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A comparison of (x, + yn/ﬁ)(3 + 2/2) and (3 g)(mn) shows that all solutions
of t? - 2(2b)% = 1 are obtained by - Yn

G5 = (i)

and hence all solutions of 2127;;ll-= b? are obtained from a, = E£7;—£3 bn, = 2on

Note that t, is odd for all n so a, is an integer.
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1. INTRODUCTION

The central factorials have been introduced and studied by Stephensen; prop-
erties and applications of these factorials have been discussed among others and
by Jordan [3], Riordan [5], and recently by Roman and Rota [4].

For positive integer m,

xlm bl = m(x + %mb - b)(x + %mb - Zb) cee (x - %ﬁb + b)

defines the generalized central factorial of degree m and increment b. This defi-
nition can be extended to any integer m as follows:

208 =1
gl bl = g2 plnt 28] 4 positive integer.
The usual central factorial (b = 1) will be denoted by 2”1, Note that these fac-
torials are called "Stephensen polynomials" by some authors.
Carlitz and Riordan[1] and Riordan [5, p. 213] studied the connection constants

of the sequences x[™! and x7, that is, the central factorial numbers t(m, n) and
T(m, n):

m m
zll = E: t(m, n)x”, x™ = 2: T(m, n)yxlrl;
n=0

n=0

these numbers also appeared in the paper of Comtet [2]. 1In this paper we discuss
some properties of the connection constants of the sequences x!™ 91 and xl™ 2], h #
g, of generalized central factorials, that is, the numbers K(m, n, &):

m
wlmdl= 3 g"WKGm, n, )z, s = hig.
n=0

2. EXPANSIONS OF CENTRAL FACTORIALS

The central difference operator with increment a, denoted by §,, is defined by
S§af(x) = flx + a/2) - flx - al2)
Note that
6o = B - B =B 0, (2.1)
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where %, and A, denote the displacement and difference operators with increment «,
respectively. Therefore,
-3 (—1)"(2)13””* (2.2)
k=0

When the increment @ = 1, we write §, = §, F; = E, and A, = A.
The central factorial of degree m andlncrementb denoted by x[m: %], is defined

by
xlm bl = x(x + %mb - b)(x + %mb - Zb) cee (x - %mb + b).
Note that
x[’”’b] = x(x + —;-mb - b)m-l,b’ <2'3)
where

Wy =Yy = bY@y - 2b) +-+ (y -~ mb + b)

is the falling factorial of degree m and increment b.
It is not difficult to verify that

2
olms B} = {xz - (-;—m - 1) b{lx[”"z’b].' (2.4)
Using the relation "
N 1
(y)-m, b (y + mb)m B ) (2.5)
and, by (2.3), we get
2
xl-mpl = L (2.6)
x[m+2,b]

When the increment b = 1, we write
x[m,llg x[”l]’ (y)m,l = Wn.
(ba)l™ = prxl™ B Bo= 1/b. 2.7)
From formula (2.8) (see Riordan [5, p. 147]),

ii %,(@ + Bn ]_1)0” _ 2; __5&___(a + Bn)vn, v=(1-wukt, (2.8

£ o+ Bn n

Note also that

LN

2, =EFE, vp=(F - l)E—é = §, we get the symbolic formula

Ef?x = Z (bx)[”] ;11_'_6”
n=0

=1
1

~

with o = bx, B

since [E¥*(s2)[") 1, , = (@)'"), s = a/b, we obtain

CONEE Z;[%a”(sx)“”’]“o . ()T

n=0

Denoting the number in brackets by

K(m, n, 8) = [-nl—,d”(sx)[m]] , (2.9)
¢ =0
we have .
(@)™ = 3 K(m, n, ) (bx)!", s = a/b. (2.10)
n=0

Using (2.7), (2.10) may be rewritten in the form
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m

elm el = %" g K(m, n, e)zlmhl, s = h/g. (2.11)
Note also that n=0
K@m, n, 8) =|: L Saac LM 2] , 8 = alb. (2.12)
n!bm x=0

From the definition (2.9), we may deduce an explicit expression for the num-
bers K(m, n, s8). Indeed, from the symbolic formula (2.2) with a = 1, and since

]

ﬁl—f ;;0 ("l)k(z> (s[%n - k]) tn

7,3_! ki: (—I)R(Z)<%sn - 37()(%371 + %m - gk - 1>m_1 2.13)
=0

A recurrence relation for the numbers X(m, n, 8), useful for tabulation pur-
poses, may be obtained from (2.10) and (2.4) as follows:

we get

K(m, n, 8)

m+2

m
(Sk)[m+2] = K@ + 2, n, S)x["] = <§2x2 _ %mz) EZ'K(m’ n, g)xinl
n=0

n=0

= i)K(m, s s)[szx["+2]+ 71;(32712 - mz)xlnl].
ne
Hence

Km+ 2, n, 8) = %(szn2 - m®)K(m, n, 8) + 8’K(m, n - 2, 8). (2.14)
The initial conditions are

K, 0, 8) =1, X0, n, g8) = 0, n > 0, K(m, 0, 8) = 0, m > O,
Moreover,
KQ2m, 2n + 1, 8) = 0, KQ2m + 1, 2n, 8) = 0.

From the recurrence relation and the initial conditions, it follows that:
1f s is an integer, the numbers
§72"K(2m, 2n, 8) and 4" "sTP"TlK(2m+ 1, 2n + 1, 8)
are positive integers and, moreover,
If s is a negative integer, the numbers
K(2m, 2n, 8) = 0, m < n, m > nlsl,
K2m+ 1, 22+ 1, 8) =0, m<m, 2m+ 1> @2n+ ]s|.

Other properties of these numbers will be discussed in the next section.
We now proceed to determine the coefficients A(n, m, s) in the expansion

@l =" 4(n, m, &) (szx)l""1 .
n=m

Since x!™*21 = <x2 - %m2>x [-n1, we get

Z An, m - 2, &) (sx)l™"1 = (xz - Zl;mz) ZA(n, m, &) (sx)[_"]

n=n-2

i An, m, ) [s'2<sx)['"+21 + %(s'znz - mz)(sx)['n]].

n=m
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Hence

An + 2, m, 8) = %(szm2 - n®Am, m, s) + sA(n, m - 2, &)
with
A0, O, 8) =1, A0, m, 8) =0, > 0.

Comparing this recurrence with (2.14), we conclude that

2 = YR, m, 8) sz, (2.15)
n=m

which may be written in the form

GB) = Y Kk, m, ) (ax) ] (2.16)
or n=m
wlmal = %™ g"n K (n, m, 8)alR s = /g, (2.17)

3. SOME PROPERTIES OF THE CENTRAL FACTORIAL NUMBERS

Some other properties of the numbers X(m, n, g8), defined by (2.9) or, equiva-
lently, by (2.12), will be discussed in this section.
From (2.10) we may easily get the relation

m

K(m’ k’ a/b)K(k: s b/’a) = (Smn, (3.1)
k=n

where §,, denotes the Kronecker delta. This relation implies the pairs of inverse
relation

QAm Z:OK(m, ns alb)by, o EOK(m, ns bla)a,,

o0

e, = ZK(m, ny alb)Ydys dn K(ms n, bla)e,-

m=n m=n

For the central factorial numbers

1 1
t(m, n) = [HD%”’] ) and T(m, n) = [n—!é”ac”’]m=O
we have (see Riordan [5, p. 213})
m
xlml = E t(m, n)x" (3.2)
n=0
xm = E T(m, n)xl™l. (3.3)
n=0

Expanding (sx)!™] into powers of x by means of (3.2) and then the powers into cen-
tral factorials by means of (3.3), we obtain

m m k
(sx) "] = 3" ske(m, K)xk = 3 Y sktm, KTk, naln)
£=o k=0 n=0

or
m

G = Y ekeln, TR, malr,

n=0 k=n
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which, in virtue of (2.10) with b =1, a = s, gives
K(m, n, 8) = Zskt(m, KTk, n); (3.4)
similarly, it can be shown that k:n
t(im, n) = s‘ﬂz K(m, k, s)Yt(k, n) (3.5)
k=n
and ,
T(my, n) = "”E T(m, KYK(k, n, 8). (3.6)
k=n
Since liIP s~ (sx)™ = x", we get, from (2.9),
S+t
lim s "K(m, n, 8) = [—6 x ] = T(n, n). (3.7)
s>te .
From (2.12) with b = 1, @ = s, and noting that lin(l) s™18, = D, we deduce
g+
lim 8" K(m, n, s)= [LD”xm] = t(m, n). (3.8)
§50 n! z=0

Turning to the generating function, we find, on using (2.13) and (2.8), with

o = %sn - sk, B = %3 v =y, (u- 1)M'§ =y,
that
= m
g, s &) = 2 K(m, n, )1
m=0 :
lf . ié n - sk %sn-—sk+%m—1
= 7 -1 ( ) 1+ ym
ni =t k -
1 - -
= m(us/z -u S/Z) (u - ].)LL 1/2 - Y.
Putting u = e? and 8¢ = r to avoid mistakes in the hyperbolic formulas, we get
1 . 1 n
9,5 r) =>y|2 sinh (5w
and : )
y = 2 sinh (714;).
Therefore,
" , L o1 f1
g, ys v = ~7;L!—[2 sinh {r sinh <7 }

ik
I

The corresponding generating fun
torial numbers may be obtained as

- Jn
2 s myr
m=0

©

Z T(m, n)g—!

m=0

Using formulas (3.10), (3.11), and (3.

= [2 sinh'1<l

n
s [2 sinh (%ap)] , a’™"

(3.9)

)
SORDIE

sinh {r’ log(%y +

ctions for the Carlitz-Riordan central fac-

%[2 sinh~! ey)] '
Az e (3]

9), and since

T o

(3.10)

(3.11)

[2 sinh {r sinh-?! (%6;,)}]1

700
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we get

o nl n!
87 = 2: ETT(m’ n)a™", a"D” = 2: ;ﬁf(m, n) 8y,

m=0 m=0

§) = E: %%K(m, n, #)83, r = alb.
m=0
Finally, let 5
Qnlz; &) = 3 (sw)l™]

r=0
and put

L)
2z + 1 myn, s 2z + n)!
Do (25 8) = 2 2n + 1 Ez - nz!'

Then

% 2z +n - 1)

(Sx)IZm] = ZQm,n,s @ = ! — = Z Qm,n,sx[zm];
=0 : =

and by (2.10), * =0

Qm’n’s= K(2m, 2n, s8).

A similar expression may be cbtained for Q2m+1(z; 3s).
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Let 4 be the n X n matrix with elements defined by

a;; =-lif =4 -1; 1+ypidf 2 =45 -uwif =4+ 2;

and 0 otherwise. If n > 3 and y is a positive number, then A is a special case of
a matrix that was shown in{1] to be useful in the design of two~up, one-down ideal
cascades for uranjum enrichment. The purpose of this paper is to derive certain
properties of the determinant U, of 4 and to point out its relation to the Fibo-
nacci numbers.

Expansion of the determinant of A according to its first column leads to the
recurrence relation

(1) Dy =1+1u, Dy, = (1 ~w?, and D,y = (L + WD

For convenience, set D, = 1.
By using standard technlques for generatlng functions, it can be shown that
the generating function D(x) for {D»} (with p031t1ve radius of convergence) is

(@) D@ = [1- (1 +we+ el =Y Z( D7 (5 @+ wyFriatead,

i=0 J=

- uw,_; for n > 3.

n-1
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