On Some Theorems on Circulant Matrices

Paolo Zellini and Angela Mack
Istituto di Scienze dell'Informazione
Università di Pisa
Pisa, Italy

Submitted by David H. Carlson

Abstract

In [2] some theorems on $n \times n$ circulant matrices were introduced under the hypothesis n a prime number. We extend these theorems to the case $n=2 \cdot r$ where r is a prime greater then 2 .

1. INTRODUCTION

In [2] the spaces Σ_{g} of $n \times n$ matrices $A(a)=\sum_{k=0}^{n-1} a_{k} J_{k}$ were introduced, where a_{k} are complex and $J_{0}, J_{1}, \ldots, J_{n-1}$ satisfy the following condition:
(*) $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ is a set of $n \times n$ permutation matrices one of which is I and such that $\sum_{k=0}^{n-1} J_{k}=J=\left(j_{r, s}\right)$, where $j_{r, s}=1(r, s=0,1, \ldots, n-1)$.

The following two theorems have been proved in [2] under the hypothesis n a prime number:

Theorem 3.2. If \mathscr{G} satisfies (*) and the J_{k} commute, then for P_{n}, the permutation matrix corresponding to the permutation (12 $\cdots n$), the following holds:
(**) For some permutation matrix P, and reindexing,

$$
J_{k}=P^{T} P_{n}^{k} P, \quad k=0,1, \ldots, n-1 .
$$

Theorem 4.1. If $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ satisfies (*) and is closed under multiplication, then (**) holds.

An obvious consequence of Theorem 3.2 and Theorem 4.1 is stated in the following.

Theorem 4.2 (see [2]). The only Σ_{g} which constitute a commutative algebra are the spaces of $n \times n$ matrices (n prime) of the form $P^{T} C P$, where C is circulant, and P, which depends on the choice of the sel $\left\{J_{k}\right\}$, is the permutation matrix or the identity.

An alternative proof of Theorem 3.2 and Theorem 4.1 has been introduced in [1] by using the centralizers of a permutation group. In [1] Theorems 3.2 and 4.1 appear as corollaries of the following results:

Theorem 1. Let n be a positive integer. Let if satisfy (*) and the J_{k} commute. Then for P_{n}, the permutation matrix corresponding to the permutation $(012 \cdots n-1),(* *)$ holds if and only if there exists a J_{a} in which is an n-cycle.

Theorem 2. Let n be a positive integer, and \mathfrak{y} satisfy (*) and be closed under multiplication. Then ($* *$) holds if and only if there exists a J_{q} in f which is an n-cycle.

In the present paper we find an extension of Theorem 3.2 and Theorem 4.1 to the case $n=2 \cdot r$, where r is a prime >2. More precisely, Theorem 3.2 is still true in the case $n=2 \cdot r$, while for the closure under multiplication some different spaces of matrices $A(a)$ are to be introduced beside the circulant. A new class of algebras of $n \times n$ matrices on the complex field is then introduced at the end of Section 3.

If if satisfies $(*)$, then we shall suppose, in the remainder of the paper, $J_{0}=I$.

2. ON THE COMMUTATIVITY OF THE MATRICES OF THE SPACES Σ_{g}

The following Propositions are in some sense implicit in the results in [2] and in their proofs. In the following $j_{p, q}^{(k)}$ is the element (p, q) of the matrix J_{k} and $\Pi^{(k)}$ is the permutation mapping q to p in the case $i_{k, q}^{(p)}=1$, i.e. $\Pi^{(k)}$ gives the exact disposition in the row k of $A(a)$ of the complex parameters $a_{0}, a_{1}, \ldots, a_{n-1}$ (see [2, p. 37]). We suppose that $\left[a_{0} a_{1} \cdots a_{n-1}\right]$ is the first row of $A(\mathbf{a})$, i.e. $j_{0, k}^{(k)}=1$.

Proposition 2.1. Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ satisfy (*) and J_{k} commute. Then $\Pi^{(k)}$, for a $k \neq 0$, is an n-cycle if and only if J_{k} is an n-cycle. Also, if $\Pi^{(k)}$ or J_{k} is an n-cycle, then G satisfies $(* *)$.

Proof. Proposition 2.1 follows immediately from Lemma 3.4 in [2], which states that, if the commutativity of the J_{k} is assumed, then $j_{i, r}^{(p)}=j_{r, k}^{(a)}=$ $j_{i, s}^{(q)}=1$ implies $i_{s, k}^{(p)}=1$. Hence, from $j_{0, k}^{(k)}=i_{k, r}^{(p)}=i_{0, p}^{(p)}=1$ we deduce $j_{p, r}^{(k)}=1$, and analogously, $i_{k, r}^{(p)}=1$ is a consequence of $i_{0, p}^{(p)}=i_{p, r}^{(k)}=i_{o, k}^{(k)}=1$, so we have the equivalence

$$
\begin{equation*}
i_{k, r}^{(p)}=1 \quad \Leftrightarrow \quad i_{p, r}^{(k)}=1 . \tag{2.1}
\end{equation*}
$$

Now it is easy to see that if the permutation $\left(h_{0} h_{1} \cdots h_{n-1}\right)$ defines $\Pi^{(k)}$, then ($h_{0} h_{n-1} \cdots h_{1}$) defines J_{k} (and vice versa). The last part of Proposition 2.1 has been pointed out in [1]. It is also a direct consequence of the proof of Theorem 3.2 in [2].

Proposition 2.2. Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ satisfy $(*)$. Then the matrices J_{k} commute with each other only if $\Pi^{(k)}$, for every $k \neq 0$, is the product of disioint cycles of the same length r where $r=n$ or r / n.

Proof. Let the J_{i} commute, and let $\Pi^{(t)}$ be the product of cycles $\tau_{1}, \ldots, \tau_{m}$ such that at least two of them have different lengths. Without loss of generality suppose that τ_{1} and τ_{l}, for an index l, have lengths, respectively, r and s, with $r \neq s$. Then there are indices $p_{0}, p_{1}, \ldots, p_{r}$ with $p_{0}=p_{r}=0$ and $p_{r-1}=t$ (we have $\left.i_{t, p_{r, 1}}^{\left(p_{r}\right)} \equiv j_{t, t}^{(0)}=1\right)$ and $q_{0}, q_{1}, \ldots, q_{s}\left(q_{0}=q_{s}\right)$ such that

$$
j_{t, p_{i},}^{\left(p_{1}\right)}=1, \quad j_{l, q_{m, 1}}^{\left(q_{m}\right)}=1, \quad i=1, \ldots, r, \quad m=1, \ldots, s .
$$

Successive applications of (2.1) and Lemma 3.4 in [2] define the recurrent implications

$$
\begin{align*}
& i_{p_{i}, q_{1}}^{\left(q_{s},+1\right)}=i_{t, p_{i}}^{\left(p_{i+2}\right)}=i_{t, q_{s}, \cdots i}^{\left(q_{s-i+1}\right)}=1 \quad \Rightarrow \quad i_{q_{s}, i, q_{1}}^{\left(p_{i+1}\right)}=i_{p_{i+1}, q_{1}}^{\left(q_{--1}\right)}=1, \\
& i=0, \ldots, s-1 ; \tag{2.2}\\
& j_{q_{h+1}, q_{1}}^{\left(p_{r-h}\right)}=j_{t, q_{h-1}}^{\left(q_{h+2}\right)}=i_{t, p_{r}}^{\left(p_{h}, h_{h}\right)}=1 \quad \Rightarrow \quad j_{p_{r-h}}^{\left(q_{h+2}\right)}{ }_{1, q_{1}}=i_{q_{h+2}, q_{1}}^{\left(p_{r-h}\right)}=1, \\
& h=0, \ldots, r-1 . \tag{2.3}
\end{align*}
$$

(2.2) and (2.3) correspond, respectively, to the recurrent relations (3.6) and (3.7) in [2]. They lead, for $r \neq s$, to a contradiction with (*). In fact, let $r>s$. Then we deduce, from (2.2), $j_{q_{2}, q_{1}}^{\left(p_{1}\right)}=1$. But we have also $j_{q_{2}, q_{1}}^{(i)}-1$, because $i_{t, q_{1}}^{\left(q_{2}\right)}=1$ and (2.1) holds; so, by the equality $t=p_{r-1}$, we have a contradiction. If $r<s$, then we have, from (2.3), $i_{p_{1}, q_{1}}^{\left(q_{r}\right)}=1$. But this leads to a contradiction with the equality $i_{p_{1}, q_{1}}^{\left(q_{1}\right)}=1$ that is deduced from (2.2).

Now we have the following.

Lemma 2.1. Let $\mathscr{y}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ satisfy (*), and J_{i} commute. Let $\Pi^{(t)}$, for some t, be the product of l_{t} disioint cycles of the same length r. Then there exist indices $p_{0}, p_{1}, \ldots, p_{r}$, with $p_{0}=p_{r}=0, p_{r-1}=t$, such that $J_{p_{1}}, \ldots, J_{p_{r-1}}$ are completely defined by, and correspond to, $r-l$ permutations $\sigma_{p_{k}}(k=1, \ldots, r-1)$ which are the product of n / r disioint cycles of length r. Analogously all permutations $\Pi^{\left(p_{k}\right)}$ are defined and are the product of $l_{\text {, }}$ cycles of length r. In particular if $l_{t}=1$ and $r=n$, then any J_{i} is an n-cycle and (**) holds.

Proof. Suppose, without loss of generality, $t=1$. As $\Pi^{(1)}$ is the product of r-cycles, there are indices $p_{0}, p_{1}, \ldots, p_{r}$ with $p_{0}=p_{r}=0, p_{r-1}=1$ such that

$$
\begin{equation*}
i_{1, p_{k}, 1}^{\left(p_{k}\right)}=1, \quad k=1,2, \ldots, r \tag{2.4}
\end{equation*}
$$

By successive applications of Lemma 3.4 in [2] and (2.1) we have (the indices are all taken modulo r)

$$
\begin{equation*}
i_{1, p_{t}}^{\left(p_{1}\right)}=i_{0, p_{k-1}}^{\left(p_{k+1}\right)}=i_{1, p_{k}}^{\left(p_{k+1}\right)}=1 \quad \Rightarrow \quad i_{p_{k}, p_{k-1}}^{\left(p_{1}\right)}-i_{p_{1}, p_{k}, 1}^{\left(p_{k}\right)}=1, \tag{2.5}
\end{equation*}
$$

i.e., $\Pi^{\left(p_{1}\right)}$, as well as $J_{p_{1}}$, contains an r-cycle. If $r=n$, then we obtain the Lemma and the result of Theorem 3.2 in [2] (see the second part of the proof of Theorem 3.2 in [2, pp. 38-39]). If $r \backslash n$, then consider another r-cycle of $\Pi^{(1)}$:

$$
\begin{equation*}
j_{1, q_{k}, 1}^{\left(q_{k}\right)}=1, \quad k=1,2, \ldots, r \tag{2.6}
\end{equation*}
$$

where $q_{0}=q_{r}$. Successive applications of Lemma 3.4 in [2] give the following
implications:

$$
\begin{align*}
& i_{1, q_{k}}^{\left(u_{k}\right)}=i_{q_{k-1}, q_{k-2}}^{(1)}=i_{1, p_{r-2}}^{(1)}=1 \quad \Rightarrow \quad i_{p_{r-2}, q_{k-2}}^{\left(q_{k}\right)}=i_{q_{k}, q_{k-2}}^{\left(p_{r-2}\right)}=1, \\
& i_{1, q_{k-1}}^{\left(q_{k}\right)}=i_{q_{k-1}, q_{k-3}}^{\left.\left(p_{r}\right)^{2}\right)}=i_{1, p_{r-3}}^{\left(p_{r-2}\right)}=1 \quad \Rightarrow \quad i_{p_{r-3}, q_{k}}^{\left(q_{k}\right)}=i_{q_{k}, q_{k}{ }_{3}}^{\left(p_{r}\right)}=1, \tag{2.7}
\end{align*}
$$

where $s=1,2, \ldots, r-2$ and $k=1,2, \ldots, r$. The following recurrent relations are also deduced from Lemma 3.4 in [2]:

$$
\begin{array}{r}
i_{1, p_{k-1}}^{\left(p_{k}\right)}=i_{p_{k-1}, p_{s+k-1}}^{\left(p_{s}\right)}=i_{1, p_{s-1}}^{\left(p_{s}\right)}=1 \Rightarrow \quad i_{p_{s-1}, p_{s+k}}^{\left(p_{k}\right)}=i_{p_{k}, p_{s+k-1}}^{\left(p_{s}\right)}=1, \\
s=2,3, \ldots, r-1 . \tag{2.8}
\end{array}
$$

Now let $q_{0}, q_{1}, \ldots, q_{r-1}$ run over the set of disjoint subcycles of $\Pi^{(1)}$ which do not involve 0 or 1. Then Lemma 2.1 follows from (2.7) and (2.8). Also, observe that $J_{p_{k}}^{(i)} \in \mathscr{q}$, where $i=1,2, \ldots, r-1$.

Example 2.1. Let $n=6$ and let $\left[\begin{array}{llllll}a_{4} & a_{0} & a_{5} & a_{2} & a_{1} & a_{3}\end{array}\right]$ be the second row of the matrix $\Lambda(\mathbf{a})=\sum_{k=0}^{n-1} a_{k} J_{k}$, corresponding to the permutation $\sigma=$ (041)(253):

$$
A(\mathbf{a})=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \tag{2.9}\\
a_{4} & a_{0} & a_{5} & a_{2} & a_{1} & a_{3} \\
\cdot & \cdot & a_{0} & a_{1} & \cdot & a_{4} \\
\cdot & \cdot & a_{4} & a_{0} & \cdot & a_{1} \\
a_{1} & a_{4} & a_{3} & a_{5} & a_{0} & a_{2} \\
\cdot & \cdot & a_{1} & a_{4} & \cdot & a_{0}
\end{array}\right]
$$

If the J_{k} commute, then the rows and the columns of $A(a)$ corresponding, respectively, to the indices $p_{0}=0, p_{1}=4, p_{2}=1$ and $q_{0}=2, q_{1}=5, q_{2}=3$ are defined as in (2.9). Observe that $J_{p_{1}}=J_{4}$ and $J_{p_{2}}=J_{1}$ correspond, respectively, to the permutations σ and σ^{2}, i.e. $J_{1}=J_{4}^{2}$.

Lemma 2.2. Let $n=2 \cdot r$ where r is a prime >2. Let $J_{0}, J_{1}, \ldots, J_{n-1}$ commute and satisfy (*). Then $\Pi^{(k)}$ cannot be, for every k, the product of 2 -cycles.

Proof. Consider $\Pi^{(1)}$ and $\Pi^{(2)}$, and suppose they are the product of 2-cycles. Then for some indices $q_{1}^{(1)}, q_{2}^{(1)}, \ldots, q_{n-1}^{(1)}$ and $q_{1}^{(2)}, q_{2}^{(2)}, \ldots, q_{n-1}^{(2)}$ with $q_{1}^{(1)}=1, q_{2}^{(2)}=q_{2}^{(1)}, q_{1}^{(2)}=2, q_{j}^{(2)} \neq q_{j}^{(1)}$ for $j>2$ we have

$$
\begin{align*}
& \left\{\begin{array}{l}
i_{1}^{\left(q_{1}^{(1)}\right)}=1 \\
i_{1, q_{1}^{(1)}}^{(0)}=1
\end{array}\right\}, \quad\left\{\begin{array}{l}
i_{1,2}^{\left(q_{2}^{(1)}\right)=1} \\
i_{1, q_{2}^{(1)}}^{2)}=1
\end{array}\right\}, \cdots, \quad\left\{\begin{array}{l}
i_{1, n-1}^{\left(q_{1}^{(1)}\right)=1} \\
i_{1, q_{1}^{(1)}, 1}^{n-1)}=1
\end{array}\right\} ; \tag{2.10}\\
& \left\{\begin{array}{c}
i_{2}^{\left(q_{1}^{(2)}\right)}=1 \\
i_{2, q_{1}^{(2)}}^{(0)}=1
\end{array}\right\}, \quad\left\{\begin{array}{l}
i_{2,1}^{\left(q_{2}^{(2)}\right)=1} \\
i_{2, q_{2}^{(2)}}^{(1)}=1
\end{array}\right\}, \ldots, \quad\left\{\begin{array}{c}
i_{2}^{\left(q_{n}^{(2)}\right)}=1 \\
i_{2,,_{n}^{(2)}}^{(n)}=1
\end{array}\right\} . \tag{2.11}
\end{align*}
$$

Also we have for some r_{3}, \ldots, r_{n-1} and s_{3}, \ldots, s_{n-1}, with $s_{i} \neq j$ and $r_{i} \neq j$,

$$
\begin{align*}
& \left\{\begin{array}{l}
i_{1, s_{3}}^{\left(q_{2}^{(2)}\right)}=1 \\
j_{1, \boldsymbol{q}_{3}^{(2)}}^{\left(s_{3}^{(2)}\right.}=1
\end{array}\right\}, \ldots, \quad\left\{\begin{array}{l}
i_{1, s_{n}}^{\left(q_{1}^{(2)} 1\right)}=1 \\
j_{1, q_{n}}^{\left(s_{n}(1)\right.}=1
\end{array}\right\} ; \tag{2.12}\\
& \left\{\begin{array}{l}
i_{2, r_{3}}^{\left(q_{3}^{(1)}\right)}=1 \\
i_{2, q_{3}}^{\left(r_{3}\right)}=1
\end{array}\right\}, \ldots, \quad\left\{\begin{array}{c}
i_{2, r_{n}}^{(1)}=1 \\
i_{2, q_{n}}^{\left(q_{n}^{(1)}\right)}=1 \\
2,
\end{array}\right\} . \tag{2.13}
\end{align*}
$$

Let us observe that, if the J_{k} commute and $\Pi^{(k)}$ has subcycles of length 2 for every k, then each J_{k} is symmetric. In fact we have the following obvious implications:

$$
\begin{equation*}
i_{p, q}^{(k)}=1 \Rightarrow i_{k, q}^{(p)}=1 \Rightarrow i_{k, p}^{(q)}=1 \Rightarrow i_{q, p}^{(k)}=1 \tag{2.14}
\end{equation*}
$$

This property of symmetry and successive applications of Lemma 3.4 in [2] give rise to

$$
\begin{align*}
& i_{2, i}^{\left(q_{i}^{(2)}\right)}=i_{i, 1}^{\left(q_{1}^{(1)}\right)}=i_{2, r_{i}}^{\left(q_{1}^{(1)}\right)}=1 \quad \Rightarrow \quad i_{r_{i, 1}}^{\left(q_{i}^{(2)}\right)}=j_{1, r_{i}}^{\left(q_{i}^{(2)}\right)}=1, \\
& i=3, \ldots, n-1 . \tag{2.15}
\end{align*}
$$

From (2.12) and (2.15) we have

$$
\begin{equation*}
r_{i}=s_{i}, \quad i=3, \ldots, n-1 \tag{2.16}
\end{equation*}
$$

This means that the third row of $A(a)=\sum_{k=0}^{n-1} a_{k} J_{k}$ is a permutation Π of the second row such that Π is the product of 2 -cycles.

Now if $j_{2, l}^{(k)}=1$ and $j_{1, l}^{\left(k^{\prime}\right)}=1$ for some k and k^{\prime} then we have, as a consequence of (2.10)-(2.11) and (2.16), the following configuration for the matrix $A(a)$ (we suppose, without loss of generality, $l<l^{\prime}<k<k^{\prime}$):

$$
\begin{array}{llllll}
\text { first row: } & \cdots & a_{l} \cdots & a_{l^{\prime}} \cdots & a_{k} \cdots & a_{k^{\prime}} \cdots \\
\text { second row: } & \cdots & a_{k^{\prime}} \cdots & a_{k} \cdots & a_{l} \cdots & a_{l} \cdots \tag{2.17}\\
\text { third row: } & \cdots & a_{k} \cdots & a_{k^{\prime}} \cdots & a_{l} \cdots & a_{l^{\prime}} \cdots
\end{array}
$$

i.e. we deduce, for some $l^{\prime}, j_{1, l^{\prime}}^{(k)}=i_{2, l^{\prime}}^{\left(k^{\prime}\right)}=j_{1, k^{\prime}}^{(l)}=j_{2, k}^{(l)}=j_{1, k}^{\left(l^{\prime}\right)}=j_{2, k^{\prime}}^{\left(l^{\prime}\right)}=1$. Now (2.17) is consistent only with the case $4 \mid n$; in fact if $4 \nmid n$, then we obtain, for some r and $s, j_{2, r}^{(r)}=1$, or simultaneously $i_{2, r}^{(s)}=1$ and $i_{1, r}^{(s)}=1$, i.e. a contradiction.

Theorem 2.1. Let $n=2 \cdot r$ where r is a prime >2. Let the J_{k} commute and satisfy $(*)$. Then $(* *)$ holds.

Proof. Consider the following four cases for $k=1,2, \ldots, n-1$:
(α) every $\Pi^{(k)}$ is the product of two cycles of length r;
(β) every $\Pi^{(k)}$ is the product of r cycles of length 2 ;
(γ) every $\Pi^{(k)}$ can be the product of 2 -cycles or the product of r-cycles;
(δ) there exists a k such that $\Pi^{(k)}$ is an n-cycle.
These cases exhaust all the different possibilities of choice of the matrices J_{k}. Clearly (β) is impossible by Lemma 2.2. We claim that (α) and (γ) are also impossible, so (δ) holds and the Theorem 2.1 follows from Proposition 2.1 (or from Theorem 1 in [1]).

Let condition (α) be verified and let $\Pi^{(1)}$ be the product of two r-cycles:

$$
\begin{gather*}
j_{1, p_{k} 1}^{\left(p_{k}\right)}=1, \quad j_{1, q_{k-1}}^{\left(q_{k}\right)}=1, \\
k=0,1, \ldots, r, \quad q_{i} \neq p_{i} \forall i, j, \quad p_{0}=p_{r}=0, \quad p_{r-1}=1, \quad q_{0}=q_{r} . \tag{2.18}
\end{gather*}
$$

Consider a row q_{k} of the matrices J_{i}. From (2.7)-(2.8) we have that $J_{q_{\wedge .0}}^{(1)}=1$ implies $l \neq p_{i}$ for every i [this follows immediately from the equalities $0=p_{0}$
and $j_{q_{k}, q_{k-}}^{\left(p_{p},-1\right)}=1$, i.e., every matrix $J_{p_{i}}$ is defined and cannot have 1 in the position $\left.\left(q_{k}, 0\right)\right]$. Also, by (2.7), $j_{q_{k}, q_{s}}^{(l)}=1$ implies $l \neq q_{t}$ for every t, so $l=p_{i}$ for some i. Analogously, $i_{q_{k}, p,}^{(l)}=1$, with $p_{s} \neq 0$, implies $l=q_{i}$ for some i; otherwise we have a contradiction with the last equality of (2.7). From $i_{q_{k},,_{k}}^{(0)}=1$ we deduce that $\Pi^{\left(q_{k}\right)}$ has a subcycle defined by some indices $p_{t(i)}$ and $q_{t(i)}$ such that

$$
i_{q_{k .0}}^{\left(q_{k(1)}\right)}=i_{q_{k}, q_{(1)}}^{\left(p_{(2)}\right)}=i_{q_{k}, p_{(12)}}^{\left(q_{(33}\right)}=\cdots=i_{q_{k}, q_{k}}^{(0)}=1,
$$

so $\Pi^{\left(q_{k}\right)}$ has a subcycle of length m where m is even, which is impossible.
Let condition (γ) be verified. Suppose that $\Pi^{(1)}$ is the product of two r-cycles [i.e. (2.18) holds]. Then $\Pi^{\left(q_{k}\right)}$, for every k, is an n-cycle [i.e. (δ) is verified] or is the product of 2 -cycles. Let this last condition hold. Fix a q_{k} and let $j_{q_{k}, q_{s}}^{(1)}=1$ [we cannot have $j_{q_{k}, p_{v}}^{(1)}=1$ for some p_{s}; in fact $1=p_{r-1}$ in (2.18) and (2.7) holds]; this implies $j_{q_{k}, 1}^{q_{1}}=1$. From $j_{1, q_{k}}^{\left(q_{k}, 1\right)}=1$ we obtain, by the commutativity, $j_{q_{k}, 1, q_{k}}^{(1)}=1$ and then, as $\Pi^{\left(q_{k-1}\right)}$ has subcycles of length 2 , $j_{q_{k+1}, 1}^{\left(q_{k}\right)}=1$. By the commutativity $j_{q_{k, 1}}^{\left(q_{k+1}\right)}=1$, so we obtain $q_{s}=q_{k+1}, j_{q_{k}, q_{k, 1}}^{(1)}=1$, and $i_{1, q_{k+1}}^{\left(q_{k}\right)}=1$. This last equality and $i_{1, q_{k}}^{\left(q_{k}\right)}=1$ imply that $\Pi^{(1)}$ has a subcycle of length 2, i.e. a contradiction.

Example 2.2. The following matrix $A(a)(n=10)$ shows that if the commutativity is not assumed, then condition (β) does not contradict ($*$). Observe that all J_{k} are symmetric:

$$
A(\mathbf{a})=\left[\begin{array}{llllllllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} \tag{2.19}\\
a_{1} & a_{0} & a_{4} & a_{6} & a_{2} & a_{8} & a_{3} & a_{9} & a_{5} & a_{7} \\
a_{2} & a_{4} & a_{0} & a_{7} & a_{1} & a_{9} & a_{8} & a_{3} & a_{6} & a_{5} \\
a_{3} & a_{6} & a_{7} & a_{0} & a_{5} & a_{4} & a_{1} & a_{2} & a_{9} & a_{8} \\
a_{4} & a_{2} & a_{1} & a_{5} & a_{0} & a_{3} & a_{9} & a_{8} & a_{7} & a_{6} \\
a_{5} & a_{8} & a_{9} & a_{4} & a_{3} & a_{0} & a_{7} & a_{6} & a_{1} & a_{2} \\
a_{6} & a_{3} & a_{8} & a_{1} & a_{9} & a_{7} & a_{0} & a_{5} & a_{2} & a_{4} \\
a_{7} & a_{9} & a_{3} & a_{2} & a_{8} & a_{6} & a_{5} & a_{0} & a_{4} & a_{1} \\
a_{8} & a_{5} & a_{6} & a_{9} & a_{7} & a_{1} & a_{2} & a_{4} & a_{0} & a_{3} \\
a_{9} & a_{7} & a_{5} & a_{8} & a_{6} & a_{2} & a_{4} & a_{1} & a_{3} & a_{0}
\end{array}\right] .
$$

If the commutativity is assumed, then the impossibility of (β) (Lemma 2.2) is shown in the following case $(n=10)$: take for instance the second row of $A(a)$ in (2.19). As $j_{2.0}^{(2)}=1$, we have, according to (2.17), $\boldsymbol{j}_{2.4}^{(1)}=j_{2.1}^{(4)}=1$ and, obviously, $\boldsymbol{j}_{2.2}^{(0)}=1$. Now let for instance $\boldsymbol{j}_{2,3}^{(5)}=1$. This implies $\boldsymbol{j}_{2,8}^{(6)}=j_{2,6}^{(3)}=j_{2,5}^{(3)}=1$
and leads to the contradiction $J_{2,7}^{(7)}=1$ or $j_{2,7}^{(9)}=1$:

3. CLOSURE UNDER MULTIPLICATION OF THE SPACES Σ_{g}

We are going to introduce some preliminary results which follow roughly the same logical model of reasoning of the previous section. The conclusion will be different, because for $n=2 \cdot r$ (r prime) the circulants do not constitute the only space Σ_{g} which is closed under multiplication. We shall show this in the final Theorem 3.1. In the following we denote by $j_{r, s}^{(p, q)}$ the element (r, s) of the matrix $J_{p} \cdot J_{q}$.

Lemma 3.1. Let $n=2 \cdot r\left(r\right.$ a prime >2). Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ be closed under multiplication and satisfy (*). Then $\Pi^{(k)}$ cannot be, for every $k \neq 0$, the product of 2 -cycles. Also, there is a $k \neq 0$ such that J_{k} does not correspond to a product of 2 -cycles.

Proof. Let $\Pi^{(k)}$ be the product of 2 -cycles for every $k \neq 0$. Then, from the assumption $i_{0, k}^{(k)}=1$ (see Section 2) and the equality $i_{k, k}^{(0)}=1$, we have $i_{k, 0}^{(k)}=1$. By the closure of $\mathcal{G}, J_{k}^{2}=I$, i.e., all subcycles of the permutation corresponding to $J_{k}(k=1,2, \ldots, n-1)$ have length 2 . Also if $j_{k, i}^{(k, l)}=1$, then we have $j_{l, k}^{(k, l)}=1$. Hence, from $i_{l, k}^{(l, k)}=1$ we deduce $J_{k} \cdot J_{l}=J_{l} \cdot J_{k^{\prime}}$, i.e., the J_{k} commute, which is a contradiction by Lemma 2.2.

Lemma 3.2. Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ be closed under multiplication and satisfy (*). If $\Pi^{(l)}$, for some l, has two subcycles of length, respectively, r and s-i.e.

$$
\begin{equation*}
i_{l, p_{k} 1}^{\left(p_{k}\right)}=1, \quad i_{l, q_{h-1}}^{\left(q_{n}\right)}=1, \quad k=1, \ldots, r, \quad h=1, \ldots, s \tag{3.1}
\end{equation*}
$$

with $p_{0}=p_{r}=0, p_{r-1}=l, q_{0}=q_{s}$-then the following equalities are verified:

$$
\begin{equation*}
J_{p_{i}} \cdot J_{p_{h}}=J_{p_{i+h}}, \quad J_{p_{i}} \cdot J_{q_{h}}=J_{q_{i} \cdot h} \tag{3.2}
\end{equation*}
$$

Proof. Observe that $j_{p, q}^{(k)}=1$ if and only if $J_{p} \cdot J_{k}=J_{q}$. In fact, from $j_{p, q}^{(k)}=1$ and $j_{0, p}^{(p)}=1$ we have $j_{0, k}^{(p, k)}=1$ and vice versa.

If (3.1) holds then we have

$$
\begin{array}{ll}
J_{l} \cdot J_{p_{k}}=J_{p_{k} \quad 1}, & k=1, \ldots, r \\
J_{l} \cdot J_{q_{k}}=J_{q_{k ~}}, & h=1, \ldots, s \tag{3.3}
\end{array}
$$

From (3.3) and $J_{0}=I$ we obtain the following implications:

$$
\begin{align*}
& J_{p_{1}} \cdot J_{l}=J_{0}, \quad J_{l} \cdot J_{q_{h}}=J_{q_{h 1},} \Rightarrow J_{p_{1}} \cdot J_{q_{h} 1}=J_{q_{h}}, \quad h=1, \ldots, s, \\
& J_{p_{1}} \cdot J_{l}=J_{0}, \quad J_{l} \cdot J_{p_{i}}=J_{p_{i} 1} \Rightarrow J_{p_{1}} \cdot J_{p_{i},}=J_{p_{1}}, \quad i=1, \ldots, r \tag{3.4}
\end{align*}
$$

and then, from (3.4), the following recurrence relations:

$$
\begin{align*}
& \left\{J_{p_{h}} J_{p_{1}}=J_{p_{h_{1,1}}},\right. \\
& J_{p_{1}} \cdot J_{p_{p_{n}}}=J_{p_{1} n-1}, \\
& \left.J_{p_{i}} \cdot J_{p_{i}, \ldots 1}=J_{p_{i, 1}}\right\} \\
& \Rightarrow \quad J_{p_{h+1}} \cdot J_{p_{i n}}=J_{p_{t+1}}, \quad h=1, \ldots, r-1, \quad i=h+1, \ldots, r+h ; \tag{3.5}\\
& \left\{J_{p_{1},} \cdot J_{p_{1}}=J_{p_{1}, 1},\right. \\
& J_{p_{1}} \cdot J_{q_{i}}=J_{q_{i}}{ }_{n, 1}, \\
& \left.J_{p_{h}} \cdot J_{q_{1}, n+1}=J_{q_{i,-}}\right\} \\
& \Rightarrow \quad J_{p_{n}, 1} \cdot J_{q_{1}, n}=J_{q_{1,1}}, \quad h=1, \ldots, r-1, \quad i=h+1, \ldots, s+h,
\end{align*}
$$

where the indices are taken modulo r and s.

Proposition 3.1. Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ be closed under multiplication and satisfy (*). Then $\Pi^{(k)}$ is the product of subcycles of the same length. Also, if $\Pi^{(k)}$ is an n cycle for some $k \neq 0$, then every J_{k} is an n-cycle and g satisfies (**).

Proof. We claim that $r \neq s$ in (3.1) contradicts ($*$). In fact, let $r>s$; then from (3.2) we have $J_{p_{s}} \cdot J_{q_{1}}=J_{q_{s+1}}=J_{q_{1}}$, which is impossible. If $r<s$, then we have, from (3.2), $J_{p_{r-1}} \cdot J_{q_{1}}=J_{q}$, which is a contradiction with the equality $J_{l} \cdot J_{q_{1}}=J_{q_{0}}$ that is deduced from (3.1) [recall that $p_{r-1}=1$ in (3.1) and $q_{0}+q_{r}$]. For the second part of the proposition, if $\Pi^{(k)}$ is an n-cycle for some k, then the J_{i} commute by Lemma 3.2 and its proof with $r=n$. By Proposition 2.1, \mathcal{g} satisfies $(* *)$, and hence each J_{k} is an n-cycle.

Lemma 3.3. Let $n=2 r$ (r a prime >2). Let $\mathcal{G}=\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ be closed under multiplication and satisfy (*). Then there is a $k \neq 0$ such that $\Pi^{(k)}$ is an n-cycle or the product of 2-cycles.

Proof, Let $\Pi^{(k)}$ be a product of r-cycles $(k=1, \ldots, n-1)$. In particular let (2.18) hold. Consider $\Pi^{\left(q_{h}\right)}$ and let $j_{q_{h, 0}}^{(l)}=1$. We first show that $l \neq p_{i}$ for every p_{i}. In fact let $i_{q_{h}, 0}^{\left(p_{i}\right)}=1$ for some p_{i}; then $J_{q_{h}} \cdot J_{p_{i}}=J_{p_{i}} \cdot J_{q_{h}}=J_{0}=I$, so we have $i_{p_{i}, 0}^{\left(q_{h}\right)}-1$. But this leads to a contradiction because the equality $J_{p_{i}} \cdot J_{p_{h}}-$ $J_{p_{i+h}}$ of Lemma 2.2 implies $j_{p_{i}, p_{i}+h}^{\left(p_{h}\right)}=1$ and $j_{p_{i}, 0}^{\left(p_{i}\right)}=1$ for some p_{t} such that $t+i=0$ modulo r. Then we have $l=q_{i}$ for some index q_{i}. Now observe that $j_{q_{h}, q_{h}}^{(0)}=1$. Also, by the equality $j_{q_{h}, 0}^{\left(q_{1}\right)}=1$ and the second equality in (3.2), $j_{q_{h}, q_{i}}^{(l)}=1$ implies $l=p_{k}$ for some p_{k}. Similarly, by the first equality in (3.2), if $i_{q_{h} \cdot p_{i}}^{(l)}=1$, then $l=q_{k}$ for some q_{k}. This means that $\Pi^{\left(q_{i}\right)}$ must contain an m-cycle where m is even, which is a contradiction.

Theorem 3.1. Let $n=2 \cdot r$, where r is a prime >2. Let $q=$ $\left\{J_{0}, J_{1}, \ldots, J_{n-1}\right\}$ be closed under multiplication and satisfy (*). Then \mathcal{G} is a finite cancellative semigroup, and hence a group. Moreover,
(i) (**) holds, or
(ii) there exist indices $p_{0}, p_{1}, \ldots, p_{r}\left(p_{r}=p_{0}=0\right)$ and $q_{0}, q_{1}, \ldots, q_{r}\left(q_{0}=q_{r}\right)$ such that, for all $i=1, \ldots, r$ and all $j=1, \ldots, r$,

$$
\begin{align*}
& J_{q_{i}} \cdot J_{p_{i}}=J_{q_{i-i}}, \\
& J_{q_{i}} \cdot J_{q_{i}}=J_{p_{i-i}}, \tag{3.6}\\
& J_{p_{i}} \cdot J_{q_{i}}=J_{q_{i+i}}, \\
& J_{p_{i}} \cdot J_{p_{i}}=J_{p_{i+i}} .
\end{align*}
$$

Also, the matrices J_{k} are completely defined, and the space Σ_{g} of matrices $A(\mathrm{a})=\Sigma a_{k} J_{k}$ is a monoid (with neutral element $J_{0}=1$). This implies that Σ_{g} is closed under inversion.

Proof. By Lemma 3.1 and Lemma 3.3, the closure of g and (*) imply that one of the following residual possibilities must be verified (see proof of Theorem 2.1):
(δ) there is an l such that $\Pi^{(l)}$ is an n-cycle;
(γ) no permutation $\Pi^{(l)}$ is an n-cycle; there is an l such that $\Pi^{(l)}$ is the product of two r-cycles. In this case (3.1) holds with $r=s$ and, by the proof of Lemma 3.3, every $\Pi^{\left(q_{i}\right)}$ is the product of 2-cycles.

If (δ) holds, then (i) holds by Proposition 3.1.
Now let (γ) hold and let $l=1$ (without loss of generality). Then we have

$$
\begin{equation*}
j_{1, p_{k}, 1}^{\left(\boldsymbol{p}_{k}\right)}=\dot{j}_{1, q_{k, 1}}^{\left(q_{k}\right)}=1, \tag{3.7}
\end{equation*}
$$

with $p_{0}=p_{r}=0, p_{r-1}=1, q_{0}=q_{r}$. As $J_{q_{k}}^{2}=I$ for every q_{k}, we obtain, from $J_{p_{i}} \cdot J_{q_{i}}=J_{q_{i} ; i}[\operatorname{see}(3.2)]$,

$$
\begin{aligned}
J_{p_{1}} & =J_{q_{i, i}} \cdot J_{q_{i}} \\
J_{q_{i-1}-i} \cdot J_{p_{i}} & =J_{q_{i}},
\end{aligned}
$$

so all the equalities (3.6) are satisfied. The choice of $\Pi^{(1)}$ and the condition on the permutations $\Pi^{\left(q_{k}\right)}$ define all matrices J_{k}. In fact from (3.6) we have

$$
\begin{equation*}
i_{q_{h}, q_{h},}^{\left(p_{i}\right)}=i_{q_{h}, p_{h},}^{\left(q_{i}\right)}=j_{p_{h}, q_{i+h}}^{\left(q_{t}\right)}=i_{p_{h}, p_{i+h}}^{\left(p_{i}\right)}=1 \tag{3.8}
\end{equation*}
$$

and it is easy to see, from the dislocation of the indices in (3.8), that (3.8) is consistent with (*).

Now let $A(\mathbf{a})=\sum_{k-1}^{n-1} a_{k} J_{k}$ and Σ_{g} be the space of matrices $A(\mathbf{a})$. Consider the matrix X whose first row $\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{n-1}\end{array}\right]$ is the first row of A^{-1}, computed for a particular choice of a_{k} (say $a_{k}=\alpha_{k} \in \mathbb{C}$), and such that $X=\sum_{k=0}^{n-1} x_{k} I_{k}$. As \mathscr{g} is a group, $X A \in \Sigma_{g}$. Also, the first row of $X \cdot A$ is the first row of the identity. This implies $X A=I$ and $X=A^{-1}$.

Observe that, if (3.6) holds, then the J_{k} do not commute with each other. More precisely, the $J_{q_{i}}$ are not commutative and the $J_{p_{i}}$ do not commute with
the $J_{q_{i}}$. We can state the following equalities:

$$
\begin{align*}
& J_{p_{i}}^{T} \cdot J_{q_{i}}=J_{q_{i}} \cdot J_{p_{i}}, \\
& J_{q_{j}} \cdot J_{p_{i}}^{T}=J_{p_{i}} \cdot J_{q_{i}} \tag{3.9}\\
& J_{q_{i}} \cdot J_{q_{i}}=\left(J_{q_{i}} \cdot J_{q_{i}}\right)^{T} .
\end{align*}
$$

Now we can extend Theorem 4.2 in [2] to the following
Theorem 3.2. The only spaces of matrices $A(a)=\sum_{k=0}^{n-1} a_{k} J_{k}(n=\delta \cdot r$, $\delta \in\{1,2\}$, r a prime >2) which constitute a commutative algebra are the spaces of the form $P^{T} C P$ where C is circulant and P is a permutation matrix or the identity.

Example 3.1. In the following matrix $A(a), J_{0}, J_{1}, \ldots, J_{n-1}$ obey condition (ii) of Theorem 3.1 and do not commute with each other (more precisely, J_{1} and J_{4} do not commute with J_{2}, J_{3}, J_{5}, and J_{2}, J_{3}, J_{5} do not commute with each other):

$$
A(\mathbf{a})=\left[\begin{array}{llllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{4} & a_{0} & a_{5} & a_{2} & a_{1} & a_{3} \\
a_{2} & a_{5} & a_{0} & a_{4} & a_{3} & a_{1} \\
a_{3} & a_{2} & a_{1} & a_{0} & a_{5} & a_{4} \\
a_{1} & a_{4} & a_{3} & a_{5} & a_{0} & a_{2} \\
a_{5} & a_{3} & a_{4} & a_{1} & a_{2} & a_{0}
\end{array}\right]
$$

It is easy to see that all J_{k} are defined through the second row $\left[\begin{array}{lll}a_{4} & a_{0} & a_{5}\end{array}\right.$ $\left.a_{2} \quad a_{1} a_{3}\right]$ and the equalities $J_{2}^{2}=J_{3}^{2}=J_{5}^{2}=I$.

REFERENCES

1 Chong-Yun Chao, On circulant matrices, submitted for publication.
2 P. Zellini, On some properties of circulant matrices, Linear Algebra and Appl. 26:31-43 (1979).

Received 15 November 1979; revised 27 May 1980

