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It is clear that L(p) is a linear operator from 7-k to Nk. Moreover, we claim that L(p) is 
self-adjoint and positive. In fact, for any u in Nm+k and v in Kk we infer from (2) that 

(P(a)u, V)k = (u, Pv)k+m. 

It follows that for Q and R in Kk 

(L(p)[Q], R)k = (P(a)(PQ), R)k = (PQ, PR)k+m 

= (Q, P(a)(PR))k = (Q, L(p[R])k, 

which means L(p) is self-adjoint. 
Analogously, by (4) we have 

(L(p)[Q], Q)k = 
(PQ, PQ)k+m 

= +IIell2m |> IIPII\QII, (5) 

showing that L(p) is positive. 
Therefore, we see that all eigenvalues of L(p) are positive and, on the basis of (5), 

that II P II| furnishes a lower bound for them. Furthermore, equality holds in (4) if and 
only if either P - 0 or II P II| is the smallest eigenvalue of L(p) and Q is an eigenvector 
corresponding to it (unless Q = 0). A particular case in which equality holds in (4) 
occurs when P = P(y) belongs to Nm and Q = Q(z) to Nk, where y E RP, z E Rq, 
and IR = RP x Rq. 

Added in proof. Professor Luo Xuebo, who was one of his coauthor's Ph.D. supervi- 
sors, died in March 2004. Zhu-Jun Zheng expresses his deep respect for and everlasting 
memory of his deceased colleague and mentor. 
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Combinatorial Proofs of Fermat's, Lucas's, 
and Wilson's Theorems 
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In this note, we observe that many classical theorems from number theory are simple 
consequences of the following combinatorial lemma: 

Lemma 1. Let S be a finite set, let p be prime, and suppose f : S -+ S has the prop- 

erty that fP(x) = x for any x in S, where fP is the p-fold composition of f. Then 

SI = I Fl (mod p), where F is the set of fixed points of f. 

Proof The set S is the disjoint union of sets of the form {x, f(x), ... , fP-' (x) }. Since 
p is prime, each set has either size one or size p. 

The Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47,..., named in honor of Edouard 
Lucas (1842-1891), are defined by Lo = 2, L1 = 1, and Ln = Ln-1 + Ln-2 for n > 2. 
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It is easy to show that, for n > 1, L, counts the ways to create a bracelet of length n 
using beads of length one or two, where bracelets that differ by a rotation or a reflection 
are still considered distinct. For example, there are four bracelets of length three. (Such 
a bracelet can have three beads of length one, or it can have a bead of length two and a 
bead of length one, where the bead of length one can be in position one, two, or three.) 
Let f act on bracelets of prime length p by rotating each bead clockwise one unit. 
Clearly fP leaves any bracelet unchanged. Since f has just one fixed point (when all 
beads have length one), we conclude that L = 1 (mod p) for each prime p. 

More generally, for nonnegative integers a and b the Lucas sequence (of the second 
kind) is defined, as in [4], by Vo = 2, V1 = a, and V = a Vn-1 + bVn-2 for n > 2. 
Again, it is easy to show [1] that Vn with n > 1 counts colored bracelets of length n, 
where there are a color choices for beads of length one and b color choices for beads 
of length two. By the same argument as earlier, with the exception of those bracelets 
consisting of length one beads all of the same color, when p is prime every bracelet 
can be rotated to create p distinct bracelets. Thus 

Vp=a (mod p) 

for each prime p. In the special case where b = 0, it is clear that V, = ap. Conse- 
quently, we have Fermat's Theorem: if p is a prime, then 

ap = a (mod p). 

This combinatorial proof of Fermat's theorem was originally given in [2]. 
Next, consider colored bracelets of length pk, where p is prime. If we rotate the 

beads k units at a time, then there are exactly Vk fixed points, obtained by taking any 
colored bracelet of length k and "replicating" it p times. Our lemma concludes that for 
p prime 

Vpk -- Vk (mod p). 

In particular, Vpe = Vpe-1 when e > 1. Consequently, for p prime and e nonnegative, 

Vpe = a (mod p). 

Now consider the set S of permutations of {0, 1,..., p - 1} with exactly one cycle; 
thus, ISI = (p - 1)!. Define f : S S by 

f((ao, a, ..., a,_1)) = (1 + ao, 1 + a, ..., 1 + ap1), 

where addition is done modulo p. For each 7t in S, fP(Tr) = yr. For a satisfying 1 < 
a <. p - 1 those permutations of the form Jta = (0, a, 2a, 3a, ..., (p - 1)a) (with 
multiplication done modulo p) are fixed points of f since f(ra) remains an "arith- 
metic progression." Conversely, if nr is a fixed point of f and tr(0) = a, then rr = 

fa(w) must send a to 2a and, in general, xr = fka(r) sends ka to (k + 1)a. Thus 

2r = tra, and f has exactly p - 1 fixed points. This establishes Wilson's Theorem: if 
p is a prime, then 

(p -1)!-(p-1) (mod p). 

The same approach can be applied to the set S of k-element subsets of 

{0, 1, ..., p - 1}. 
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Define f : S -+ S by f({a, a2, ..., ak) = {1 + al, 1 + * *a2... 1 + ak}, where again 
addition is done modulo p. When 1 < k < p - 1 there are no fixed points of f. Con- 
sequently, for p prime and k satisfying 1 < k < p - 1, 

S=0 (mod p). 

We conclude with Lucas's Theorem: For p prime, let n and k have base p notation 

n = Ei>o bi p' and k = ECio ci pi, where 0 < bi, ci < p. Then 

-ufi (mod p). 

Proof It suffices to show that (p,) = (")() (mod p) when 0 
< r, s < p, and then 

proceed inductively. Let S denote the set of ordered pairs (A, v), where A is a binary 
p x n matrix and v is a binary r x 1 vector such that among the pn + r entries of A 
and v exactly pk + s are equal to one. Hence SI = pn ). Let Q denote the p x p 
permutation matrix with nonzero entries qlp = 1 and qi,i-1 = 1 for i = 2, 3,..., p. 
Thus QA has the same rows as A, each shifted "down" by one row. 

Define f : S - S by f((A, v)) = (QA, v). Then fP((A, v)) = (QPA, v) = 

(A, v). There are (n)( ) fixed points of f, consisting of those pairs (A, v) such that 
the first row of A contains exactly k ones, the other rows of A are the same as the first 
row, and v contains exactly s ones in its r positions. Note that if s > r, then ( ) = 0. 

Thus, by our lemma, (p+) (n) () (mod p), as desired. U 

For another fine combinatorial proof of Lucas's theorem, see [3]. 
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