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ABSTRACT 

In [2] some theorems on n Xn circulant matrices were introduced under the 
hypothesis n a prime number. We extend these theorems to the case nE2.r where T is 
a prime greater then 2. 

1. INTRODUCTION 

In [2] the spaces Z, of nXn matrices A(a)=Z;LiakJk were introduced, 
where a k are complex and Jo, J1, . . . , .I,_ 1 satisfy the following condition: 

(*) &={J0,J1,...J,-~} is a set of nXn permutation matrices one of 
which is I and such that Z;!tJ, =J= ( j,, ,), where i,, s = 1 (r, s=O, 1,. . . , n - 1). 

The following two theorems have been proved in [2] under the hypothesis 
n a prime number: 

THEOREM 3.2. Zf $ satisfies ( * ) and the Jk commute, then for P,,, the 

permutation matrix corresponding to the permutation (12 . . . n), the following 

holds: 

( * *) For same permutation matrix P, and reindexing, 

Jk = PTP,kP, k=O,l,..., n-l. 

THEOREM 4.1. Zf &= {JO, JI,. . . , J,, ~ I} satisfies ( * ) and is closed under 

multiplication, then ( * *) holds. 
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An obvious consequence of Theorem 3.2 and Theorem 4.1 is stated in the 
following. 

THEOREM 4.2 (see [2]). 172e only Z, which constitute a commutative 
algebra are the spaces of n X n matrices ( n prime) of the form P“CP, where C 
is circulant, and P, which depends on the choice of the set { .I,), is the 
permutation matrix or the identity. 

An alternative proof of Theorem 3.2 and Theorem 4.1 has been intro 
duced in [l] by using the centralizers of a permutation group. In [l] 
Theorems 3.2 and 4.1 appear as corollaries of the following results: 

THEOREM 1. Let n he a positive integer. IJet :/ satisfy ( *) and the Jk 
commute. Then for P,,, the permutation matm’x corresponding to the permuta- 

tion (0 12 . . n - l), ( * * ) holds if and only if there exist.s a J, in j which is 
an n-cycle. 

THEOREM 2. Let n be a positive integer, and zj satisfy (* ) and be closed 
under multiplication. Then ( * * ) ho1d.s if and only if there exists a 4, in j 
which is an n-cycle. 

In the present paper we find an extension of Theorem 3.2 and Theorem 
4.1 to the case n = 2. r, where r is a prime > 2. More precisely, Theorem 3.2 is 
still true in the case n=2.r, while for the closure under multiplication some 
different spaces of matrices A(a) are to be introduced beside the circulant. .4 
new class of algebras of n X n matrices on the complex field is then introduced 
at the end of Section 3. 

If ij satisfies ( * ), then we shall suppose, in the remainder of the paper, 
Jo =I. 

2. ON THE COMMUTATIVITY OF THE MATRICES 
OF THE SPACES Z, 

The following Propositions are in some sense implicit in the results in [2] 
and in their proofs. In the following Ip,y ‘ck) is the element (p, a) of the matrix II, 
and lick) is the permutation mapping 4 to p in the case j:f’A = 1, i.e. II(“) gives 
the exact disposition in the row k of A(a) of the complex parameters 

a,, a i, . . . , a ,, ~ r (see [2, p. 371). We suppose that [ aOal . . .a ,I ,] is the first 
row of A(a), i.e. $1 =l. 
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PROPOSITION 2.1. Let &= {J,,, J1,. . . , Jn_1} satisfy (*) and Jk commute. 
Then lick’, for a k#O, is an n-cycle if and only if Jk is an n-cycle. Also, if 
nCk’ or ./k is 972 n+&?, then & satisfies ( * * ). 

Proof. Proposition 2.1 follows immediately from Lemma 3.4 in 2 , 
I1 which states that, if the commutativity of the Jk is assumed, then ijp) = ii,“k = 

ii”,’ = 1 implies 1,. k - ‘(‘) - 1. Hence, from &“L = @) = i&r’i = 1 we deduce ig”! = 1, 
and analogously, i:“) = 1 is a consequence of lo, p ‘(P) = i(k) = ih”L = 1, ~0 we: have p, r , 
the equivalence 

i:p)=l w i(k) ~1. 
,r P.T (2.1) 

Now it is easy to see that if the permutation (ha h, . . . h, _I) defines IICk’, 
then (ha h,_, . . .h,) defines lk (and vice versa). The last part of Proposition 
2.1 has been pointed out in [ 11. It is also a direct consequence of the proof of 
Theorem 3.2 in [2]. n 

PROPOSITION 2.2. Let $= {Jo, J1,. . . , .l,_ I} satisfy ( * ). Then the matrices 

Jk commute with each other only if flCk’, for every k#O, is the product of 

disjoint cycles of the same length r where r=n or r/n. 

Proof. Let the J, commute, and let IICt) be the product of cycles 
rr, . . , TV, such that at least two of them have different lengths. Without loss of 
generality suppose that rr and rl, for an index I, have lengths, respectively, r 

and s, with r # s. Then there are indices p,, p,, . . . , p, with p0 = pT =O and 
p T P1=t (we have ii”;’ fii”j=l) and 90,91,...,9, (90=9S) such that -7, . 

i(Pl) 
t.Pz 1 

=l, ii:;;;,! 1=1, i=l,...,r, m=l,...,s. 

Successive applications of (2.1) and Lemma 3.4 in [2] define the recurrent 
implications 

-,,-I) =I, 
2.41 

h=O ,..., r-l. (2.3) 
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(2.2) and (2.3) correspond, respectively, to the recurrent relations (3.6) and 
(3.7) in [2]. They lead, for r # s, to a contradiction with (*). In fact, let r > s. 

Then we deduce, from (2.2), jbl;“q;) = 1. But we have also i:‘,! Q, = 1, because 
jj’$I) = 1 and (2.1) holds; so, by the equality t = p, 
If r < s, then we have, from (2.3) i,,, ‘,, 

,, we have a contradiction. 
(G) = 1. But this leads to a contradiction 

with the equality jr(,Ts:, = 1 that is deduced from (2.2). 

Now we have the following. 

LEMMA 2.1. Let $ = {Jo, Jr,. . . , .I,, 1} sutisfy ( *), and .I, commute. Let 
IT(‘), for some t, be the product of I, disjoint cycles of the sume length r. Then 

there exist indices p,,, pI,. . . , p,, with p,, =p, =O, p, I = t, such that 

J,,l . ’ ) I,,- , are completely defined by, and correspond to, r-l permutations 

up, (k=l,..., r- 1) which are the product of n/r disjoint cycles of length r. 

Analogously all permutations IICpk’ are defined and are the product of 1, 

cycles of length r. In particular if 1, = 1 ati r= n, then any J, is an n-cycle 

and(**)ho 

Proof. Suppose, without loss of generality, t= 1. As II(i) is the product of 
r-cycles, there are indices p,, p,, . . . , p, with p, = p, = 0, p, 1 = 1 such that 

ILPk 1 

‘(Pk) El 
’ 

k=1,2 ,..., r. (2.4) 

By successive applications of Lemma 3.4 in [2] and (2.1) we have (the indices 
are all taken modulo r) 

(2.5) 

i.e., rw, as well as I,,, contains an r-cycle. If r = n, then we obtain the 
Lemma and the result of Theorem 3.2 in [2] ( see the second part of the proof 
of Theorem 3.2 in [2, pp. 388391). If r\n, then consider another r-cycle of 
H(l). 

ha I 

.(‘lX) El 
’ 

k=1,2 ,..., r, (2.6) 

where 9O = 9,. Successive applications of Lemma 3.4 in [2] give the following 
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implications: 

j((lk) 
l.qk- I 

=j'Pr 2) 3 

4k-,.4k-3 
= iiP;;_l, = 1 

. r 

jh) 
P, 3,4k 3 

=i(Pr .J) El, 
Qks4k 3 

(2.7) 

wheres=l,2 ,..., r-2andk=1,2 ,..,, r. The following recurrent relations are 
also deduced from Lemma 3.4 in [2]: 

i:Pk) =j(Ps) = *(p,) 

,Pk I Pn-l.Pa+k I ll.,, , = 
1 

= igkl,p,+k , =iK:,:‘i,_ ,=I, 

s=2,3 ,..., r-l. (2.8) 

Now let qe,qi,..., 9r_l run over the set of disjoint subcycles of II”’ which do 
not involve 0 or 1. Then Lemma 2.1 follows from (2.7) and (2.8). Also, 
observe that _/p(i) E&, where i= 1,2,. . . , r- 1. w 

EXAMPLE 2.1. Let n=6 and let [a4 a,, a5 a2 a, u,~] be the second row 
of the matrix A(a)=Z;Zia,Jk, corresponding to the permutation CT= 
(04 1)(253): 

a0 al a2 a3 a4 a5 

a4 a0 a.5 a2 al a3 

A(a)= : : :I a”:, : z: . 

al a4 a3 a5 a0 a2 
. . al a4 . a, 

(2.9) 

If the Jk commute, then the rows and the columns of A(a) corresponding, 
respectively, to the indices p, = 0, pi ~4, p2 = 1 and 9. ~2, 91 =5, 92 =3 are 
defined as in (2.9). Observe that Jp, =.I4 and Jpp2 =I1 correspond, respectively, 
to the permutations (I and u2, i.e. Ji =.I,“. 
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LEMMA 2.2. Let n=2.r where r is a prime >2. Let JO, Jl ,..., J,,_l 
commute and satisfy (* ). Then lIICk) cannot be, for every k, the product of 
2-cycles. 

Proof. Consider II(l) and IIc2’, and suppose they are the product of 
2cycles. Then for some indices qil’. qi”, . . . , qL1’ 1 and q[2’. qi2’, . . . , qj;‘! 1 with 

91 
(1) Ix 1, 42 =qp, q1 c2) =2 q/‘) +ql’) for i>2 we have , 

Alsowehaveforsomer, ,..., r,, 1 ands:, ,..., s,,~,,with~~~jaandr,#i, 

(2.12) 

(2.13) 

Let us observe that, if the Jk commute and II (k) has subcycles of length 2 for 

every k, then each Jk is symmetric. In fact we have the foIlowing obvious 
implications: 

This property of symmetry and successive applications of Lemma 3.4 in [2] 
give rise to 
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From (2.12) and (2.15) we have 

r, =si, i=3,...,n-1. (2.16) 

This means that the third row of A(a)=‘C;!ia,J, is a permutation l3 of the 
second row such that ll is the product of 2cycles. 

Now if j$ = 1 and jr,, ‘(k”= 1 for some k and k’ then we have, as a 
consequence of (2.10)-(2.11) and (2.16) the following configuration for the 
matrix A(a) (we suppose, without loss of generality, 1~ I’< k < k’): 

first row: . . . a, . . . a,, . . . (Jk.. . ak’. . . 

secondrow: ..’ aks’.. ak ... a,,... (I, ... 
third row: ... ak ... ak,.‘. a, ... a,. ... 

(2.17) 

i.e. we deduce, for some E’, ~r,~, - I~,,, .(k) - .(k’) = iif:, = &‘: = ji”j = ii”), = I. Now 

(2.17) is consistent only with the case 41 n; in fact if 4jn, then we obtain, for 
some r and s, jgl= 1, or simultaneously $l= 1 and $~ = 1, i.e. a contradic- 
tion. n 

THEOREM 2.1. Let n=2.r where r is a prime >2. Let the _lk commute 

and satisfy ( * ). Then ( * * ) holds. 

Proof. Consider the following four cases for k= 1,2,. . . , n - 1: 

(a) every ll (k) is the product of two cycles of length r; 

(P) every n (k) is the product of r cycles of length 2; 
(y) every lick) can be the product of 2cycles or the product of r-cycles; 
(6) there exists a k such that lick) is an n-cycle. 

These cases exhaust all the different possibilities of choice of the matrices 
Jk. Clearly (j3) is impossible by Lemma 2.2. We claim that (a) and (y ) are 
also impossible, so (S) holds and the Theorem 2.1 follows from Proposition 2.1 
(or from Theorem 1 in [l]). 

Let condition (a) be verified and let 11 (l) be the product of two r-cycles: 

Il.Pk L 

.(Pk’ xl 
’ Il.,,-, ’ 

‘(VL) = 1 

k=O,l,..., r, 9f#pi Vi,i, p,=p,=O, p,-,=l, 90=9r. c2.18) 

Consider a row qk of the matrices J,. From (2.7)-(2.8) we have that Ji:,),, = 1 
implies Zf pi for every i [this follows immediately from the equalities O= p, 
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and jby’y; 1) =l, i.e., every matrix I,,, is defined and cannot have 1 in the 

position (dk,‘O)]. Also, by (2.7), i,, 4 (‘) = 1 implies Z#q, for every t, so l=p, for 
some i. Analogously, ii’,! pa = 1, with ‘p, #O, implies Z=q, for some i; otherwise 
we have a contradiction with the last equality of (2.7). From it:!4k = 1 we 
deduce that II has a subcycle defined by some indices prctj and CJ((,, such 

that 

i(QI(l1) =j(P1(21) =jtclll.ll) = . . . =j(()) 

OL.O ‘Ik. q/,1, Yk. PI01 
=1 

VI>41 ’ 

so II has a subcycle of length m where m is even, which is impossible. 
Let condition (y) be verified. Suppose that II(‘) is the product of two 

r-cycles [i.e. (2.18) holds]. Then n (“k), for every k, is an n-cycle [i.e. (6) is 
verified] or is the product of B-cycles. Let this last condition hold. Fix a qk and 

let iX’,q, = 1 [we cannot have ix! pi = 1 for some P,~; in fact 1 = p, I in (2.18) 
and (2.7) holds]; this implies i,“;.l = 1. From ii:,:; 1) = 1 we obtain, by the 

commutativity, $‘. ,, ‘(i - - 1 and then, as 11”‘~ * 1) has subcycles of length 2, 
j(Si) = 1. By the commutativity j&y:+‘) = 1, so we obtain q,s =Y~+~, iki! 41,, = 1, 
~~$~~;~,, = 1. This last equality and ii”;; 1) = 1 imply that H”’ has a subcycle 
of length 2, i.e. a contradiction. n 

EXAMPLE 2.2. The following matrix A(a) (n= 10) shows that if the 
commutativity is not assumed, then condition (p) does not contradict ( *). 
Observe that all Jk are symmetric: 

A(a) = . (2.19) 

If the commutativity is assumed, then the impossibility of (j3) (Lemma 2.2) is 
shown in the following case (n = 10): take for instance the second row of A(a) 
in (2.19). As i$, = 1, we have, according to (2.17), $A = igi = 1 and, obvi- 
ously, $A = 1. Now let for instance &?A = 1. This implies $A = j$ = i$Tk = 1 
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and leads to the contradiction Jz(l= 1 or ii!{ = 1: 

145 

A(a) = 

a0 a1 a2 a3 a4 Qs ub: a7 at3 a9 

a1 a0 a4 at? a2 a8 a3 a9 a5 a7 

a2 a4 a0 ‘5 u1 ‘3 ‘R . a6 

a3 a6 . . . . . . . . 

a4 a2 . . . ’ . . . . 

a5 ati . . . . . . . . 

a6 a3 . . . . . . . . 

a7 a9 . . . . . . . . 

UR a5 . . . . . . . . 

a9 a7 . . . . . . . . 

3. CLOSURE UNDER MULTIPLICATION OF THE SPACES Z, 

We are going to introduce some preliminary results which follow roughly 
the same logical model of reasoning of the previous section. The conclusion 
will be different, because for n12.r (r prime) the circulants do not constitute 
the only space Z, which is closed under multiplication. We shall show this in 
the final Theorem 3.1. In the following we denote by i!p; O) the element (T, s) 
of the matrix J;J,. 

LEMMA 3.1. Let n=2.r (r a prime >2). Let &={lo,./, ,..., _In_1} be 
closed under multiplication and satisfy (*). Then IICk’ cannot be, for every 
kf 0, the product of 2-cycle.s. Also, there is a k#O such that Jk does not 
correspond to a product of 2-cycles. 

Proof Let IT (k) be the product of 2cycles for every k #O. Then, from 
the assumption ibid = 1 (see Section 2) and the equality ii:\ = 1, we have 
ilk4 = 1. By the closure of &, 1: = I, i.e., all subcycles of the permutation 
c&responding to ./k (k = 1,2,. . . , n - 1) have length 2. Also if ii”j ‘) = 1, then 
we have ilki’) = 1. Hence, from ij’tk’= 1 we deduce Jk..Jl = J,../L,, i.e., the Jk 
commute, which is a contradiction’by Lemma 2.2. n 

LEMMA 3.2. Let &= {Jo, J1,. . ., J,, _ 1} be closed under multiplication and 
satisfy ( *). Zf II(‘), for some 1, has two subcycles of length, respectively, r 
and s-i.e. 

.(PL) I/,~, ,=I, ilp;i_,=l, k=l,..., r, h=l,..., s, (3.1) 
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with p, =p, ~0, p,~_ I =I, qO =q, -then the following equalities are verified: 

Proof. Observe that i,, y 
and ibpi = 1 we have 

(‘) = 1 if and only if J;jk =I,. In fact, from j,(,“: = 1 
ig;“’ = 1 and vice versa. 

If (3.1) holds then we have 

JJ,, =I,, ,) k=l,...,r, 

JJ,,,=-I,,, ,’ 
h=l,...,s. 

From (3.3) and Jo =I we obtain the following implications: 

-r,;& =J”, .kJ,,,=J,,, , =3 I,,$,,, ,=J,,,> h=l,..., s, 

(3.,3) 

-r,,.l/ =Jo, .l,~1,,=.l,, , = lp;lp, ,=&, i=l,...,r; 

and then, from (3.4), the following recurrence relations: 

(.3.4) 

h=l,..., r-l, i=h+l,..., r+h; (3.5) 

h=l,..., r-l, i=h+l,..., s+h, 

where the indices are taken moduIo r and S. n 
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PROPOSITION3.1. jet&={.&,./,,..., I,_ 1} be closed under multiplication 

and satisfy ( *). Then IItk’ is the product of subcycles of the same length. 

Also, if rICk) is an n-cycle for some k # 0, then every .lk is an n-cycle and $ 

satisfies ( * *). 

Proof. We claim that r#s in (3.1) contradicts (*). In fact, let r>s; then 

from (3.2) we have Jp;Jq, =.&+, =I,,, which is impossible. If T<S, then we 

have, from (3.2) Jp,_, ..Z4, =.ZQ,, which is a contradiction with the equality 
.J(._Z,, =I,, that is deduced from (3.1) [recall that p,_, =1 in (3.1) and 9” fq,]. 
For the second part of the proposition, if II (k) is an n-cycle for some k, then 
the _Z, commute by Lemma 3.2 and its proof with r=n. By Proposition 2.1, j 
satisfies ( * * ), and hence each Jk is an ncycle. n 

LEMMA 3.3. Let n=2r (r a prime ~2). Let $={.l,,.l, ,..., J-1} be 

closed under multiplication and satisfy (*). Then there is a k#O such that 

IIck) is an n-cycle or the product of 2-cycles. 

Proof. Let II ck) be a product of r-cycles (k= 1,. . . , n - 1). In particular 
let (2.18) hold. Consider IIcqh) and let i,,,, (I) = 1. We first show that l#p, for 
every pi. In fact let lqh,e ‘(PI) = 1 for some pi; then J,,;.Z, =I,,, ..Zq, =.ZO =I, so we 
have iLpc;l= 1. But this leads to a contradiction because the equality J,, . Jp,, = 

I p +, of Lemma 2.2 implies ig,“d +, = 1 and $‘,$ = 1 for some p, such that 
t $ i’=O module r. Then we have’ 1 L 9i for some index 9i. Now observe that 
.(O) 1 q,l,q,L= 1. Also, by the ewb I~,,,~ ‘(qc) =l and the second equality in (3.2) 
.(I) 1 9,*. 4, = 1 implies l=pk for some p,. Similarly, by the first equality in (3.2) if 
.(I) 1 Y/i. P, 

= 1, then 1=9k for some qk. This means that IIcqr) must contain an 
m-cycle where m is even, which is a contradiction. n 

THEOREM 3.1. Let n = 2 .r, where r is a prime > 2. Let $ = 

{&,I,,..., ],_ 1} be closed under multiplication and satisfy ( * ). Then $ is a 

finite cancellative semigroup, and hence a group. Moreover, 

(i) (* *) holds, or 

(ii) thereexistindicesp,,p,,...,p,(p,=p,=O)ancEq,,q,,...,q,(q,=q,) 
such that, for all i=l,..., r and all i=l,..., r, 
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Also, the matrices Jk are completely defined, and the space 2, of muttices 
A(a) = Ca, Jk is a marwid (with neutral element JO = I ). This implies that 2, is 
closed under inversion. 

Proof. By Lemma 3.1 and Lemma 3.3, the closure of j and ( * ) imply 
that one of the following residual possibilities must be verified (see proof of 
Theorem 2.1): 

(S) there is an 1 such that 11”’ is an n-cycle; 
(y) no permutation rr (‘) is an n-cycle; there is an 1 such that ll(” is the 

product of two r-cycles. In this case (3.1) holds with r = s and, by the proof of 
Lemma 3.3, every ll (4j) is the product of 2cycles. 

If (6) holds, then (i) holds by Proposition 3.1. 
Now let (y) hold and let Z= 1 (without loss of generality). Then we have 

.(Pk) 
Il.,, 1 

=‘(Yk) =1 
11.a I ’ 

(3.7) 

with p, =pr =o, p,_, = 1, 4” =q,. As .I(,: = 1 for every qk, we obtain, from 

I,, .I,, =J,, +, [see (3.2)1, 

J,, =J,,.;J 0, ’ 

J,,.,.JP, =-I,,~ 

so all the equalities (3.6) are satisfied. The choice of ll(‘) and the condition on 
the permutations lIcqk) define all matrices Jk. In fact from (3.6) we have 

and it is easy to see, from the dislocation of the indices in (3.8) that (n.8) is 
consistent with ( * ). 

Now let A(a) = E;t i Ask Jk and 8, be the space of matrices A(a). Consider 
the matrix X whose first row [x,, xi . . . x, _l] is the first row of A-‘, 
computed for a particular choice of ak (say ak = ak~C), and such that 
X =ZE;I_hxk.lk. As $ is a group, XAE 2,. Also, the first row of X .A is the first 
row of the identity. This implies XA = I and X = A i. n 

Observe that, if (3.6) holds, then the Jk do not commute with each other. 
More precisely, the J,, are not commutative and the I,>, do not commute with 
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the J,,. We can state the following equalities: 

Jq;J~=Jp~.Jq,~ 

J,;J,, =(Jq;J$ 

(3.9) 

Now we can extend Theorem 4.2 in [2] to the following 

THEOREM 3.2. The only spaces of matrices A(a)=8~~~akJk (n=iS.r, 
6 E { 1,2}, r a prime ~2) which constitute a commutative algebra are the 
spaces of the form PTCP where C is circulunt and P is a permutation matrix or 
the identity. 

EXAMPLE 3.1. In the following matrix A(a), Jo, II,. . . , Jn_, obey condi- 
tion (ii) of Theorem 3.1 and do not commute with each other (more precisely, 
Ji and J4 do not commute with Jz, J3, J5, and Jz, J3, J5 do not commute with 
each other): 

It is easy to see that ail Jk are defined through the second row [ a4 a, as 
a2 a, a,] and the equalities Jt = Jt = Jl =I. 
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