )+, the Tpa’s will be orthogonal with respect to {,)r. O

4. Combinatorial results
Since p, is homogeneous, we have

T(pa) = (~1)1le™*2p,.

Define a new family of polynomials {g,} €V and new generalized binomial coeffi-

cients by
=T = X | 5|07
EINET
These new generalized binomial coefficients satisfy most of the combinatorial prop-
erties of the original generalized binomial coefficients.
Since T is an involution, we immediately obtain:

PROPOSITION 4.1.

o= 3 |50

181<]a|
PROPOSITION 4.2.

%pa: > {g}pﬁ

1Bl=le| -k
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PROOF. Since the p,’s are a homogeneous basis for V, we know that
(24)*
Tpa = Z Ca,pPp
' |B=le| -k

for some coefficients c,,g.

Thus
T - (1) 3 2
— Z \a\+k Z Ca.5Pp
|Bl=|al—k
= (=1)%leq g,
B
and hence c, g = { @ } . O
' B
PROPOSITION 4.3. ”Pieri Formula”
(27) «
da oy
A Z 3 p

la[=18]+k
where 1/do = (Do, P ) -

PRrROOF. Let

(27)*
px dﬁpﬁ = Z Ca.ﬂdapa-
’ la|=[B]+k

Then by orthogonality, we obtain

2"
Ca,p = < A dﬁpﬁvpa .
<dﬁpﬁ7 { ? }pa>
181= \a\ k *
Writing (27)™/m! as (2y)/k!- (2y)™ % /(m —k)!- (72)71, Proposition 4.3 gives
us:

dﬁPm

O

PROPOSITION 4.4. For any | with |§| <1 < |af,

> 151151 = (s )

1Bl=1

By repeatedly multiplying pg by 2v, we also obtain:
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PROPOSITION 4.5.

szl a ] ]

where the sum is taken over all (d1,...,d,3/—1) with [6x| = || —

5. Examples

5.1. Motivating Example Revisited. The motivating example for much
of this work is the Gelfand pair (U(n) x H,,U(n)). We take the canonical basis
for P(V)V™  namely {(n — 1)![2|>™/2"(m +n — 1)!}. The corresponding set of
invariants is ¢, = (n — 1)IL%1(|2]2/2). For completeness, we provide the proof.
Let v = |2|%, so that p,, = (n — 1)!y™/2™(m + n — 1)! Then

AG™) =23 9,9500
=3 0,mz™ )
= 3 my " mlm — 1)27 )

=m(n+m—1)ym L

T((n— 1)y /2™ (m +n—1)!) = (=1)™(n — 1)'6*% m/zm(m +n—1)
(=D)"(n—1)!

— Ak m

2m(m+n —1)! k'
_(=D)™(n—1)! ml(n+m —1)! ek
_Qmm—i—n—l' k' m—k)!(n—i—m—l—k)!’y

—1)™(n — 1)! —2)mFm]
(=) —1)! Z (-2) y
2m (m—k)EN(k+n—1)!
m\ _(=/2)*
=(n—-1)! — =
(=11, <k>(k+n—1)!
k
(5.1) = (n— 1)Ly (7/2)
5.2. Monomials. Let ¥V = P(V), with basis p,;, = 2°Z°. In the proof of
Proposition 3.1, we calculated 7T p, s, obtaining
1)lel=lelglelglpl

N
qa"b_zc:c'(a—c)(b—c)z =

and thus

{( (a,b) }7 2l<lqlp!

a—c,b—c) _m
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5.3. Monomial Symmetric Functions. Let K = S,, x T}, act on V = C"
by

(07 'Y) : (Zl7 s ZTL) = (7126(1)7 EREE) ’Ynza(n))y

and let V = P(V)X. (Note that (K x H,, K) is also a Gelfand pair.) Given a

partition A = (A1,..., \,), let my = 2 ...z

n -

PROPOSITION 5.1. V) = span{my(y) : 0 € Sn} is irreducible under the action
of Sy X T,.

PRrROOF. Suppose that A = (191292 ...), with a1 + az + ... = |A|. Then stab
my =Sy, X Say X ..., 80 dimVy = nl/[stab my| = nl!/ajlas!. ... The character for
the action of K on V) is given by

Xov) = >

HE(Sn-A)io(p)=p

and hence [, [x(0,7)|*dy = [{ € (Sn - A) : 0(p) = p}|- Thus we get

(o= = 3 e (82 s () = |
oESh
=Y ool =l

" HE(Sn-N)

1

= — dim V) |stab )|
n!

=1

Our canonical family of K-invariant polynomials would be
1 Z mum_u
i el g
dim V) vty 21kl
For convenience, we take a multiple of the canonical invariants and define

‘mU(X)P m,my,
P= Y Shny = steb Al D S
oeS, HESy A

These are the monomial symmetric functions in the variables (|21|%, ..., |2, |?). De-
fine the Laguerre-type polynomial

La(2) = L, (|21%/2) .. L, (2n]?/2),
where Ly, := LY. Using the fact that 7 (|ms[?) = T(|22[**) ... T(|20[**"), we
apply (5.1) to obtain
= Z Ls(n)-

oeS,
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We can now derive the formula for the generalized binomial coefficients:

Z Loty (12117/2) - - - Lo(a,) (|12a]*/2)

The coefficient of p,, will agree with the coefficient of |m,,|?/2!u|u!, so we obtain

n=Y 3 w( )pm

n o€Sy

where the first sum is taken over p in distinct S,-orbits. Since { Z(A) } =

{ 2,1 () }, we obtain the generalized binomial coefficients
22 )
{ p ;ﬂ o(w)

Note that the summands are non-zero only when o(p); < A; for each j.

5.4. Schur Polynomials. There are other choices for bases of symmetric
polynomials in (|z1|%,...,[22]). Let pa(2,2) = Sa(lz1]%, ..., |2n|?), where S, is
the Schur polynomial associated with the partition A. (See [Sta99] [Mac95] for a
thorough treatment.)

Explicitly,

det[z)9 ")
Sx(x1,. . xn) = detfrr 7}

The classical Pieri formula says that

(1 + ...+ 2)S =Y Sy,

where the sum is taken over all partitions g with Young’s diagram obtained by
adding one box to A. The Pieri formula for the family {py} becomes

Y'PA =Y Koubus

where K , is a Kostka number [Sta99]. That is, K , is the number of ways to
build the Young’s diagram for p from A, adding one box at a time. From this we
conclude that the generalized binomial coefficients are given by

{LL } _ 9lul=IAl %
A (Il = [ADY d),
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