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Abstract. Let p > 3 be a prime. We derive the following new congru-

ences:
p−1
∑

n=0

(2n+ 1)An ≡ p (mod p4)

and
p−1
∑

n=0

Dn ≡ (−1)(p−1)/2
− p2Ep−3 (mod p3),

where An denotes the Apéry number
∑n

k=0

(n
k

)2(n+k
k

)2
, Dn stands for

the central Delannoy number
∑n

k=0

(n
k

)(n+k
k

)

, and E0, E1, E2, . . . are Eu-

ler numbers. We show that the arithmetic means 1
n

∑n−1
k=0 (2k+1)Ak (n =

1, 2, 3, . . . ) are always integers and conjecture that
∑n−1

k=0 (2k+1)(−1)kAk ≡

0 (mod n) for every n = 1, 2, 3, . . . . We also investigated generalized cen-

tral trinomial coefficient Tn(b, c) (with b, c ∈ Z) which is the coefficient of
xn in the expansion of (x2 + bx+ c)n. For any positive integer n we prove

that
n−1
∑

k=0

(2k + 1)Tk(b, c)
2(4c− b2)n−1−k

≡ 0 (mod n)

and conjecture that

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(b2 − 4c)n−1−k

≡ 0 (mod n2).

Our topic is original and many conjectures are raised.

2010 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10,

05A15, 05A19, 11B68, 11E25.
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1. Introduction

In number theory, for an arithmetical function f , analytic number-
theorists often study the asymptotical behavoir of the partial sum

∑

n6x f(n).
Similarly, for an integer sequence a0, a1, a2, . . . we may investigate the
arithmetic mean 1

n

∑n−1
k=0 ak (n = 1, 2, 3, . . . ) or the partial sum

∑p−1
k=0 ak

modulo powers of a prime p. In this paper we initiate the topic for various
integer sequences {ak}k>0 arising naturally from enumeration problems in
combinatorics.

Let p be a prime. Partially motivated by H. Pan and Z. W. Sun [PS],
Sun and R. Tauraso [ST] proved that

p−1
∑

k=0

(

2k

k

)

≡
(p

3

)

(mod p2) and

p−1
∑

k=0

Ck ≡ 3( p3 )− 1

2
(mod p2),

where Ck denotes the Catalan number
(

2k
k

)

/(k+1) =
(

2k
k

)

−
(

2k
k+1

)

and (−)

refers to the Legendre symbol. Recently Sun [Su] determined
∑p−1

k=0

(

2k
k

)

/mk

mod p2 for any integer m 6≡ 0 (mod p).
Recall that Apéry numbers are given by

An =
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

=
n
∑

k=0

(

n+ k

2k

)2(
2k

k

)2

(n ∈ N = {0, 1, 2, . . .})

which play a central role in Apéry’s proof of the irrationality of ζ(3) =
∑∞

n=1 1/n
3 (see R. Apéry [Ap] and van der Poorten [Po]). Apéry numbers

are related to modular forms and the p-adic Gamma function, see Ken
Ono [O, pp.198–203]. The Dedekind eta function in the theory of modular
forms is defined by

η(τ) = q1/24
∞
∏

n=1

(1− qn) with q = e2πiτ ,

where τ ∈ H = {z ∈ C : Im(z) > 0} and hence |q| < 1. In 1987 F. Beukers
[B] conjectured that

A(p−1)/2 ≡ a(p) (mod p2) for any prime p > 3,

where a(n) (n = 1, 2, 3, . . . ) are given by

η4(2τ)η4(4τ) = q

∞
∏

n=1

(1− q2n)4(1− q4n)4 =

∞
∑

n=1

a(n)qn.

This was finally confirmed by S. Ahlgren and Ono [AO] in 2000.
Let p be an odd prime. Motivated by the author’s determination of

∑p−1
k=0

(

2k
k

)

/mk mod p2 for any integer m 6≡ 0 (mod p), we computed
∑p−1

k=0 Ak/m
k mod p2 via Mathematica and found the following surprising

conjecture.
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Conjecture 1.1. Let p be an odd prime. Then

p−1
∑

k=0

Ak

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) and p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8);

and

p−1
∑

k=0

(−1)kAk

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 3) and p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

Remark 1.1. In number theory, it is well known that if p is an odd prime
with (−2

p
) = 1 (i.e., p ≡ 1, 3 (mod 8)) then there are unique positive

integers x and y such that p = x2 + 2y2. Also, if p is an odd prime with
(−3

p ) = 1 (i.e., p ≡ 1 (mod 3)) then there are unique positive integers x

and y such that p = x2 + 3y2. The reader may consult A. Cox [Co] for
these basic facts.

Conjecture 1.1 is also related to modular forms since J. Stienstra and
F. Beukers [SB] proved that if we write

q

∞
∏

n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2 =

∞
∑

n=1

b(n)qn

and

q
∞
∏

n=1

(1− q2n)3(1− q6n)3 =
∞
∑

n=1

c(n)qn,

then for any odd prime p we have

b(p) =

{

4x2 − 2p if p ≡ 1, 3 (mod 8) & p = x2 + 2y2 with x, y ∈ Z,

0 if p ≡ 5, 7 (mod 8),

and

c(p) =

{

4x2 − 2p if p ≡ 1 (mod 3) & p = x2 + 3y2 with x, y ∈ Z,

0 if p ≡ 2 (mod 3).

Conjecture 1.1 seems very challenging and we are unable to prove it;
we also have a similar conjecture for

∑p−1
k=0 ε

kkAk mod p2 where ε =
±1. Nevertheless we can establish the following novel property of Apéry
numbers.
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Theorem 1.1. (i) For any positive integer n we have

n−1
∑

k=0

(2k + 1)Ak ≡ 0 (mod n). (1.1)

If p > 3 is a prime, then

p−1
∑

k=0

(2k + 1)Ak ≡ p (mod p4). (1.2)

(ii) Let ε ∈ {±1} and m ∈ Z+, and let p be any prime. Then

p−1
∑

k=0

(2k + 1)εkAm
k ≡ 0 (mod p). (1.3)

Remark 1.2. The values of

sn =
1

n

n−1
∑

k=0

(2k + 1)Ak ∈ Z

with n = 1, . . . , 8 are

1, 8, 127, 2624, 61501, 1552760, 41186755, 1131614720

respectively. Via the Zeilberger algorithm we obtain the recursion

(n+ 2)3(n+ 3)(2n+ 1)sn+3

=(n+ 2)(2n+ 1)(35n3 + 193n2 + 345n+ 203)sn+2

− (n+ 1)(2n+ 5)(35n3 + 122n2 + 132n+ 40)sn+1

+ n(n+ 1)3(2n+ 5)sn

for n = 0, 1, 2, . . . .

For n ∈ N we define the Apéry polynomial An(x) as follows:

An(x) =
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

xk.

Obviously An(1) = An. By a slight modification of our proof of (1.1) given
in the next section, we see that

1

n

n−1
∑

k=0

(2k + 1)Ak(x) =
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)(

n+ k

2k + 1

)(

2k

k

)

xk
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for every n = 1, 2, 3, . . . . Thus, for any odd prime p and integer x we have

p−1
∑

k=0

(2k + 1)Ak(x) ≡ p

(

x

p

)

(mod p2),

since p |
(

p+k
2k+1

)

for every k = 0, . . . , (p − 3)/2, and p |
(

2k
k

)

for all k =

(p+ 1)/2, . . . , p− 1.
Based on our computation via Mathematica, we raise the following

conjecture which has the same flavor with Theorem 1.1.

Conjecture 1.2. For any ε ∈ {±1}, m,n ∈ Z+ and x ∈ Z, we have

n−1
∑

k=0

(2k + 1)εkAk(x)
m ≡ 0 (mod n).

If p is an odd prime, then

p−1
∑

k=0

(2k + 1)(−1)kAk(x) ≡ p

(

1− 4x

p

)

(mod p2).

Also, for any prime p > 3 we have

p−1
∑

k=0

(2k + 1)Ak(−3) ≡
p−1
∑

k=0

(2k + 1)(−1)kAk ≡ p
(p

3

)

(mod p3).

Remark 1.3. The values of 1
n

∑n−1
k=0 (2k+1)(−1)kAk with n = 1, . . . , 8 are

1, −7, 117, −2441, 57449, −1453635, 38609845, −1061792695

respectively.

In contrast with Conjecture 1.1, we have the following conjecture in-
volving the binary quadratic form x2 + y2.

Conjecture 1.3. Let p be an odd prime. Then

p−1
∑

k=0

(−1)kAk(−2)

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) & p = x2 + y2 (2 ∤ x, 2 | y),
0 (mod p2) if p ≡ 3 (mod 4).
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Provided p > 3 we also have

p−1
∑

k=0

(2k + 1)(−1)kAk(−2) ≡ p− 4

3
p2qp(2) (mod p3),

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p.

Remark 1.4. As observed by Fermat and proved by Euler, any prime
p ≡ 1 (mod 4) can be uniquely written in the form x2 + y2 with x odd
and y even. Conjecture 1.3 determines x2 mod p2 via the integer sequence
{(−1)kAk(−2)}k>0; in Sections 4 and 5 we will present more conjectures
in this spirit.

The central Delannoy numbers (see [CHV]) are defined by

Dn =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

=
n
∑

k=0

(

n

k

)(

n+ k

k

)

(n ∈ N).

Such numbers arise naturally in many enumeration problems in combina-
torics (cf. Sloane [Sl]); for example, Dn is the number of lattice paths from
(0, 0) to (n, n) with steps (1, 0), (0, 1) and (1, 1).

Our second theorem is concerned with central Delannoy numbers.

Theorem 1.2. Let p > 3 be a prime. Then

1

p

p−1
∑

k=0

(2k + 1)Ak(−1) ≡
p−1
∑

k=0

Dk ≡
(−1

p

)

− p2Ep−3 (mod p3), (1.4)

where E0, E1, E2, . . . are Euler numbers defined by

E0 = 1 and
n
∑

k=0
2|k

(

n

k

)

En−k = 0 for n ∈ Z+ = {1, 2, 3, . . .}.

We also have

p−1
∑

k=0

(2k + 1)(−1)kDk ≡ p− 7

12
p4Bp−3 (mod p5) (1.5)

and
p−1
∑

k=0

(2k + 1)Dk ≡ p+ 2p2qp(2)− p3qp(2)
2 (mod p4), (1.6)

where B0, B1, B2 . . . are Bernoulli numbers.

Now we give our fourth conjecture.
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Conjecture 1.4. Let p be any odd prime. Then

p−1
∑

k=1

Dk

k2
≡ 2

(−1

p

)

Ep−3 (mod p).

If p > 3, then

p−1
∑

k=0

(2k + 1)D2
k ≡ p2 − 4p3qp(2)− 2p4qp(2)

2 (mod p5).

Recall that for a prime p and a rational number x, the p-adic valuation
of x is given by

νp(x) = sup{a ∈ N : x ≡ 0 (mod pa)}.

Just like the Apéry polynomial An(x) =
∑n

k=0

(

n
k

)2(n+k
k

)2
xk we define

Dn(x) =
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk.

Actually Dn((x− 1)/2) coincides with the Legendre polynomial Pn(x) of
degree n.

Conjecture 1.5. (i) For any n ∈ Z the numbers

s(n) =
1

n2

n−1
∑

k=0

(2k + 1)(−1)kAk

(

1

4

)

and

t(n) =
1

n2

n−1
∑

k=0

(2k + 1)(−1)kDk

(

−1

4

)3

are rational numbers with denominators 22ν2(n!) and 23(n−1+ν2(n!))−ν2(n)

respectively. Moreover, the numerators of s(1), s(3), s(5), . . . are congruent
to 1 modulo 12 and the numerators of s(2), s(4), s(6), . . . are congruent to
7 modulo 12. If p is an odd prime and a ∈ Z+, then

s(pa) ≡ t(pa) ≡ 1 (mod p).

For p = 3 and a ∈ Z+ we have

s(3a) ≡ 4 (mod 32) and t(3a) ≡ −8 (mod 35).
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(ii) Let p be a prime. For any positive integer n and p-adic integer x,
we have

νp

(

1

n

n−1
∑

k=0

(2k + 1)(−1)kAk (x)

)

> min{νp(n), νp(4x− 1)}

and

νp

(

1

n

n−1
∑

k=0

(2k + 1)(−1)kDk (x)
3

)

> min{νp(n), νp(4x+ 1)}.

For n ∈ N, the nth central trinomial coefficient and the nth Motzkin
numbers are defined by

Tn =

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

and Mn =

⌊n/2⌋
∑

k=0

(

n

2k

)

Ck.

It is known that Tn coincides with [xn](1 + x + x2)n, the coefficient of
xn in the expansion of (1 + x + x2)n, and that Mn equals the number of
paths from (0, 0) to (n, 0) in an n × n grid using only steps (1, 1), (1, 0)
and (1,−1) (cf. Sloane [Sl]). Quite recently H. Q. Cao and Pan [CP]

determined
∑p−1

k=0 Tk mod p and
∑p−1

k=0(−1)kTk mod p2, where p is an odd
prime.

Our following conjecture seems sophisticated.

Conjecture 1.6. (i) For any n ∈ Z+ we have

n−1
∑

k=0

(8k + 5)T 2
k ≡ 0 (mod n).

If p is a prime, then

p−1
∑

k=0

(8k + 5)T 2
k ≡ 3p

(p

3

)

(mod p2).

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

M2
k ≡ (2− 6p)

(p

3

)

(mod p2),

p−1
∑

k=0

kM2
k ≡ (9p− 1)

(p

3

)

(mod p2),

p−1
∑

k=0

MkTk ≡ 4

3

(p

3

)

+
p

6

(

1− 9
(p

3

))

(mod p2),
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and
p−1
∑

k=0

MkTk

(−3)k
≡ p

2

((p

3

)

− 1
)

(mod p2).

Given b, c ∈ Z, we define the generalized central trinomial coefficients

Tn(b, c) :=[xn](x2 + bx+ c)n = [x0](b+ x+ cx−1)n

=

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

bn−2kck =

⌊n/2⌋
∑

k=0

(

n− k

k

)(

n

k

)

bn−2kck

and introduce the generalized Motzkin numbers

Mn(b, c) :=

⌊n/2⌋
∑

k=0

(

n

2k

)

Ckb
n−2kck =

⌊n/2⌋
∑

k=0

(

n− k

k

)(

n

k

)

bn−2kck

k + 1

(n = 0, 1, 2, . . . ). Note that

Tn = Tn(1, 1), Mn = Mn(1, 1),

Tn(2, 1) = [xn](x+ 1)2n =

(

2n

n

)

,

and

Mn(2, 1) =
n
∑

k=0

(

n

2k

)

Ck2
n−2k = Cn+1.

It is also known (cf. [Sl]) that Dn = Tn(3, 2). Thus Tn(b, c) can be
viewed a natural common extension of central binomial coefficients, central
trinomial coefficients and central Delannoy numbers, whileMn(b, c) can be
viewed as a natural common extension of Catalan numbers and Motzkin
numbers. H. S. Wilf [W, p. 159] observed that

∞
∑

n=0

Tn(b, c)x
n =

1
√

1− 2bx+ (b2 − 4c)x2

which implies the recursion

(n+1)Tn+1(b, c) = (2n+1)bTn(b, c)+(4c−b2)nTn−1(b, c) (n ∈ Z+). (1.7)

(See also T. D. Noe [N].)
Our third theorem is concerned with generalized central trinomial co-

efficients and generalized Motzkin numbers.
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Theorem 1.3. Let p be an odd prime and let b, c,m ∈ Z with m 6≡
0 (mod p). Then

p−1
∑

k=0

Tk(b, c)

mk
≡

(

(m− b)2 − 4c

p

)

(mod p) (1.8)

and

2c

p−1
∑

k=0

Mk(b, c)

mk
≡ (m− b)2 − ((m− b)2 − 4c)

(

(m− b)2 − 4c

p

)

(mod p).

(1.9)

Theorem 1.4. Let b, c ∈ Z.
(i) For any n ∈ Z+ we have

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(4c− b2)n−1−k ≡ 0 (mod n), (1.10)

and furthermore

b

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(4c− b2)n−1−k = nTn(b, c)Tn−1(b, c). (1.11)

(ii) Suppose that b2 − 4c = 1 (i.e., b = 2d+ 1 and c = d2 + d for some
d ∈ Z). Then

1

n

n−1
∑

k=0

(2k + 1)Tk(b, c) =
n−1
∑

k=0

(

n

k + 1

)(

n+ k

k

)(

b− 1

2

)k

∈ Z (1.12)

for all n ∈ Z+. If p is a prime not dividing c, then

p−1
∑

k=0

(2k + 1)Tk(b, c) ≡ p+
b+ 1

b− 1
p

((

b+ 1

2

)p−1

− 1

)

(mod p3). (1.13)

For any odd prime p we also have

b− 1

2

p−1
∑

k=0

(2k + 1)2Tk(b, c) ≡
(

(b− 1)/2

p

)

(mod p). (1.14)

Remark 1.5. The author notes that for any n ∈ Z+ we have

1

n

n−1
∑

k=0

(2k + 1)Tk3
n−1−k =

n−1
∑

k=0

(

n− 1

k

)

(−1)n−1−k(k + 1)

(

2k

k

)

.

If b, c ∈ Z with b2 − 4c = 1, then for any prime p ∤ c by (1.13) we have

p−1
∑

k=0

(2k + 1)Tk(b, c) ≡ p (mod p2).
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Conjecture 1.7. Let b, c ∈ Z.
(i) For any n ∈ Z+ we have

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(b2 − 4c)n−1−k ≡ 0 (mod n2).

If c is nonzero and p is an odd prime not dividing b2 − 4c, then

1

p2

p−1
∑

k=0

(2k + 1)
Tk(b, c)

2

(b2 − 4c)k
≡ 1 +

b2

c
·
( b

2−4c
p

)− 1

2
(mod p).

(ii) Suppose that b2 − 4c = 1. Then

n−1
∑

k=0

(2k + 1)Tk(b, c)
m ≡ 0 (mod n)

for all m,n ∈ Z+. If p is a prime not dividing c, then

p−1
∑

k=0

(2k + 1)Tk(b, c)
3 ≡ p

(−2b− 1

p

)

(mod p2)

and
p−1
∑

k=0

(2k + 1)Tk(b, c)
4 ≡ p (mod p2).

Remark 1.6. Note that Dn = Tn(3, 2) and 32−4×2 = 1. Thus Conjecture
1.7(i) implies that

n−1
∑

k=0

(2k + 1)D2
k ≡ 0 (mod n2)

for all n ∈ Z+. The values of 1
n2

∑n−1
k=0(2k + 1)D2

k with n = 1, . . . , 9 are

1, 7, 97, 1791, 38241, 892039, 22092673, 571387903, 15271248769

respectively.

Theorems 1.1 and 1.2 will be proved in the next section. In Section
3 we will prove Theorems 1.3 and 1.4. Sections 4 and 5 contain various
conjectures involving generalized central trinomial coefficients and a new
kind of numbers respectively. We hope that our conjectures in Sections
1, 4 and 5 will interest number theorists and stimulate further research.
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2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let k ∈ N. Then, for any n ∈ Z+ we have the identity

n−1
∑

m=0

(2m+ 1)

(

m+ k

2k

)2

=
(n− k)2

2k + 1

(

n+ k

2k

)2

. (2.1)

Proof. Obviously (2.1) holds when n = 1.
Now assume that n > 1 and (2.1) holds. Then

n
∑

m=0

(2m+ 1)

(

m+ k

2k

)2

=
(n− k)2

2k + 1

(

n+ k

2k

)2

+ (2n+ 1)

(

n+ k

2k

)2

=
(n+ k + 1)2

2k + 1

(

n+ k

2k

)2

=
(n+ 1− k)2

2k + 1

(

(n+ 1) + k

2k

)2

.

Combining the above, we have proved the desired result by induc-
tion. �

Proof of Theorem 1.1. (i) Let n be any positive integer. Then

n−1
∑

m=0

(2m+ 1)Am =
n−1
∑

m=0

(2m+ 1)
m
∑

k=0

(

m+ k

2k

)2(
2k

k

)2

=
n−1
∑

k=0

(

2k

k

)2 n−1
∑

m=0

(2m+ 1)

(

m+ k

2k

)2

=
n−1
∑

k=0

(

2k

k

)2
(n− k)2

2k + 1

(

n+ k

2k

)2

(by (2.1))

=

n−1
∑

k=0

(n− k)2

2k + 1

(

n

k

)2(
n+ k

k

)2

.

Since

(n− k)

(

n

k

)

= n

(

n− 1

k

)

for all k = 0, . . . , n− 1,

we have

1

n

n−1
∑

m=0

(2m+ 1)Am =
n−1
∑

k=0

(

n− 1

k

)

n− k

2k + 1

(

n

k

)(

n+ k

k

)2

=
n−1
∑

k=0

(

n− 1

k

)

n− k

2k + 1

(

n+ k

2k

)(

2k

k

)(

n+ k

k

)

=
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)(

n+ k

2k + 1

)(

2k

k

)

∈ Z.
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This proves (1.1).
Now we fix a prime p > 3. By the above, for any n ∈ Z+ we have

n−1
∑

m=0

(2m+ 1)Am =

n−1
∑

k=0

n2

2k + 1

(

n− 1

k

)2(
n+ k

k

)2

. (2.2)

Observe that

p−1
∑

k=0
k 6=(p−1)/2

1

2k + 1

(

p− 1

k

)2(
p+ k

k

)2

=

p−1
∑

k=0
k 6=(p−1)/2

1

2k + 1

∏

0<j6k

(

p2 − j2

j2

)2

≡
p−1
∑

k=0
k 6=(p−1)/2

1

2k + 1
=

(p−3)/2
∑

k=0

(

1

2k + 1
+

1

2(p− 1− k) + 1

)

=

(p−3)/2
∑

k=0

(

1

2k + 1
+

1

2p− 2k − 1

)

=

(p−3)/2
∑

k=0

2p

(2k + 1)(2p− 2k − 1)

≡
(p−3)/2
∑

k=0

−2p

(2k + 1)2
= −2p

( p−1
∑

k=1

1

k2
−

(p−1)/2
∑

k=1

1

(2k)2

)

(mod p2).

Since
p−1
∑

k=1

1

(2k)2
≡

p−1
∑

k=1

1

k2
(mod p),

we have

2

(p−1)/2
∑

k=1

1

k2
≡

(p−1)/2
∑

k=1

(

1

k2
+

1

(p− k)2

)

=

p−1
∑

k=1

1

k2
≡ 0 (mod p).

Therefore

p−1
∑

k=0

(2k + 1)Ak ≡ p2

2(p− 1)/2 + 1

(

p− 1

(p− 1)/2

)2(
p+ (p− 1)/2

(p− 1)/2

)2

=p

(p−1)/2
∏

k=1

(

p2 − k2

k2

)2

≡ p

(p−1)/2
∑

k=1

(

1− 2p2

k2

)

≡p

(

1− 2p2
(p−1)/2
∑

k=1

1

k2

)

≡ p (mod p4).
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This concludes the proof of (1.2).
(ii) As A0 = 1 and A1 = 3, (1.3) with p = 2 holds trivially.
Below we assume that p > 2. If k ∈ {0, 1 . . . , p− 1}, then

Ap−1−k =

p−1
∑

j=0

(

(p− 1− k) + j

2j

)2(
2j

j

)2

≡
p−1
∑

j=0

(

j − k − 1

2j

)2(
2j

j

)2

=

k
∑

j=0

(

j + k

2j

)2(
2j

j

)2

= Ak (mod p)

Thus
p−1
∑

k=0

(2k + 1)εkAm
k =

p−1
∑

k=0

(2(p− 1− k) + 1)εp−1−kAm
p−1−k

≡ −
p−1
∑

k=0

(2k + 1)εkAm
k (mod p)

and hence (1.3) follows.
Combining the above we have completed the proof of Theorem 1.1. �

Lemma 2.2. Let n ∈ N. Then we have
n
∑

k=0

(

x+ k − 1

k

)

=

(

x+ n

n

)

. (2.3)

Proof. By the Chu-Vandermonde identity (see, e.g., [GKP, p. 169]),
n
∑

k=0

(−x

k

)( −1

n− k

)

=

(−x− 1

n

)

which is equivalent to (2.3). �

Lemma 2.3. Let p > 3 be a prime. Then
p−1
∑

k=0
k 6=(p−1)/2

(−1)k

2k + 1
≡ −pEp−3 (mod p2). (2.4)

Proof. Observe that
p−1
∑

k=0
k 6=(p−1)/2

(−1)k

2k + 1
=
1

2

p−1
∑

k=0
k 6=(p−1)/2

(

(−1)k

2k + 1
+

(−1)p−1−k

(2(p− 1− k) + 1)

)

=− p

p−1
∑

k=0
k 6=(p−1)/2

(−1)k

(2k + 1)(2k + 1− 2p)

≡− p

4

p−1
∑

k=0

(−1)k
(

k +
1

2

)p−3

(mod p2).
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So we have reduced (2.4) to the following congruence

p−1
∑

k=0

(−1)k
(

k +
1

2

)p−3

≡ 4Ep−3 (mod p). (2.5)

Recall that the Euler polynomial of degree n is defined by

En(x) =
n
∑

k=0

(

n

k

)

Ek

2k

(

x− 1

2

)n−k

.

It is well known that

En(x) +En(x+ 1) = 2xn.

Thus

2

p−1
∑

k=0

(−1)k
(

k +
1

2

)p−3

=

p−1
∑

k=0

(

(−1)kEp−3

(

k +
1

2

)

− (−1)k+1Ep−3

(

k + 1 +
1

2

))

=Ep−3

(

1

2

)

− (−1)pEp−3

(

p+
1

2

)

≡2Ep−3

(

1

2

)

= 2
Ep−3

2p−3
≡ 8Ep−3 (mod p)

and hence (2.5) follows. We are done. �

Proof of Theorem 1.2. (i) We first show (1.4).
Similar to (2.2), we have

p−1
∑

k=0

(2k + 1)Ak(−1) =

p−1
∑

k=0

p2

2k + 1

(

p− 1

k

)2(
p+ k

k

)2

(−1)k.

Note that

p−1
∑

k=0
k 6=(p−1)/2

(−1)k

2k + 1

(

p− 1

k

)2(
p+ k

k

)2

=

p−1
∑

k=0
k 6=(p−1)/2

(−1)k

2k + 1

∏

0<j6k

(

p2 − j2

j2

)2

≡
p−1
∑

k=0
k 6=(p−1)/2

(−1)k

2k + 1
≡ −pEp−3 (mod p2) (by (2.4))
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and

(

p− 1

(p− 1)/2

)(

p+ (p− 1)/2

(p− 1)/2

)

=

(p−1)/2
∏

j=1

p2 − j2

j2

≡(−1)(p−1)/2

(

1− p2
(p−1)/2
∑

j=1

1

j2

)

≡
(−1

p

)

(mod p3).

Therefore,

p−1
∑

k=0

(2k + 1)Ak(−1)

≡p2(−pEp−3) +
p2(−1)(p−1)/2

2(p− 1)/2 + 1

(−1

p

)2

= p

(−1

p

)

− p3Ep−3 (mod p4).

Observe that

p−1
∑

n=0

Dn =

p−1
∑

n=0

n
∑

k=0

(

n+ k

2k

)(

2k

k

)

=

p−1
∑

k=0

(

2k

k

) p−1
∑

n=k

(

n+ k

2k

)

=

p−1
∑

k=0

(

2k

k

) p−1−k
∑

j=0

(

j + 2k

j

)

=

p−1
∑

k=0

(

2k

k

)(

2k + 1 + p− 1− k

p− 1− k

)

(by Lemma 2.2)

=

p−1
∑

k=0

(

2k

k

)(

p+ k

2k + 1

)

=

p−1
∑

k=0

k + 1

2k + 1

(

2k + 1

k

)(

p+ k

2k + 1

)

and thus

p−1
∑

n=0

Dn =

p−1
∑

k=0

k + 1

2k + 1

(

p+ k

k

)(

p

k + 1

)

= p+

p−1
∑

k=1

p

2k + 1

(

p− 1

k

)(

p+ k

k

)

.

For k = 1, . . . , p− 1 we clearly have

(

p− 1

k

)(

p+ k

k

)

=

k
∏

j=1

p2 − j2

j2
≡ (−1)k (mod p2).

Recall that
(

p− 1

(p− 1)/2

)(

p+ (p− 1)/2

(p− 1)/2

)

≡
(−1

p

)

(mod p3).
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Therefore

p−1
∑

n=0

Dn ≡
p−1
∑

k=0
k 6=(p−1)/2

p

2k + 1
(−1)k +

(−1

p

)

≡
(−1

p

)

− p2Ep−3 (mod p3) (by (2.4)).

(ii) Now we prove (1.5) and (1.6).
Let n be any positive integer. Then

n−1
∑

m=0

(2m+ 1)(−1)mDm =
n−1
∑

m=0

(2m+ 1)(−1)m
m
∑

k=0

(

m+ k

2k

)(

2k

k

)

=
n−1
∑

k=0

(

2k

k

) n−1
∑

m=0

(2m+ 1)(−1)m
(

m+ k

2k

)

It is easy to show that

n−1
∑

m=0

(2m+ 1)(−1)m
(

m+ k

2k

)

= (−1)n(k − n)

(

n+ k

2k

)

.

Thus

n−1
∑

m=0

(2m+ 1)(−1)mDm =(−1)n−1
n−1
∑

k=0

(

2k

k

)

(n− k)

(

n+ k

2k

)

=(−1)n−1
n−1
∑

k=0

(n− k)

(

n

k

)(

n+ k

k

)

=(−1)n−1n
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

.

Similarly,

n−1
∑

m=0

(2m+ 1)Dm =
n−1
∑

m=0

(2m+ 1)
m
∑

k=0

(

m+ k

2k

)(

2k

k

)

=
n−1
∑

k=0

(

2k

k

) n−1
∑

m=0

(2m+ 1)

(

m+ k

2k

)

=
n−1
∑

k=0

Ckn(n− k)

(

n+ k

2k

)

=
n−1
∑

k=0

n2

k + 1

(

n− 1

k

)(

n+ k

k

)

.
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For k ∈ {0, . . . , p− 1}, we have

(

p− 1

k

)(

p+ k

k

)

=
∏

0<j6k

(

p+ j

j
· p− j

j

)

= (−1)k
∏

0<j6k

(

1− p2

j2

)

≡(−1)k
(

1− p2
∑

0<j6k

1

j2

)

(mod p4).

By a known result (see, e.g., [S, Corollary 5.2(a)]),

(p−1)/2
∑

k=1

1

k2
≡ 7

3
pBp−3 (mod p2).

Thus

1

p

p−1
∑

m=0

(2m+ 1)(−1)mDm =

p−1
∑

k=0

(

p− 1

k

)(

p+ k

k

)

≡
p−1
∑

k=0

(−1)k − p2
p−1
∑

k=1

∑

0<j6k

(−1)k

j2
= 1− p2

p−1
∑

j=1

1

j2

p−1
∑

k=j

(−1)k

≡1− p2
(p−1)/2
∑

i=1

1

(2i)2
≡ 1− 7

12
p3Bp−3 (mod p4)

and hence (1.5) holds. Similarly,

1

p

p−1
∑

m=0

(2m+ 1)Dm =

p−1
∑

k=0

p

k + 1

(

p− 1

k

)(

p+ k

k

)

≡
(

p+ (p− 1)

p− 1

)

+ p

p−2
∑

k=0

(−1)k

k + 1

(

1− p2
∑

0<j6k

1

j2

)

(mod p5)

≡
(

2p− 1

p− 1

)

− p

p−1
∑

k=1

1 + (−1)k

k
≡ 1− p

(p−1)/2
∑

j=1

1

j
(mod p3).

(In the last step we employWolstenholme’s Congruences
(

2p−1
p−1

)

≡ 1 (mod p3)

and
∑p−1

k=1
1
k ≡ 0 (mod p2)). To obtain (1.6) it suffices to apply Lehmer’s

congruence (cf. [L])

(p−1)/2
∑

k=1

1

k
≡ −2qp(2) + p q2p(2) (mod p2).

The proof of Theorem 1.2 is now complete. �
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3. Proofs of Theorems 1.3-1.4

Lemma 3.1. Let p be an odd prime and let m ∈ Z with m 6≡ 0 (mod p).
Then

(p−1)/2
∑

k=0

(

2k
k

)

mk
≡

(

m(m− 4)

p

)

(mod p) (3.1)

and
(p−1)/2
∑

k=0

Ck

mk
≡ m

2
− m− 4

2

(

m(m− 4)

p

)

(mod p). (3.2)

Proof. Clearly
(

2k

k

)

=

(−1/2

k

)

(−4)k ≡
(

(p− 1)/2

k

)

(−4)k

for all k ∈ N. Thus
(p−1)/2
∑

k=0

(

2k
k

)

mk
≡

(p−1)/2
∑

k=0

(

(p− 1)/2

k

)

(−4)k

mk
=

(

1− 4

m

)(p−1)/2

=
(m(m− 4))(p−1)/2

mp−1
≡

(

m(m− 4)

p

)

(mod p).

This proves (3.1).
Observe that

(p−1)/2
∑

k=0

(

2k
k

)

+
(

2k
k+1

)

mk

=

(p−1)/2
∑

k=0

(

2k+1
k

)

mk
=

(

p
(p−1)/2

)

m(p−1)/2
+

1

2

(p−3)/2
∑

k=0

(

2k+2
k+1

)

mk

≡m

2

(p−1)/2
∑

k=0

(

2k
k

)

mk
− m

2
(mod p).

Hence
(p−1)/2
∑

k=0

(

2k
k+1

)

mk
≡

(m

2
− 1

)

(p−1)/2
∑

k=0

(

2k
k

)

mk
− m

2
(mod p)

and
(p−1)/2
∑

k=0

Ck

mk
=

(p−1)/2
∑

k=0

(

2k
k

)

−
(

2k
k+1

)

mk

≡m

2
+

(

2− m

2

)

(p−1)/2
∑

k=0

(

2k
k

)

mk

≡m

2
− m− 4

2

(

m(m− 4)

p

)

(mod p).
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So (3.2) also holds.

Proof of Theorem 1.3. In the case c ≡ 0 (mod p), as Tk(b, c) ≡ bk (mod c)
for all k ∈ N, we have

p−1
∑

k=0

Tk(b, c)

mk
≡

p−1
∑

k=0

bk

mk
≡

(

(m− b)2

p

)

(mod p).

So (1.8) holds if p | c. Note that (1.9) is trivial when p | c.
Suppose that c 6≡ 0 (mod p). Note that for any n ∈ N we have

Tn(b, c) =

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

bn−2kck ≡
{

(

n
n/2

)

cn/2 (mod b) if 2 | n,
0 (mod b) if 2 ∤ n.

In the case b ≡ 0 (mod p), by applying Lemma 3.1 we obtain

p−1
∑

k=0

Tk(b, c)

mk
≡

(p−1)/2
∑

k=0

(

2k
k

)

ck

m2k
≡

(p−1)/2
∑

k=0

(

2k
k

)

(m2cp−2)k
≡

(

m2 − 4c

p

)

(mod p)

and

p−1
∑

k=0

Mk(b, c)

mk
≡

(p−1)/2
∑

k=0

Ckc
k

m2k
≡

(p−1)/2
∑

k=0

Ck

(m2cp−2)k

≡m2

2c
− m2 − 4c

2c

(

m2 − 4c

p

)

(mod p).

So (1.8) and (1.9) hold when p | b.
Below we assume that p ∤ bc. Observe that

p−1
∑

n=0

Tn(b, c)

mn
=

p−1
∑

n=0

1

mn

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

bn−2kck

=

(p−1)/2
∑

k=0

(

2k

k

)

ck

b2k

p−1
∑

n=0

bn

mn

(

n

2k

)

and
p−1
∑

n=0

Mn(b, c)

mn
=

(p−1)/2
∑

k=0

Ck
ck

b2k

p−1
∑

n=0

bn

mn

(

n

2k

)

in a similar way.
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Now we consider the case m ≡ b (mod p). For k ∈ {0, 1, . . . , (p− 1)/2}
we have

p−1
∑

k=0

bn

mn

(

n

2k

)

≡
p−1
∑

n=2k

(

n

2k

)

=

p−1−2k
∑

j=0

(

2k + j

j

)

=

(

p

2k + 1

)

(mod p)

by Lemma 2.2. Thus, by the above,

p−1
∑

n=0

Tn(b, c)

mn
≡

(

p− 1

(p− 1)/2

)

c(p−1)/2

bp−1
≡

(−c

p

)

=

(

(m− b)2 − 4c

p

)

(mod p)

and

p−1
∑

n=0

Mn(b, c)

mn
≡ C(p−1)/2

c(p−1)/2

bp−1
≡ 2

(−c

p

)

= 2

(

(m− b)2 − 4c

p

)

(mod p).

So (1.8) and (1.9) are true.
Below we consider the remaining case m 6≡ b (mod p). Observe that

p−1
∑

n=0

bn

mn

(

n

2k

)

= [x2k]

p−1
∑

n=0

bn

mn
(1 + x)n

≡[x2k]

p−1
∑

n=0

(b+ bx)nmp−1−n = [x2k]
(b+ bx)p −mp

b+ bx−m

=[x2k]
(b+ bx)p −mp

−(m− b)p
· (bx)

p − (m− b)p

bx− (m− b)

≡[x2k]
bp + bpxp −mp

−(m− b)p

p−1
∑

j=0

(bx)j(m− b)p−1−j ≡ b2k

(m− b)2k
(mod p).

Therefore, with the help of Lemma 3.1,

p−1
∑

k=0

Tn(b, c)

mn
≡

(p−1)/2
∑

k=0

(

2k

k

)

ck

b2k
· b2k

(m− b)2k

≡
(

1− 4c

(m− b)2

)(p−1)/2

≡
(

(m− b)2 − 4c

p

)

(mod p).

This proves (1.8)
In a similar way,

p−1
∑

n=0

Mn(b, c)

mn
≡

(p−1)/2
∑

k=0

Ck
ck

(m− b)2k
≡

(p−1)/2
∑

k=0

Ck

Mk
(mod p),

where M := (m − b)2cp−2. Applying Lemma 3.1 we get the desired
(1.9). �
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Lemma 3.2. For any d ∈ Z we have

Tn(2d+ 1, d2 + d) =

n
∑

k=0

(

n

k

)(

n+ k

k

)

dk. (3.3)

Proof. The Legendre polynomial of degree n is defined by

Pn(x) =

n
∑

k=0

(

n

k

)(

n+ k

k

)(

x− 1

2

)k

.

It is well known that

∞
∑

n=0

Pn(t)x
n =

1√
1− 2tx+ x2

.

Thus, if we set b = 2d+ 1 and c = d2 + d then

∞
∑

n=0

Pn(b)x
n =

1
√

1− 2bx+ (b2 − 4c)x2
=

∞
∑

n=0

Tn(b, c)x
n

and hence

Tn(b, c) = Pn(b) =
n
∑

k=0

(

n

k

)(

n+ k

k

)

dk.

This proves (3.3). �

Lemma 3.3. For k ∈ N and n ∈ Z+ we have

n−1
∑

m=0

(2m+ 1)2
(

m+ k

2k

)

= (4n2 − 1)
n− k

2k + 3

(

n+ k

2k

)

. (3.4)

Proof. Observe that

(4n2 − 1)
n− k

2k + 3

(

n+ k

2k

)

+ (2n+ 1)2
(

n+ k

2k

)

=(4n2 + 8n+ 3)
n+ 1− k

2k + 3

(

n+ k

2k

)

=(4(n+ 1)2 − 1)
n+ 1− k

2k + 3

(

n+ 1 + k

2k

)

.

So we can easily prove (3.4) by induction on n. �

Proof of Theorem 1.4. (i) We first prove (1.11) by induction.
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When n = 1, both sides of (1.11) are equal to b.
Now assume that (1.11) holds for a fixed integer n > 1. Then

b

(n+1)−k
∑

k=0

(2k + 1)Tk(b, c)
2(4c− b2)(n+1)−1−k

=b(2n+ 1)Tn(b, c)
2 + (4c− b2)b

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(4c− b2)n−1−k

=b(2n+ 1)Tn(b, c)
2 + (4c− b2)nTn(b, c)Tn−1(b, c)

=(n+ 1)Tn+1(b, c)Tn(b, c) (by (1.7)).

This concludes the induction step.
Now we fix a positive integer n and want to show (1.10). Recall that

Tn(b, c) ≡
{

(

n
n/2

)

cn/2 (mod b) if 2 | n,
0 (mod b) if 2 ∤ n.

When b 6= 0, b divides Tn(b, c) or Tn−1(b, c) since n or n − 1 is odd,
therefore (1.10) follows from (1.11).

Now it remains to consider the case b = 0. Note that Tk(0, c) = 0 for

k = 1, 3, 5, . . . , and Tk(0, c) =
(

k
k/2

)

ck/2 for k = 0, 2, 4, . . . . Thus

n−1
∑

k=0

(2k + 1)Tk(0, c)
2(4c− 02)n−1−k

=

⌊(n−1)/2⌋
∑

k=0

(4k + 1)

((

2k

k

)

ck
)2

(4c)n−1−2k

=(4c)n−1

⌊(n−1)/2⌋
∑

k=0

(4k + 1)

(

2k
k

)2

16k
.

By induction, for any m ∈ N we have the identity

m
∑

k=0

(4k + 1)

(

2k
k

)2

16k
=

(m+ 1)2

16m

(

2m+ 1

m

)2

=
(2m+ 1)2

16m

(

2m

m

)2

,

which was pointed out to the author by R. Tauraso. It follows that

4n−1

⌊(n−1)/2⌋
∑

k=0

(4k + 1)

(

2k
k

)2

16k
= n2

(

n− 1

⌊n/2⌋

)2

.
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Therefore

n−1
∑

k=0

(2k + 1)Tk(0, c)
2(4c− 02)n−1−k ≡ 0 (mod n2)

and hence (1.10) holds when b = 0.
(ii) We prove (1.12) by induction. (1.12) is obvious when n = 1.
Now suppose the validity of (1.12) for a fixed n ∈ Z+. Observe that

(n+ 1)

n
∑

k=0

(

n+ 1

k + 1

)(

n+ 1 + k

k

)(

b− 1

2

)k

− n

n−1
∑

k=0

(

n

k + 1

)(

n+ k

k

)

bk

=

n
∑

k=0

(

(n+ 1 + k)

(

n+ 1

k + 1

)

− n

(

n

k + 1

))(

n+ k

k

)(

b− 1

2

)k

=(2n+ 1)

n
∑

k=0

(

n

k

)(

n+ k

k

)(

b− 1

2

)k

.

Therefore, by Lemma 3.2 and the induction hypothesis, we have

(n+ 1)

n
∑

k=0

(

n+ 1

k + 1

)(

n+ 1 + k

k

)(

b− 1

2

)k

=

n−1
∑

k=0

(2k + 1)Tk(b, c) + (2n+ 1)Tn(b, c) =

n
∑

k=0

(2k + 1)Tk(b, c).

This proves (1.12) with n replaced by n+ 1.
As b2 − 4c = 1, for some d ∈ Z we have b = 2d+ 1 and c = d2 + d. Let

p be a prime not dividing c = d(d+ 1). In light of (1.12),

1

p

p−1
∑

k=0

(2k + 1)Tk(b, c) =

p−1
∑

k=0

(

p

k + 1

)(

p+ k

k

)

dk

=

(

2p− 1

p− 1

)

dp−1 +

p−2
∑

k=0

(

p

k + 1

)(

p+ k

k

)

dk

≡dp−1 +

p−2
∑

k=0

(

p

k + 1

)

dk = dp−1 +
(d+ 1)p − dp − 1

d

≡1 +
(d+ 1)p − (d+ 1)

d
= 1 +

b+ 1

b− 1

((

b+ 1

2

)p−1

− 1

)

(mod p2)

and hence (1.13) follows.
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Now we fix an odd prime p and show (1.14). Let d = (b− 1)/2. In view
of Lemmas 3.2 and 3.3,

p−1
∑

m=0

(2m+ 1)2Tm(b, c)

=

p−1
∑

m=0

(2m+ 1)2
m
∑

k=0

(

m+ k

2k

)(

2k

k

)

dk

=

p−1
∑

k=0

(

2k

k

)

dk
p−1
∑

m=0

(2m+ 1)2
(

m+ k

2k

)

=(4p2 − 1)

p−1
∑

k=0

p− k

2k + 3

(

p+ k

2k

)(

2k

k

)

dk

=(4p2 − 1)

p−1
∑

k=0

p− k

2k + 3

(

p

k

)(

p+ k

k

)

dk.

Since p |
(

p
k

)

and
(

p+k
k

)

≡ 1 (mod p) for k = 1, . . . , p− 1, from the above
we obtain

p−1
∑

k=0

(2k + 1)2Tk(b, c)

≡(4p2 − 1)
(p+ 3)/2

p

(

p

(p− 3)/2

)(

p+ (p− 3)/2

(p− 3)/2

)

d(p−3)/2

≡−
(

p− 1

(p+ 1)/2

)

d(p−3)/2 ≡ (−1)(p−1)/2d(p−3)/2 (mod p)

and hence

d

p−1
∑

k=0

(2k + 1)2Tk(b, c) ≡ (−d)(p−1)/2 ≡
(−d

p

)

(mod p)

as desired.
In view of the above, we have completed the proof of Theorem 1.4. �

4. More conjectures on generalized

central trinomial coefficients

Those integers

Sn =

n
∑

k=0

(

n+ k

2k

)

Ck =

n
∑

k=0

1

k + 1

(

n

k

)(

n+ k

k

)

(n ∈ N)

are called Schröder numbers. It is known that Sn coincides with the num-
ber of lattice paths from (0, 0) to (n, n) with steps (1, 0), (0, 1) and (1, 1)
that never rise above the line y = x (see, e.g., [St]).
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Conjecture 4.1. Let p > 3 be a prime. Then

p−1
∑

k=0

DkSk ≡ 1 + 4pqp(2)− 2p2qp(2)
2 (mod p3),

and

(p−1)/2
∑

k=1

DkSk ≡
{

4x2 (mod p) if p ≡ 1 (mod 4) and p = x2 + y2 (2 ∤ x),

0 (mod p) if p ≡ 3 (mod 4).

Conjecture 4.2. For any odd prime p, we have

p−1
∑

k=0

(2k + 1)2Tk(7, 12) ≡
(p

3

)

− 4p (mod p2)

and

p−1
∑

k=0

(2k + 1)2Dk ≡
(−1

p

)

− 2p+ (2− Ep−3)p
2 (mod p3).

Conjecture 4.3. Let p > 3 be a prime. Then

p−1
∑

k=0

T 2
k ≡

p−1
∑

k=0

T 2
k

9k
≡

(−1

p

)

(mod p),

p−1
∑

k=0

T 2
k

(−3)k
≡

(p

3

)

(mod p),

p−1
∑

k=0

M2
k

9k
≡ 6

(p

3

)

− 20 (mod p),

p−1
∑

k=1

M2
k

k
≡ 1

2
−

(p

3

)

(mod p),

p−1
∑

k=0

kT 2
k

(−3)k
≡ −1

2

(p

3

)

(mod p),

p−1
∑

k=0

kM2
k

(−3)k
≡ 5 (mod p),

p−1
∑

k=0

k2M2
k ≡

(−1

p

)

−
(p

3

)

(mod p),

p−1
∑

k=0

k2M2
k

(−3)k
≡ 3

(p

3

)

− 11 (mod p).

We also have

p−1
∑

k=0

kMkTk ≡
(−1

p

)

− 5

3

(p

3

)

(mod p),

p−1
∑

k=0

kMkTk

(−3)k
≡ 2

(p

3

)

(mod p),

p−1
∑

k=0

MkTk

9k
≡ −4

(p

3

)

(mod p),

p−1
∑

k=0

kMkTk

9k
≡ 3

(−1

p

)

+ 7
(p

3

)

(mod p).
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Conjecture 4.4. Let p be an odd prime.
(i) If b, c ∈ Z and b2 − 4c 6≡ 0 (mod p), then

p−1
∑

k=0

Tk(b, c)
2

(b2 − 4c)k
≡

(

c(b2 − 4c)

p

)

(mod p).

(ii) We have

p−1
∑

k=0

Tk(2,−1)2

8k
≡
(−2

p

)

(mod p2),

p−1
∑

k=0

Tk(2,−3)2

16k
≡
(−3

p

)

(mod p2),

p−1
∑

k=0

Tk(6,−3)2

48k
≡
(−1

p

)

(mod p2) if p > 3.

Remark 4.1. By Theorem 1.3, if p is an odd prime not dividing b2 − 4c
with b, c ∈ Z then

p−1
∑

k=0

Tk(b, c)

(b2 − 4c)k
≡

(

(b2 − 4c)((b− 1)2 − 4c)

p

)

(mod p).

Conjecture 4.5. Let p be an odd prime. Then

p−1
∑

k=0

Tk(1, 2)
2 ≡

p−1
∑

k=0

Tk(2,−2)2

(−4)k
≡

p−1
∑

k=0

Tk(2,−1)2

(−8)k

≡
{

2x (mod p) if p ≡ 1 (mod 4) & p = x2 + y2 (4 | x− 1),

0 (mod p) if p ≡ 3 (mod 4).

Also,

p−1
∑

k=0

Tk(1,−1)2 ≡
p−1
∑

k=0

Tk(2, 2)
2

4k

≡
{

( 2
p
)2x (mod p) if p ≡ 1 (mod 4) & p = x2 + y2 (4 | x− 1),

0 (mod p) if p ≡ 3 (mod 4),

and

p−1
∑

k=0

Tk(2, 2)
2

4k
−

p−1
∑

k=0

Tk(2, 1)
2

8k
≡

{

0 (mod p3) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4).
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Conjecture 4.6. (i) For any n ∈ Z+ we have

n−1
∑

k=0

(8k + 7)Tk(3, 1)
2 ≡ 0 (mod n)

and
n−1
∑

k=0

(k + 1)Tk(3, 1)
24n−1−k ≡ 0 (mod n).

(ii) Let p > 3 be a prime. Then

p−1
∑

k=0

Tk(3, 1)
2 ≡

(−1

p

)

(mod p),

p−1
∑

k=0

(8k + 7)Tk(3, 1)
2 ≡5p

(p

5

)

(mod p2).

Also,
p−1
∑

k=0

Tk(4, 1)
2

4k
≡

(−1

p

)

(mod p2)

and
p−1
∑

k=0

(k + 1)
Tk(4, 1)

2

4k
≡ 3

4

(

3

p

)

p (mod p2).

Conjecture 4.7. For any n ∈ Z+ we have

n−1
∑

k=0

(8k + 9)Tk(5, 1)
29n−1−k ≡ 0 (mod n).

If p > 5 is a prime, then

p−1
∑

k=0

Tk(5, 1)
2

9k
≡

(−1

p

)

(mod p)

and
p−1
∑

k=0

(8k + 9)
Tk(5, 1)

2

9k
≡ 7p

( p

21

)

(mod p2).
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5. Conjectures on a new kind numbers

Motivated by central trinomial coefficients and Apéry numbers, for
b, c ∈ Z we introduce a new kind of numbers:

Wn(b, c) :=

n
∑

k=0

(

n

k

)2(
n− k

k

)2

bn−2kck =

⌊n/2⌋
∑

k=0

(

n

2k

)2(
2k

k

)2

bn−2kck (n ∈ N).

Note that Wn(−b, c) = (−1)nWn(b, c). For these numbers we have the
following conjectures.

Conjecture 5.1. Let p be an odd prime. Then

p−1
∑

k=0

Wk(1, 1)

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) and p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).

If p ≡ 1, 3 (mod 8), then

p−1
∑

k=0

(16k + 3)Wk(1, 1) ≡ 8p (mod p2).

When p ≡ 5, 7 (mod 8) and p 6= 7, we have

p−1
∑

k=0

Wk(1, 1)

(−7)k
≡ 0 (mod p2).

Conjecture 5.2. (i) Let p > 3 be a prime. Then

p−1
∑

k=0

(−1)kWk(1,−1)

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 3) and p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(6k + 5)(−1)kWk(1,−1) ≡ 0 (mod n).
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If p is an odd prime, then

p−1
∑

k=0

(6k + 5)(−1)kWk(1,−1) ≡ p
(

2 + 3
(p

3

))

(mod p2).

Remark 5.1. Let p > 3 be a prime. We also conjecture that

p−1
∑

k=0

Wk(1,−1)

(−13)k
≡ 0 (mod p) if p ≡ 2 (mod 3),

and

p−1
∑

k=0

Wk(1,−1)

(−3)k
≡

p−1
∑

k=0

Wk(1,−1)

5k
≡ 0 (mod p) if p ≡ 3 (mod 4).

Conjecture 5.3. Let p be an odd prime. Then

p−1
∑

k=0

Wk(2,−1)

(−2)k

≡
{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) and p = x2 + y2 (2 ∤ x),

0 (mod p2) if p ≡ 3 (mod 4).

If p ≡ 1 (mod 4), then

p−1
∑

k=0

(4k + 3)
Wk(2,−1)

(−2)k
≡ 0 (mod p2).

Conjecture 5.4. (i) Let p be an odd prime. Then

(−1

p

) p−1
∑

k=0

Wk(2, 1)

(−2)k

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) and p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).

(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(4k + 3)Wk(2,−1)(−2)n−1−k ≡ 0 (mod n).

If p is an odd prime, then

p−1
∑

k=0

(4k + 3)
Wk(2,−1)

(−2)k
≡ p

(

2

(

2

p

)

+

(−1

p

))

(mod p2).
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Conjecture 5.5. (i) Let p be an odd prime. Then

p−1
∑

k=0

Wk(4,−1)

(−4)k
≡

p−1
∑

k=0

Wk(4,−9)

4k
≡

p−1
∑

k=0

Wk(4, 9)

16k

≡
{

(−1
p )(4x2 − 2p) (mod p2) if p ≡ 1 (mod 3) and p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 8).

(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(3k + 2)Wk(4,−1)(−4)n−1−k ≡0 (mod 2n),

n−1
∑

k=0

(3k + 2)Wk(4, 9)16
n−1−k ≡0 (mod 2n),

and
n−1
∑

k=0

(5k + 4)Wk(4,−9)4n−1−k ≡ 0 (mod 2n).

If p is an odd prime, then

p−1
∑

k=0

(3k + 2)
Wk(4,−1)

(−4)k
≡

3( 3p ) + (−1
p )

2
p (mod p2)

and
p−1
∑

k=0

(3k + 2)
Wk(4, 9)

16k
≡ 2p (mod p2).

If p > 3 is a prime, then

p−1
∑

k=0

(5k + 4)
Wk(4,−9)

4k
≡

3( 3p ) + 5(−1
p )

2
p (mod p2).

Conjecture 5.6. (i) For any prime p 6= 3, 7, we have

p−1
∑

k=0

Wk(1, 7
4)

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).
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(ii) For all n ∈ Z+ we have

n−1
∑

k=0

(40k + 37)Wk(1, 7
4) ≡ 0 (mod n).

If p 6= 7 is a prime, then

p−1
∑

k=0

(40k + 37)Wk(1, 7
4) ≡ p

(

17
(p

3

)

+ 20
)

(mod p2).

Conjecture 5.7. (i) For any prime p 6= 7, we have

p−1
∑

k=0

(−1)kWk(1,−16)

≡
{

4x2 − 2p (mod p2) if p ≡ 1, 2, 4 (mod 7) & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3, 5, 6 (mod 7).

(ii) For all n ∈ Z+ we have

n−1
∑

k=0

(42k + 37)(−1)kWk(1,−16) ≡ 0 (mod n).

If p is a prime, then

p−1
∑

k=0

(42k + 37)(−1)kWk(1,−16) ≡ p
(

21
(p

7

)

+ 16
)

(mod p2).

Remark 5.2. Let p be an odd prime with ( p7 ) = 1. It is well known that

p = x2 + 7y2 for some x, y ∈ Z (see, e.g., [C]).

Conjecture 5.8. (i) Let p 6= 2, 5 be a prime. Then we have

p−1
∑

k=0

Wk(1,−4)

≡











4x2 − 2p (mod p2) if p ≡ 1, 9 (mod 20) & p = x2 + 5y2 (x, y ∈ Z),

2x2 − 2p (mod p2) if p ≡ 3, 7 (mod 20) & 2p = x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 11, 13, 17, 19 (mod 20).
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(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(20k + 17)Wk(1,−4) ≡ 0 (mod n).

If p is an odd prime, then

p−1
∑

k=0

(20k + 17)Wk(1,−4) ≡ p

(

10

(−1

p

)

+ 7

)

(mod p2).

Remark 5.3. Let p 6= 2, 5 be a prime. By the theory of binary quadratic
forms (see, e.g., [C]), if p ≡ 1, 9 (mod 20) then p = x2 + 5y2 for some
x, y ∈ Z; if p ≡ 3, 7 (mod 20) then 2p = x2 + 5y2 for some x, y ∈ Z.

Conjecture 5.9. (i) For any prime p > 5, we have

p−1
∑

k=0

Wk(1, 81)

≡











4x2 − 2p (mod p2) if p ≡ 1, 9, 11, 19 (mod 40) & p = x2 + 10y2,

2p− 2x2 (mod p2) if p ≡ 7, 13, 23, 37 (mod 40) & 2p = x2 + 10y2,

0 (mod p2) if (−10
p ) = −1.

(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(10k + 9)Wk(1, 81) ≡ 0 (mod n).

If p > 3 is a prime, then

p−1
∑

k=0

(10k + 9)Wk(1, 81) ≡ p

(

4

(−2

p

)

+ 5

)

(mod p2).

Remark 5.4. Let p > 5 be a prime. By the theory of binary quadratic
forms (see, e.g., [C]), if (−2

p
) = ( p

5
) = 1 then p = x2 + 10y2 for some

x, y ∈ Z; if (−2
p
) = ( p

5
) = −1 then 2p = x2 + 10y2 for some x, y ∈ Z.
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Conjecture 5.10. (i) For any prime p > 3, we have

p−1
∑

k=0

Wk(1,−324)

≡











4x2 − 2p (mod p2) if ( 13p ) = (−1
p ) = 1 & p = x2 + 13y2,

2x2 − 2p (mod p2) if ( 13p ) = (−1
p ) = −1 & 2p = x2 + 13y2,

0 (mod p2) if (−13
p ) = −1.

(ii) For any n ∈ Z+ we have

n−1
∑

k=0

(260k + 237)Wk(1,−324) ≡ 0 (mod n).

If p > 3 is a prime, then

p−1
∑

k=0

(260k + 237)Wk(1,−324) ≡ p

(

130

(−1

p

)

+ 107

)

(mod p2).

Remark 5.5. Let p > 3 be a prime. By the theory of binary quadratic
forms (see, e.g., [C]), if ( 13

p
) = (−1

p
) = 1 then p = x2 + 13y2 for some

x, y ∈ Z; if ( 13
p
) = (−1

p
) = −1 then 2p = x2 + 13y2 for some x, y ∈ Z.
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