On Some Theorems on Circulant Matrices

Paolo Zellini and Angela Mack Istituto di Scienze dell'Informazione Università di Pisa Pisa, Italy

Submitted by David H. Carlson

ABSTRACT

In [2] some theorems on $n \times n$ circulant matrices were introduced under the hypothesis n a prime number. We extend these theorems to the case $n=2 \cdot r$ where r is a prime greater then 2.

1. INTRODUCTION

In [2] the spaces Σ_g of $n \times n$ matrices $A(\mathbf{a}) = \sum_{k=0}^{n-1} a_k J_k$ were introduced, where a_k are complex and $J_0, J_1, \ldots, J_{n-1}$ satisfy the following condition:

(*) $\mathcal{G} = \{J_0, J_1, \dots, J_{n-1}\}$ is a set of $n \times n$ permutation matrices one of which is I and such that $\sum_{k=0}^{n-1} J_k = J = (j_{r,s})$, where $j_{r,s} = 1$ $(r, s = 0, 1, \dots, n-1)$.

The following two theorems have been proved in [2] under the hypothesis n a prime number:

THEOREM 3.2. If \oint satisfies (*) and the J_k commute, then for P_n , the permutation matrix corresponding to the permutation $(12 \cdots n)$, the following holds:

(**) For some permutation matrix P, and reindexing,

 $J_k = P^T P_n^k P, \qquad k = 0, 1, \dots, n-1.$

THEOREM 4.1. If $\oint = \{J_0, J_1, \dots, J_{n-1}\}$ satisfies (*) and is closed under multiplication, then (**) holds.

LINEAR ALGEBRA AND ITS APPLICATIONS 41:137–149 (1981)

52 Vanderbilt Ave., New York, NY 10017

0024 - 3795 / 81 / 070137 + 13802.50

137

[©] Elsevier North Holland, Inc., 1981

An obvious consequence of Theorem 3.2 and Theorem 4.1 is stated in the following.

THEOREM 4.2 (see [2]). The only Σ_g which constitute a commutative algebra are the spaces of $n \times n$ matrices (n prime) of the form $P^T CP$, where C is circulant, and P, which depends on the choice of the set $\{J_k\}$, is the permutation matrix or the identity.

An alternative proof of Theorem 3.2 and Theorem 4.1 has been introduced in [1] by using the centralizers of a permutation group. In [1] Theorems 3.2 and 4.1 appear as corollaries of the following results:

THEOREM 1. Let n be a positive integer. Let \S satisfy (*) and the J_k commute. Then for P_n , the permutation matrix corresponding to the permutation $(012 \cdots n-1)$, (**) holds if and only if there exists a J_q in \S which is an n-cycle.

THEOREM 2. Let n be a positive integer, and \S satisfy (*) and be closed under multiplication. Then (**) holds if and only if there exists a J_q in \S which is an n-cycle.

In the present paper we find an extension of Theorem 3.2 and Theorem 4.1 to the case $n=2 \cdot r$, where r is a prime >2. More precisely, Theorem 3.2 is still true in the case $n=2 \cdot r$, while for the closure under multiplication some different spaces of matrices $A(\mathbf{a})$ are to be introduced beside the circulant. A new class of algebras of $n \times n$ matrices on the complex field is then introduced at the end of Section 3.

If § satisfies (*), then we shall suppose, in the remainder of the paper, $J_0 = I$.

2. ON THE COMMUTATIVITY OF THE MATRICES OF THE SPACES Σ_g

The following Propositions are in some sense implicit in the results in [2] and in their proofs. In the following $j_{p,q}^{(k)}$ is the element (p,q) of the matrix J_k and $\Pi^{(k)}$ is the permutation mapping q to p in the case $j_{k,q}^{(p)} = 1$, i.e. $\Pi^{(k)}$ gives the exact disposition in the row k of $A(\mathbf{a})$ of the complex parameters $a_0, a_1, \ldots, a_{n-1}$ (see [2, p. 37]). We suppose that $[a_0a_1\cdots a_{n-1}]$ is the first row of $A(\mathbf{a})$, i.e. $j_{0,k}^{(k)} = 1$.

CIRCULANT MATRICES

PROPOSITION 2.1. Let $\mathcal{G} = \{J_0, J_1, \dots, J_{n-1}\}$ satisfy (*) and J_k commute. Then $\Pi^{(k)}$, for a $k \neq 0$, is an n-cycle if and only if J_k is an n-cycle. Also, if $\Pi^{(k)}$ or J_k is an n-cycle, then \mathcal{G} satisfies (**).

Proof. Proposition 2.1 follows immediately from Lemma 3.4 in [2], which states that, if the commutativity of the J_k is assumed, then $j_{i,r}^{(p)} = j_{r,k}^{(q)} = j_{i,s}^{(q)} = 1$ implies $j_{s,k}^{(p)} = 1$. Hence, from $j_{0,k}^{(k)} = j_{k,r}^{(p)} = j_{0,p}^{(p)} = 1$ we deduce $j_{p,r}^{(k)} = 1$, and analogously, $j_{k,r}^{(p)} = 1$ is a consequence of $j_{0,p}^{(p)} = j_{p,r}^{(k)} = j_{0,k}^{(k)} = 1$, so we have the equivalence

$$j_{k,r}^{(p)} = 1 \quad \Leftrightarrow \quad j_{p,r}^{(k)} = 1. \tag{2.1}$$

Now it is easy to see that if the permutation $(h_0 h_1 \cdots h_{n-1})$ defines $\Pi^{(k)}$, then $(h_0 h_{n-1} \cdots h_1)$ defines J_k (and vice versa). The last part of Proposition 2.1 has been pointed out in [1]. It is also a direct consequence of the proof of Theorem 3.2 in [2].

PROPOSITION 2.2. Let $\oint = \{J_0, J_1, \dots, J_{n-1}\}$ satisfy (*). Then the matrices J_k commute with each other only if $\Pi^{(k)}$, for every $k \neq 0$, is the product of disjoint cycles of the same length r where r=n or r/n.

Proof. Let the J_i commute, and let $\Pi^{(t)}$ be the product of cycles τ_1, \ldots, τ_m such that at least two of them have different lengths. Without loss of generality suppose that τ_1 and τ_l , for an index l, have lengths, respectively, r and s, with $r \neq s$. Then there are indices p_0, p_1, \ldots, p_r with $p_0 = p_r = 0$ and $p_{r-1} = t$ (we have $j_{l,p_{r-1}}^{(p_r)} \equiv j_{l,l}^{(0)} = 1$) and q_0, q_1, \ldots, q_s ($q_0 = q_s$) such that

$$j_{t,p_{i-1}}^{(p_i)} = 1, \quad j_{t,q_{m-1}}^{(q_m)} = 1, \quad i = 1,...,r, \quad m = 1,...,s.$$

Successive applications of (2.1) and Lemma 3.4 in [2] define the recurrent implications

$$j_{p_{t},q_{1}}^{(q_{s-i}+1)} = j_{t,p_{t}}^{(p_{i}+2)} = j_{t,q_{s-i}}^{(q_{s-i}+1)} = 1 \quad \Rightarrow \quad j_{q_{s-i},q_{1}}^{(p_{i+1})} = j_{p_{i+1},q_{1}}^{(q_{s-i})} = 1,$$

$$i = 0, \dots, s - 1; \quad (2.2)$$

$$j_{q_{h+1},q_1}^{(p_{r-h})} = j_{t,q_{h+1}}^{(q_{h+2})} = j_{t,p_r}^{(p_r,h)} = 1 \quad \Rightarrow \quad j_{p_{r-h-1},q_1}^{(q_{h+2})} = j_{q_{h+2},q_1}^{(p_{r-h-1})} = 1,$$

$$h = 0, \dots, r-1. \quad (2.3)$$

(2.2) and (2.3) correspond, respectively, to the recurrent relations (3.6) and (3.7) in [2]. They lead, for $r \neq s$, to a contradiction with (*). In fact, let r > s. Then we deduce, from (2.2), $j_{q_2,q_1}^{(p_{\chi_1}-1)} = 1$. But we have also $j_{q_2,q_1}^{(t)} = 1$, because $j_{t,q_1}^{(q_2)} = 1$ and (2.1) holds; so, by the equality $t = p_{r-1}$, we have a contradiction. If r < s, then we have, from (2.3), $j_{p_1,q_1}^{(q_r)} = 1$. But this leads to a contradiction with the equality $j_{p_1,q_1} = 1$ that is deduced from (2.2).

Now we have the following.

LEMMA 2.1. Let $\{ J = \{J_0, J_1, \ldots, J_{n-1}\} \$ satisfy (*), and J_i commute. Let $\Pi^{(t)}$, for some t, be the product of l_t disjoint cycles of the same length r. Then there exist indices p_0, p_1, \ldots, p_r , with $p_0 = p_r = 0$, $p_{r-1} = t$, such that $J_{p_1}, \ldots, J_{p_{r-1}}$ are completely defined by, and correspond to, r-l permutations σ_{p_k} ($k=1,\ldots,r-1$) which are the product of n/r disjoint cycles of length r. Analogously all permutations $\Pi^{(p_k)}$ are defined and are the product of l_t cycles of length r. In particular if $l_t = 1$ and r=n, then any J_i is an n-cycle and (**) holds.

Proof. Suppose, without loss of generality, t=1. As $\Pi^{(1)}$ is the product of *r*-cycles, there are indices p_0, p_1, \ldots, p_r with $p_0 = p_r = 0$, $p_{r-1} = 1$ such that

$$j_{1,p_{k-1}}^{(p_k)} = 1, \qquad k = 1, 2, \dots, r.$$
 (2.4)

By successive applications of Lemma 3.4 in [2] and (2.1) we have (the indices are all taken modulo r)

$$j_{1,p_0}^{(p_1)} = j_{0,p_{k+1}}^{(p_{k+1})} = j_{1,p_k}^{(p_{k+1})} = 1 \quad \Rightarrow \quad j_{p_k,p_{k+1}}^{(p_1)} = j_{p_1,p_{k+1}}^{(p_k)} = 1, \tag{2.5}$$

i.e., $\Pi^{(p_1)}$, as well as J_{p_1} , contains an *r*-cycle. If r = n, then we obtain the Lemma and the result of Theorem 3.2 in [2] (see the second part of the proof of Theorem 3.2 in [2, pp. 38–39]). If $r \setminus n$, then consider another *r*-cycle of $\Pi^{(1)}$:

$$j_{1,q_{k-1}}^{(q_k)} = 1, \qquad k = 1, 2, \dots, r,$$
(2.6)

where $q_0 = q_r$. Successive applications of Lemma 3.4 in [2] give the following

implications:

where $s=1,2,\ldots,r-2$ and $k=1,2,\ldots,r$. The following recurrent relations are also deduced from Lemma 3.4 in [2]:

$$j_{1,p_{k-1}}^{(p_k)} = j_{p_{k-1},p_{s+k-1}}^{(p_s)} = j_{1,p_{s+1}}^{(p_s)} = 1 \quad \Rightarrow \quad j_{p_{s-1},p_{s+k-1}}^{(p_k)} = j_{p_k,p_{s+k-1}}^{(p_{s-1})} = 1,$$

$$s = 2, 3, \dots, r - 1. \quad (2.8)$$

Now let $q_0, q_1, \ldots, q_{r-1}$ run over the set of disjoint subcycles of $\Pi^{(1)}$ which do not involve 0 or 1. Then Lemma 2.1 follows from (2.7) and (2.8). Also, observe that $J_{p_k}^{(i)} \in \mathcal{G}$, where $i=1,2,\ldots,r-1$.

EXAMPLE 2.1. Let n=6 and let $[a_4 \ a_0 \ a_5 \ a_2 \ a_1 \ a_3]$ be the second row of the matrix $A(\mathbf{a}) = \sum_{k=0}^{n-1} a_k J_k$, corresponding to the permutation $\sigma = (041)(253)$:

$$A(\mathbf{a}) = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ a_4 & a_0 & a_5 & a_2 & a_1 & a_3 \\ \cdot & \cdot & a_0 & a_1 & \cdot & a_4 \\ \cdot & \cdot & a_4 & a_0 & \cdot & a_1 \\ a_1 & a_4 & a_3 & a_5 & a_0 & a_2 \\ \cdot & \cdot & a_1 & a_4 & \cdot & a_0 \end{bmatrix}.$$
 (2.9)

If the J_k commute, then the rows and the columns of $A(\mathbf{a})$ corresponding, respectively, to the indices $p_0 = 0$, $p_1 = 4$, $p_2 = 1$ and $q_0 = 2$, $q_1 = 5$, $q_2 = 3$ are defined as in (2.9). Observe that $J_{p_1} = J_4$ and $J_{p_2} = J_1$ correspond, respectively, to the permutations σ and σ^2 , i.e. $J_1 = J_4^2$.

LEMMA 2.2. Let $n=2 \cdot r$ where r is a prime >2. Let $J_0, J_1, \ldots, J_{n-1}$ commute and satisfy (*). Then $\Pi^{(k)}$ cannot be, for every k, the product of 2-cycles.

Proof. Consider $\Pi^{(1)}$ and $\Pi^{(2)}$, and suppose they are the product of 2-cycles. Then for some indices $q_1^{(1)}, q_2^{(1)}, \ldots, q_{n-1}^{(1)}$ and $q_1^{(2)}, q_2^{(2)}, \ldots, q_{n-1}^{(2)}$ with $q_1^{(1)} = 1, q_2^{(2)} = q_2^{(1)}, q_1^{(2)} = 2, q_j^{(2)} \neq q_j^{(1)}$ for j > 2 we have

$$\begin{cases} j_{1,0}^{(q_1^{(1)})} = 1 \\ j_{1,q_1}^{(0)} = 1 \end{cases}, \qquad \begin{cases} j_{1,2}^{(q_2^{(1)})} = 1 \\ j_{1,q_2}^{(2)} = 1 \end{cases}, \dots, \qquad \begin{cases} j_{1,n-1}^{(q_n^{(1)})} = 1 \\ j_{1,q_1^{(1)}}^{(n-1)} = 1 \end{cases}; \qquad (2.10)$$

$$\begin{cases} j_{2,0}^{(q_1^{(2)})} = 1 \\ j_{2,q_1}^{(0)} = 1 \end{cases}, \qquad \begin{cases} j_{2,1}^{(q_2^{(2)})} = 1 \\ j_{2,q_2}^{(1)} = 1 \end{cases}, \dots, \qquad \begin{cases} j_{2,n-1}^{(q_{n-1}^{(2)})} = 1 \\ j_{2,q_n^{(2)}}^{(1)} = 1 \end{cases}.$$
(2.11)

Also we have for some r_3, \ldots, r_{n-1} and s_3, \ldots, s_{n-1} , with $s_j \neq j$ and $r_j \neq j$,

$$\begin{cases} j_{1,s_3}^{(q_3^{(2)})} = 1 \\ j_{1,q_3^{(2)}}^{(s_3)} = 1 \end{cases}, \dots, \qquad \begin{cases} j_{1,s_{n-1}}^{(q_n^{(2)})} = 1 \\ j_{1,q_n^{(2)}}^{(s_{n-1})} = 1 \end{cases}; \qquad (2.12) \end{cases}$$

$$\begin{cases} j_{2,r_{3}}^{(q_{3}^{(1)})} = 1 \\ j_{2,q_{3}^{(1)}}^{(r_{3})} = 1 \end{cases}, \dots, \qquad \begin{cases} j_{2,r_{n-1}}^{(q_{n-1}^{(1)})} = 1 \\ j_{2,q_{n-1}^{(n-1)}}^{(r_{n-1})} = 1 \end{cases}.$$

$$(2.13)$$

Let us observe that, if the J_k commute and $\Pi^{(k)}$ has subcycles of length 2 for every k, then each J_k is symmetric. In fact we have the following obvious implications:

$$j_{p,q}^{(k)} = 1 \implies j_{k,q}^{(p)} = 1 \implies j_{k,p}^{(q)} = 1 \implies j_{q,p}^{(k)} = 1.$$
(2.14)

This property of symmetry and successive applications of Lemma 3.4 in [2] give rise to

$$j_{2,i}^{(q_{i}^{(2)})} = j_{i,1}^{(q_{i}^{(1)})} = j_{2,r_{i}}^{(q_{i}^{(1)})} = 1 \quad \Rightarrow \quad j_{r_{i,1}}^{(q_{i}^{(2)})} = j_{1,r_{i}}^{(q_{i}^{(2)})} = 1,$$

$$i = 3, \dots, n-1. \quad (2.15)$$

CIRCULANT MATRICES

From (2.12) and (2.15) we have

$$r_i = s_i, \quad i = 3, \dots, n-1.$$
 (2.16)

This means that the third row of $A(\mathbf{a}) = \sum_{k=0}^{n-1} a_k J_k$ is a permutation Π of the second row such that Π is the product of 2-cycles.

Now if $j_{2,l}^{(k)} = 1$ and $j_{1,l}^{(k')} = 1$ for some k and k' then we have, as a consequence of (2.10)–(2.11) and (2.16), the following configuration for the matrix $A(\mathbf{a})$ (we suppose, without loss of generality, l < l' < k < k'):

first row:
$$\cdots a_{l} \cdots a_{l'} \cdots a_{k} \cdots a_{k'} \cdots$$

second row: $\cdots a_{k'} \cdots a_{k} \cdots a_{l'} \cdots a_{l} \cdots$ (2.17)
third row: $\cdots a_{k} \cdots a_{k'} \cdots a_{l'} \cdots a_{l'} \cdots$

i.e. we deduce, for some l', $j_{1,l'}^{(k)} = j_{2,l'}^{(k')} = j_{1,k'}^{(l)} = j_{2,k}^{(l)} = j_{1,k}^{(l')} = j_{2,k'}^{(l')} = 1$. Now (2.17) is consistent only with the case 4|n; in fact if 4|n, then we obtain, for some r and s, $j_{2,r}^{(r)} = 1$, or simultaneously $j_{2,r}^{(s)} = 1$ and $j_{1,r}^{(s)} = 1$, i.e. a contradiction.

THEOREM 2.1. Let $n=2 \cdot r$ where r is a prime >2. Let the J_k commute and satisfy (*). Then (**) holds.

Proof. Consider the following four cases for $k=1,2,\ldots,n-1$:

- (α) every $\Pi^{(k)}$ is the product of two cycles of length *r*;
- (β) every $\Pi^{(k)}$ is the product of r cycles of length 2;
- (γ) every $\Pi^{(k)}$ can be the product of 2-cycles or the product of r-cycles;
- (δ) there exists a k such that $\Pi^{(k)}$ is an *n*-cycle.

These cases exhaust all the different possibilities of choice of the matrices J_k . Clearly (β) is impossible by Lemma 2.2. We claim that (α) and (γ) are also impossible, so (δ) holds and the Theorem 2.1 follows from Proposition 2.1 (or from Theorem 1 in [1]).

Let condition (α) be verified and let $\Pi^{(1)}$ be the product of two *r*-cycles:

$$j_{1, p_{k-1}}^{(p_k)} = 1, \qquad j_{1, q_{k-1}}^{(q_k)} = 1,$$

$$k = 0, 1, ..., r, \quad q_i \neq p_i \ \forall i, j, \quad p_0 = p_r = 0, \quad p_{r-1} = 1, \quad q_0 = q_r.$$
 (2.18)

Consider a row q_k of the matrices J_i . From (2.7)–(2.8) we have that $J_{q_{k,0}}^{(1)} = 1$ implies $l \neq p_i$ for every *i* [this follows immediately from the equalities $0 = p_0$

and $j_{q_k,q_{k+j-1}}^{(p_{t-s+1})} = 1$, i.e., every matrix J_{p_i} is defined and cannot have 1 in the position $(q_k, 0)$]. Also, by (2.7), $j_{q_k,q_s}^{(l)} = 1$ implies $l \neq q_t$ for every t, so $l = p_i$ for some i. Analogously, $j_{q_k,p_s}^{(l)} = 1$, with $p_s \neq 0$, implies $l = q_i$ for some i; otherwise we have a contradiction with the last equality of (2.7). From $j_{q_k,q_s}^{(0)} = 1$ we deduce that $\Pi^{(q_k)}$ has a subcycle defined by some indices $p_{t(i)}$ and $q_{t(i)}$ such that

$$j_{q_{k,0}}^{(q_{t(1)})} = j_{q_{k},q_{t(1)}}^{(p_{t(2)})} = j_{q_{k},p_{t(2)}}^{(q_{t(3)})} = \cdots = j_{q_{k},q_{k}}^{(0)} = 1,$$

so $\Pi^{(q_k)}$ has a subcycle of length m where m is even, which is impossible.

Let condition (γ) be verified. Suppose that $\Pi^{(1)}$ is the product of two r-cycles [i.e. (2.18) holds]. Then $\Pi^{(q_k)}$, for every k, is an n-cycle [i.e. (δ) is verified] or is the product of 2-cycles. Let this last condition hold. Fix a q_k and let $j_{q_k,q_s}^{(1)} = 1$ [we cannot have $j_{q_k,p_s}^{(1)} = 1$ for some p_s ; in fact $1 = p_{r-1}$ in (2.18) and (2.7) holds]; this implies $j_{q_k,1}^{q_s} = 1$. From $j_{1,q_k}^{(q_{k+1})} = 1$ we obtain, by the commutativity, $j_{q_{k+1},q_k}^{(1)} = 1$ and then, as $\Pi^{(q_{k+1})}$ has subcycles of length 2, $j_{q_k,q_{k+1}}^{(q_{k+1})} = 1$. By the commutativity $j_{q_{k+1}}^{(q_{k+1})} = 1$, so we obtain $q_s = q_{k+1}, j_{q_k,q_{k+1}}^{(1)} = 1$, and $j_{1,q_k}^{(q_{k+1})} = 1$. This last equality and $j_{1,q_k}^{(q_{k+1})} = 1$ imply that $\Pi^{(1)}$ has a subcycle of length 2, i.e. a contradiction.

EXAMPLE 2.2. The following matrix $A(\mathbf{a})$ (n=10) shows that if the commutativity is not assumed, then condition (β) does not contradict (*). Observe that all J_k are symmetric:

$$A(\mathbf{a}) = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 \\ a_1 & a_0 & a_4 & a_6 & a_2 & a_8 & a_3 & a_9 & a_5 & a_7 \\ a_2 & a_4 & a_0 & a_7 & a_1 & a_9 & a_8 & a_3 & a_6 & a_5 \\ a_3 & a_6 & a_7 & a_0 & a_5 & a_4 & a_1 & a_2 & a_9 & a_8 \\ a_4 & a_2 & a_1 & a_5 & a_0 & a_3 & a_9 & a_8 & a_7 & a_6 \\ a_5 & a_8 & a_9 & a_4 & a_3 & a_0 & a_7 & a_6 & a_1 & a_2 \\ a_6 & a_3 & a_8 & a_1 & a_9 & a_7 & a_0 & a_5 & a_2 & a_4 \\ a_7 & a_9 & a_3 & a_2 & a_8 & a_6 & a_5 & a_0 & a_3 \\ a_9 & a_7 & a_5 & a_8 & a_6 & a_2 & a_4 & a_1 & a_3 & a_0 \end{bmatrix}.$$
(2.19)

If the commutativity is assumed, then the impossibility of (β) (Lemma 2.2) is shown in the following case (n = 10): take for instance the second row of $A(\mathbf{a})$ in (2.19). As $j_{2,0}^{(2)} = 1$, we have, according to (2.17), $j_{2,4}^{(1)} = j_{2,1}^{(4)} = 1$ and, obviously, $j_{2,2}^{(0)} = 1$. Now let for instance $j_{2,3}^{(5)} = 1$. This implies $j_{2,8}^{(6)} = j_{2,6}^{(6)} = j_{2,5}^{(3)} = 1$

 $A(\mathbf{a}) = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 \\ a_1 & a_0 & a_4 & a_6 & a_2 & a_8 & a_3 & a_9 & a_5 & a_7 \\ a_2 & a_4 & a_0 & a_5 & a_1 & a_3 & a_8 & \cdot & a_6 & \cdot \\ a_3 & a_6 & \cdot \\ a_4 & a_2 & \cdot \\ a_5 & a_8 & \cdot \\ a_6 & a_3 & \cdot \\ a_7 & a_9 & \cdot \\ a_8 & a_5 & \cdot \\ a_9 & a_7 & \cdot \\ \end{bmatrix}.$

and leads to the contradiction $J_{2,7}^{(7)} = 1$ or $j_{2,7}^{(9)} = 1$:

3. CLOSURE UNDER MULTIPLICATION OF THE SPACES Σ_{ρ}

We are going to introduce some preliminary results which follow roughly the same logical model of reasoning of the previous section. The conclusion will be different, because for $n=2 \cdot r$ (r prime) the circulants do not constitute the only space Σ_g which is closed under multiplication. We shall show this in the final Theorem 3.1. In the following we denote by $j_{r,s}^{(p,q)}$ the element (r,s)of the matrix $J_p \cdot J_q$.

LEMMA 3.1. Let $n=2 \cdot r$ (r a prime >2). Let $\oint = \{J_0, J_1, \ldots, J_{n-1}\}$ be closed under multiplication and satisfy (*). Then $\Pi^{(k)}$ cannot be, for every $k \neq 0$, the product of 2-cycles. Also, there is a $k \neq 0$ such that J_k does not correspond to a product of 2-cycles.

Proof. Let $\Pi^{(k)}$ be the product of 2-cycles for every $k \neq 0$. Then, from the assumption $j_{0,k}^{(k)} = 1$ (see Section 2) and the equality $j_{k,k}^{(0)} = 1$, we have $j_{k,0}^{(k)} = 1$. By the closure of \mathcal{G} , $J_k^2 = I$, i.e., all subcycles of the permutation corresponding to J_k (k = 1, 2, ..., n - 1) have length 2. Also if $j_{k,l}^{(k,l)} = 1$, then we have $j_{l,k}^{(k,l)} = 1$. Hence, from $j_{l,k}^{(l,k)} = 1$ we deduce $J_k \cdot J_l = J_l \cdot J_{k'}$, i.e., the J_k commute, which is a contradiction by Lemma 2.2.

LEMMA 3.2. Let $\mathcal{G} = \{J_0, J_1, \dots, J_{n-1}\}$ be closed under multiplication and satisfy (*). If $\Pi^{(l)}$, for some l, has two subcycles of length, respectively, r and s—i.e.

$$j_{l,p_{k-1}}^{(p_k)} = 1, \quad j_{l,q_{h-1}}^{(q_h)} = 1, \qquad k = 1, \dots, r, \quad h = 1, \dots, s, \tag{3.1}$$

with $p_0 = p_r = 0$, $p_{r-1} = l$, $q_0 = q_s$ —then the following equalities are verified:

$$J_{p_i} \cdot J_{p_h} = J_{p_{i+h}}, \qquad J_{p_i} \cdot J_{q_h} = J_{q_{i+h}}.$$
(3.2)

Proof. Observe that $j_{p,q}^{(k)} = 1$ if and only if $J_p \cdot J_k = J_q$. In fact, from $j_{p,q}^{(k)} = 1$ and $j_{0,p}^{(p)} = 1$ we have $j_{0,q}^{(p,k)} = 1$ and vice versa. If (3.1) holds then we have

$$J_{l} \cdot J_{p_{k}} = J_{p_{k-1}}, \qquad k = 1, \dots, r,$$

$$J_{l} \cdot J_{q_{h}} = J_{q_{h-1}}, \qquad h = 1, \dots, s.$$
(3.3)

From (3.3) and $J_0 = I$ we obtain the following implications:

$$J_{p_{1}} \cdot J_{l} = J_{0}, \qquad J_{l} \cdot J_{q_{h}} = J_{q_{h-1}} \Rightarrow J_{p_{1}} \cdot J_{q_{h-1}} = J_{q_{h}}, \quad h = 1, \dots, s,$$

$$J_{p_{1}} \cdot J_{l} = J_{0}, \qquad J_{l} \cdot J_{p_{i}} = J_{p_{i-1}} \Rightarrow J_{p_{1}} \cdot J_{p_{i-1}} = J_{p_{i}}, \quad i = 1, \dots, r; \qquad (3.4)$$

and then, from (3.4), the following recurrence relations:

$$\{J_{p_{h}}J_{p_{1}} = J_{p_{h+1}},$$

$$J_{p_{1}} \cdot J_{p_{i-h}} = J_{p_{i-h+1}},$$

$$J_{p_{h}} \cdot J_{p_{i-h+1}} = J_{p_{i+1}}\}$$

$$\Rightarrow \quad J_{p_{h+1}} \cdot J_{p_{i-h}} = J_{p_{i+1}},$$

$$h = 1, \dots, r-1, \quad i = h+1, \dots, r+h; \quad (3.5)$$

$$\{J_{p_{h}} \cdot J_{p_{1}} = J_{p_{h+1}},$$

$$J_{p_{1}} \cdot J_{q_{i-h}} = J_{q_{i-h+1}},$$

$$J_{p_{h}} \cdot J_{q_{i-h}} = J_{q_{i-1}}\}$$

$$\Rightarrow \quad J_{p_{h+1}} \cdot J_{q_{i-h}} = J_{q_{i+1}},$$

$$h = 1, \dots, r-1, \quad i = h+1, \dots, s+h,$$

where the indices are taken modulo *r* and *s*.

PROPOSITION 3.1. Let $\mathcal{G} = \{J_0, J_1, \dots, J_{n-1}\}$ be closed under multiplication and satisfy (*). Then $\Pi^{(k)}$ is the product of subcycles of the same length. Also, if $\Pi^{(k)}$ is an n-cycle for some $k \neq 0$, then every J_k is an n-cycle and \mathcal{G} satisfies (**).

Proof. We claim that $r \neq s$ in (3.1) contradicts (*). In fact, let r > s; then from (3.2) we have $J_{p_s} \cdot J_{q_1} = J_{q_{s+1}} = J_{q_1}$, which is impossible. If r < s, then we have, from (3.2), $J_{p_{r-1}} \cdot J_{q_1} = J_{q_r}$, which is a contradiction with the equality $J_l \cdot J_{q_1} = J_{q_0}$ that is deduced from (3.1) [recall that $p_{r-1} = 1$ in (3.1) and $q_0 \neq q_r$]. For the second part of the proposition, if $\Pi^{(k)}$ is an *n*-cycle for some k, then the J_i commute by Lemma 3.2 and its proof with r=n. By Proposition 2.1, satisfies (**), and hence each J_k is an *n*-cycle.

LEMMA 3.3. Let n=2r (r a prime >2). Let $\mathcal{G}=\{J_0, J_1, \ldots, J_{n-1}\}$ be closed under multiplication and satisfy (*). Then there is a $k \neq 0$ such that $\Pi^{(k)}$ is an n-cycle or the product of 2-cycles.

Proof. Let $\Pi^{(k)}$ be a product of *r*-cycles $(k=1,\ldots,n-1)$. In particular let (2.18) hold. Consider $\Pi^{(q_h)}$ and let $j_{q_{h,0}}^{(l)} = 1$. We first show that $l \neq p_i$ for every p_i . In fact let $j_{q_{h,0}}^{(p_i)} = 1$ for some p_i ; then $J_{q_h} \cdot J_{p_i} = J_{p_i} \cdot J_{q_h} = J_0 = I$, so we have $j_{p_i,0}^{(q_h)} = 1$. But this leads to a contradiction because the equality $J_{p_i} \cdot J_{p_h} = J_{p_{i+h}}$ of Lemma 2.2 implies $j_{p_i,p_{i+h}}^{(p_h)} = 1$ and $j_{p_i,0}^{(p_i)} = 1$ for some p_t such that t+i=0 modulo r. Then we have $l=q_i$ for some index q_i . Now observe that $j_{q_h,q_h}^{(0)} = 1$. Also, by the equality $j_{q_{h,0}}^{(q_i)} = 1$ and the second equality in (3.2), if $j_{q_h,p_i}^{(l)} = 1$, then $l=q_k$ for some p_k . Similarly, by the first equality in (3.2), if $j_{q_h,p_i}^{(l)} = 1$, then $l=q_k$ for some q_k . This means that $\Pi^{(q_i)}$ must contain an m-cycle where m is even, which is a contradiction.

THEOREM 3.1. Let $n = 2 \cdot r$, where r is a prime > 2. Let $\mathcal{G} = \{J_0, J_1, \dots, J_{n-1}\}$ be closed under multiplication and satisfy (*). Then \mathcal{G} is a finite cancellative semigroup, and hence a group. Moreover,

(i) (**) holds, or

(ii) there exist indices p_0, p_1, \ldots, p_r ($p_r = p_0 = 0$) and q_0, q_1, \ldots, q_r ($q_0 = q_r$) such that, for all $i=1,\ldots,r$ and all $j=1,\ldots,r$,

$$J_{q_{i}} \cdot J_{p_{i}} = J_{q_{i-i}},$$

$$J_{q_{i}} \cdot J_{q_{i}} = J_{p_{i-i}},$$

$$J_{p_{i}} \cdot J_{q_{i}} = J_{q_{i+i}},$$

$$J_{p_{i}} \cdot J_{p_{i}} = J_{p_{i+i}}.$$
(3.6)

Also, the matrices J_k are completely defined, and the space Σ_g of matrices $A(\mathbf{a}) = \sum a_k J_k$ is a monoid (with neutral element $J_0 = I$). This implies that Σ_g is closed under inversion.

Proof. By Lemma 3.1 and Lemma 3.3, the closure of $\frac{4}{3}$ and (*) imply that one of the following residual possibilities must be verified (see proof of Theorem 2.1):

(δ) there is an *l* such that $\Pi^{(l)}$ is an *n*-cycle;

(γ) no permutation $\Pi^{(l)}$ is an *n*-cycle; there is an *l* such that $\Pi^{(l)}$ is the product of two *r*-cycles. In this case (3.1) holds with r = s and, by the proof of Lemma 3.3, every $\Pi^{(q_i)}$ is the product of 2-cycles.

If (δ) holds, then (i) holds by Proposition 3.1.

Now let (γ) hold and let l=1 (without loss of generality). Then we have

$$j_{1,p_{k-1}}^{(p_k)} = j_{1,q_{k-1}}^{(q_k)} = 1, \qquad (3.7)$$

with $p_0 = p_r = 0$, $p_{r-1} = 1$, $q_0 = q_r$. As $J_{q_k}^2 = I$ for every q_k , we obtain, from $J_{p_i} \cdot J_{q_i} = J_{q_{i+1}}$ [see (3.2)],

$$J_{p_i} = J_{q_{i+i}} \cdot J_{q_i}$$
$$J_{q_{i+i}} \cdot J_{p_i} = J_{q_i},$$

so all the equalities (3.6) are satisfied. The choice of $\Pi^{(1)}$ and the condition on the permutations $\Pi^{(q_k)}$ define all matrices J_k . In fact from (3.6) we have

$$j_{q_h,q_{h-i}}^{(p_i)} = j_{q_h,p_{h-i}}^{(q_i)} = j_{p_h,q_{i+h}}^{(q_i)} = j_{p_h,p_{i+h}}^{(p_i)} = 1;$$
(3.8)

and it is easy to see, from the dislocation of the indices in (3.8), that (3.8) is consistent with (*).

Now let $A(\mathbf{a}) = \sum_{k=0}^{n-1} a_k J_k$ and \sum_{g} be the space of matrices $A(\mathbf{a})$. Consider the matrix X whose first row $[x_0 \ x_1 \ \cdots \ x_{n-1}]$ is the first row of A^{-1} , computed for a particular choice of a_k (say $a_k = \alpha_k \in \mathbb{C}$), and such that $X = \sum_{k=0}^{n-1} x_k J_k$. As \mathcal{G} is a group, $XA \in \sum_{g}$. Also, the first row of $X \cdot A$ is the first row of the identity. This implies XA = I and $X = A^{-1}$.

Observe that, if (3.6) holds, then the J_k do not commute with each other. More precisely, the J_{q_i} are not commutative and the J_{p_i} do not commute with the J_{a} . We can state the following equalities:

$$J_{p_i}^{I} \cdot J_{q_i} = J_{q_i} \cdot J_{p_i},$$

$$J_{q_i} \cdot J_{p_i}^{T} = J_{p_i} \cdot J_{q_i},$$

$$J_{q_i} \cdot J_{q_i} = (J_{q_i} \cdot J_{q_i})^{T}.$$
(3.9)

Now we can extend Theorem 4.2 in [2] to the following

THEOREM 3.2. The only spaces of matrices $A(\mathbf{a}) = \sum_{k=0}^{n-1} a_k J_k$ $(n = \delta \cdot r, \delta \in \{1, 2\}, r \ a \ prime > 2)$ which constitute a commutative algebra are the spaces of the form $P^T CP$ where C is circulant and P is a permutation matrix or the identity.

EXAMPLE 3.1. In the following matrix $A(\mathbf{a})$, J_0 , J_1 ,..., J_{n-1} obey condition (ii) of Theorem 3.1 and do not commute with each other (more precisely, J_1 and J_4 do not commute with J_2 , J_3 , J_5 , and J_2 , J_3 , J_5 do not commute with each other):

$$A(\mathbf{a}) = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 \\ a_4 & a_0 & a_5 & a_2 & a_1 & a_3 \\ a_2 & a_5 & a_0 & a_4 & a_3 & a_1 \\ a_3 & a_2 & a_1 & a_0 & a_5 & a_4 \\ a_1 & a_4 & a_3 & a_5 & a_0 & a_2 \\ a_5 & a_3 & a_4 & a_1 & a_2 & a_0 \end{bmatrix}.$$

It is easy to see that all J_k are defined through the second row $[a_4 \ a_0 \ a_5 \ a_2 \ a_1 \ a_3]$ and the equalities $J_2^2 = J_3^2 = J_5^2 = I$.

REFERENCES

- 1 Chong-Yun Chao, On circulant matrices, submitted for publication.
- 2 P. Zellini, On some properties of circulant matrices, *Linear Algebra and Appl.* 26:31-43 (1979).

Received 15 November 1979; revised 27 May 1980