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Abstract

We show that the n × n Hankel matrix formed from the successive even central

binomial coefficients
(

2l
l

)

, l = 0, 1, . . . arises naturally when considering the trace form

in the number ring of the maximal real subfield of suitable cyclotomic fields. By

considering the trace form in two different integral bases of the number ring we get a

factorization of this matrix which immediately yields the well-known zeroth and first

Hankel transforms of the sequence.
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1 Introduction

Given a sequence al, l = 0, 1, . . . , the n × n Hankel matrix H
(k)
n , k = 0, 1, . . . , formed from

this sequence is the matrix















ak ak+1 ak+2 . . . ak+n−1

ak+1 ak+2 ak+3 . . . ak+n

ak+2 ak+3 ak+4 . . . ak+n+1
...

...
...

. . .
...

ak+n−1 ak+n ak+n+1 . . . ak+2n−2















The k-th Hankel Transform of the sequence al, l = 0, 1, . . . is the sequence of determinants
d

(k)
n of the matrices H

(k)
n above, n = 1, 2, . . . . It is worth mentioning that some authors refer

to the Hankel transform only as the sequence dn = det H
(0)
n (see, for example, [7]).

Hankel matrices have been studied extensively, and connections between Hankel matrices
and other areas of mathematics are well known (see [13] for a very nice survey of Hankel ma-
trices especially in relation to combinatorics and coding theory). The term Hankel transform
was introduced in Sloane’s sequence A055878 and first studied in [7]. Since then, there have
been numerous further studies of Hankel transforms of sequences, for instance, [1, 3, 4, 5, 12].

Consider the particular sequence al =
(

2l
l

)

, l = 0, 1, . . . , and denote H
(0)
n by simply Hn.

The main purpose of this paper is to show that the matrices Hn := H
(0)
n and H

(1)
n that

define the zeroth and first Hankel transforms of this particular sequence arise very naturally
when considering the trace form Tr(x, y) = TrK/Q(xy) on the number ring OK , where K is
the maximal real subfield of the 2N -th cyclotomic field, for any N such that 2N ≥ 8n. By
considering the same trace form with respect to two different integral bases of OK , we obtain
in a very natural way a factorization of Hn as

Hn = BnDnBT
n (1)

where

Bn =



















1 0 0 . . . 0
(

2
1

)

1 0 . . . 0
(

4
2

) (

4
1

)

1 . . . 0

...
...

...
. . .

...
(

2(n−1)
n−1

) (

2(n−1)
n−2

) (

2(n−1)
n−3

)

. . . 1



















(2)

and

Dn =















1 0 0 . . . 0
0 2 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2















(3)
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Similarly, we get the factorization

H(1)
n = 2CnC

T
n (4)

where

Cn =



















1 0 0 . . . 0
(

3
1

)

1 0 . . . 0
(

5
2

) (

5
1

)

1 . . . 0

...
...

...
. . .

...
(

2n−1
n−1

) (

2n−1
n−2

) (

2n−1
n−3

)

. . . 1



















(5)

These factorizations yield at once the following well-known result (see, for example,
[1, 10, 11]):

Corollary 1. The zeroth Hankel transform d
(0)
n of the sequence

(

2l
l

)

, l = 0, 1, . . . is the

sequence 2n−1, n = 1, 2, . . . , and the first Hankel transform d
(1)
n is the sequence 2n, n =

1, 2 . . . .

Of course, once the factorization has been guessed at, Eq. (1) and Eq. (4) can be proved

by elementary means: our point here is only to show that the Hankel matrices Hn and H
(1)
n

and the factorizations above arise completely naturally in number theory.

2 Trace Calculations in OK

Given a positive integer N we write ω for the primitive 2N -th root of unity e2πı/2N

. We write
θ for the element ω + ω−1. We write θj (j = 0, 1, . . . ,) for the element ωj + ω−j, so that
θ1 = θ and θ0 = 2. We write L for the field Q(ω), and K for the real subfield Q(θ). Note
that [L : Q] = 2N−1 and [K : Q] = 2N−2. We write m for 2N−2.

We begin by computing traces of the elements θi as well as of products θiθj. (Lemmas 2
and 3 also appear in [9], and are implicit in [2, Prop. 4.3].)

Lemma 2. For 1 ≤ s < 2 · m,

TrK/Q(θs) =

{

0, if s is odd;

m
(

s
s/2

)

, if s is even.

Proof. Observe that TrK/Q(θs) = TrL/Q(ı)(θ
s). Now expanding θs = (ω + ω−1)s binomially,

we find

θs =
s

∑

j=0

(

s

j

)

ωjω−(s−j) =
s

∑

j=0

(

s

j

)

ω2j−s

Notice that when s is odd, only odd powers of ω appear in this expansion. Since ω raised to
any odd power is also a primitive 2N -th root of unity, it has minimal polynomial xm ± ı over
Q(ı), and consequently, any odd power of ω has trace zero from L to Q(ı). It follows that
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TrL/Q(ı)(θ
s) = 0 when s is odd. (Notice that this is true for all odd s and not just those in

the range of the statement of the lemma.)
When s is even, we first assume that s < m. Then, the terms in the expansion of θs above

have even powers of ω that run through s, s − 2, . . . , 2, 0,−2, . . . ,−(s − 2),−s. Given any
nonzero even integer 2l in this set, we write it as 2ea for some e and odd integer a. Then ω2l is
a primitive 2N−e-root of unity, and [L : Q(ω2l)] = 2e. Since, by assumption, e < N−2, Q(ω2l)
strictly contains Q(ı). Now, TrL/Q(ı)(ω

2l) = TrQ(ω2l)/Q(ı)TrL/Q(ω2l)(ω
2l) = 2eTrQ(ω2l)/Q(ı)(ω

2l).
Just as in the previous paragraph, TrQ(ω2l)/Q(ı)(ω

2l) is zero since the minimal polynomial

of ω2l is x2N−e−2

± ı. Hence, all nonzero powers of ω contribute nothing to the trace, so
TrL/Q(ı)(θ

s) is m times the coefficient of the term ω0 which is
(

s
s/2

)

.
When 2 · m > s ≥ m, we need a small modification. The expansion of θs will have only

even powers of ω as before, but continuing to write these powers as 2l, we will now also have
powers where 2 ·m > 2l ≥ m. We first consider the powers 2l > m: we factor ωm out to find
ω2l = ıω2l−m. Thus, TrL/Q(ı)(ω

2l) = ıTrL/Q(ı)(ω
2l−m). From our assumptions we find that

2l − m is a positive even integer and that m > 2l − m, so the arguments of the previous
paragraph show that this trace is zero. Thus, we are left with the terms ωm, ω0, and ω−m.
But TrL/Q(ı)(ω

m) = TrL/Q(ı)(ı) = mı, while TrL/Q(ı)(ω
−m) = TrL/Q(ı)(−ı) = −mı, so these

two terms cancel each other out. Once again, we are left with the term ω0 whose trace is
m

(

s
s/2

)

.

Lemma 3. For 1 ≤ j < 2m,
TrK/Q(θj) = 0 (6)

and for 1 ≤ i, j < m

TrK/Q(θiθj) =

{

0, if i 6= j;

2m, if i = j.
(7)

Proof. The proof of the first part is essentially contained in the proof of Lemma 2 above. We
have TrK/Q(θj) = TrL/Q(ı)(θj) = TrL/Q(ı)(ω

j +ω−j). We saw in that proof that TrL/Q(ı)(ω
j) =

0 for all 1 ≤ j < 2m except when j = m, so TrL/Q(ı)(θj) = 0 for all such j. When j = m, we
have TrL/Q(ı)(ω

m) = mı and TrL/Q(ı)(ω
−m) = −mı. Hence TrL/Q(ı)(θm) = 0 as well.

For the second assertion, note that θiθj = θi+j +θj−i where we can assume without loss of
generality that j − i ≥ 0. The result immediately follows from the calculations of TrK/Q(θj)
above, noting that i + j < 2m, and θ0 = 2.

Note that OK = Z[θ] (see [8, Exer. 35, Chap. 2] for instance). Expanding each power θs

binomially and collecting terms we find

θs =



















⌊s/2⌋
∑

j=0

(

s
j

)

θs−2j, if s is odd;

(s/2)−1
∑

j=0

(

s
j

)

θs−2j +
(

s
s/2

)

, if s is even.

(8)
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For any positive integer n, let Bn be as in (2), and Cn as in (5). Let

Ve = (1, θ2, θ4, . . . , θm−2)T

Vo = (θ, θ3, θ5, . . . , θm−1)T

We = (1, θ2, θ4, . . . , θm−2)
T

Wo = (θ1 = θ, θ3, θ5, . . . , θm−1)
T

Then Eq. (8) splits as two matrix relations:

Ve = Bm/2We; (9)

Vo = Cm/2Wo. (10)

Since 1, θ, θ2, . . . , θm−1 is a Z-basis for OK , and since Bm and Cm are integer matrices
with determinant 1, these relations show that 1, θ1 = θ, θ2, . . . , θm−1 is also a Z-basis for
OK . But these relations show us even more: if we define

Me = Z ⊕ Zθ2 ⊕ Zθ4 ⊕ · · · ⊕ Zθm−2 and (11)

Mo = Z ⊕ Zθ ⊕ Zθ3 ⊕ · · · ⊕ Zθm−1 (12)

then 1, θ2, θ4, . . . , θm−2 is also a Z basis for Me, and θ, θ3, . . . , θm−1 is also a Z basis for Mo.
Hence, since TrK/Q is Z linear, for any x ∈ Me, x = b0 + b2θ

2 + · · · + bm−2θ
m−2 and any

y ∈ Me, y =
∑

c0 + c2θ
2 + · · · + cm−2θ

m−2, the value of Tr(x, y) = TrK/Q(xy) is determined
by the values of TrK/Q(θiθj), i, j = 0, 2 . . . ,m − 2. By a similar reasoning, writing x and y
in terms of the basis 1, θ2, θ4, . . . , θm−2, the values of Tr(x, y) on Me is also determined by
the values of TrK/Q(θiθj), i, j = 0, 2 . . . ,m − 2. Lemmas 2 and 3 immediately give us the
following result which connects our Hankel matrix to the trace form:

Corollary 4. The matrix (TrK/Q(θiθj)) (i, j = 0, 2 . . . ,m − 2) equals m times the Hankel
matrix Hm/2 and (TrK/Q(θiθj) (i, j = 0, 2 . . . ,m−2) equals m times the matrix Dm/2 defined
in Equation (3).

Similarly, by considering the values of Tr(x, y) on the Z module Mo in the two bases θ,
θ3, . . . , θm−1 and θ, θ3, . . . , θm−1, we have the following:

Corollary 5. The matrix (TrK/Q(θiθj)) (i, j = 1, 3 . . . ,m − 1) equals m times the Hankel

matrix H
(1)
m/2 and (TrK/Q(θiθj) (i, j = 1, 3 . . . ,m − 1) equals 2m times the identity matrix.

Now observe that the matrix (θiθj) (i, j = 0, 2 . . . ,m − 2) is just Ve · Ve
T (a product of

n× 1 and 1× n matrices), and that (θiθj) (i, j = 0, 2 . . . ,m− 2) equals We ·We
T . Similarly,

(θiθj) (i, j = 1, 3 . . . ,m− 1) equals Vo ·Vo
T and (θiθj) (i, j = 1, 3 . . . ,m− 1) equals We ·We

T .
Equations (9) and (10), the Z bilinearity of TrK/Q, and Corollaries 4 and 5 now give us

the following (here, given a matrix M , TrK/Q(M) stands for the matrix whose entries are
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the traces of the entries of M):

Hm/2 =
1

m
(TrK/Q(θiθj))i,j=0,2...,m−2 =

1

m
TrK/Q(Ve · Ve

T )

=
1

m
Bm/2TrK/Q(We · We

T )BT
m/2

=
1

m
Bm/2(TrK/Q(θiθj)i,j=0,2...,m−2B

T
m/2

= Bm/2Dm/2B
T
m/2.

H
(1)
m/2 =

1

m
(TrK/Q(θiθj))i,j=1,3...,m−1 =

1

m
TrK/Q(Vo · Vo

T )

=
1

m
Cm/2TrK/Q(Wo · Wo

T )CT
m/2

=
1

m
Cm/2(TrK/Q(θiθj)i,j=1,3...,m−1C

T
m/2

= 2Cm/2C
T
m/2.

Let G
(k)
n denote the Hankel matrices formed from the sequence of odd central binomial

coefficients
(

2l+1
l

)

, l = 0, 1, . . . . Note that since
(

2n
n

)

= 2
(

2n−1
n−1

)

, we have the relation H
(k+1)
n =

2G
(k)
n .
The discussions above now immediately yield the following theorem:

Theorem 6. For any n ≥ 1 and any k ≥ 1, we have the factorizations:

i. Hn = BnDnB
T
n , and

ii. H
(1)
n = 2CnC

T
n .

iii. Gn := G
(0)
n = CnC

T
n .

iv. H
(k)
n = Bn+k,nDnB

T
n , where Bn+k,n denotes the lower left n × n block of Bn+k.

v. G
(k)
n = 1

2
Bn+k+1,nDnBT

n ,

vi. H
(k)
n = 2Cn+k−1,nC

T
n . (Of course, when k = 1, this is the same as Part (ii) above.)

vii. G
(k)
n = Cn+k,nC

T
n .

Proof. We pick an N such that 2N ≥ 8n, and work in the maximal real subfield K of the
2N -th cyclotomic extension of Q. The equations preceding the statement of the theorem
yield the factorizations Hm/2 = Bm/2Dm/2B

T
m/2 and H

(1)
m/2 = 2Cm/2C

T
m/2. By the choice of N ,

we have n ≤ m/2. Note that Hn, H
(1)
n , Bn, Cn and Dn are all just the upper left n×n blocks

of the corresponding matrices Hm/2, H
(1)
m/2, Bm/2, Cm/2 and Dm/2. Studying the upper left

n× n blocks of the products Bm/2Dm/2B
T
m/2 and Cm/2C

T
m/2, and noting the lower triangular

nature of Bm/2 and Cm/2 and the diagonal nature of Dm/2, we get the first two factorizations
of the theorem.
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We now substitute n + k for n throughout in the first two factorizations, and observe
that H

(k)
n is the lower left n× n block of Hn+k, as also the lower left n× n block of H

(1)
n+k−1.

Studying the products Bn+kDn+kB
T
n+k and Cn+k−1C

T
n+k−1 yields the two factorizations in

(iv) and (vi) as well.

The factorizations in (iii), (v), and (vii) are a direct consequence of the relation H
(k+1)
n =

2G
(k)
n .

Note that Factorization (iii) of Gn was described in [1, Prop. 6] by showing that odd
binomial coefficients could be regarded as Catalan-like numbers. (In the notation of [1,

Prop. 6], the odd binomial coefficients are C
(3,2)
n , the matrix Ãn is our Gn+1 and the matrix

An is our Cn+1.)
Taking the determinants on both sides of Parts (i) and (ii) of Theorem 6 above yeilds

Corollary 1.
Let c

(k)
n denote the determinant of G

(k)
n , and note that the relation H

(k+1)
n = 2G

(k)
n shows

that d
(k+1)
n = 2nc

(k)
n . We therefore also have the following:

Corollary 7. (See [13, Eq. 1.5], also [1, Prop. 6].) c
(0)
n = 1.

Example 8. Parts (iv) or (vi) of Theorem 6 show that the computation of d
(k)
n for k ≥ 2

can be accomplished by computing the determinants of Bn+k,n or Cn+k,n. Since the primary

goal of this note is to establish the connection between the H
(k)
n and number theory we

will not do this here, but we note that these can be computed using, for instance, the very
general techniques described in [6, Thm. 26] (as can the determinants of the original H

(k)
n

themselves!). Computing these determinants shows that for k ≥ 2

d(k)
n = 2n

∏

1≤i≤j≤k−1

i + j − 1 + 2n

i + j − 1
(13)

(recovering, for example, [13, Eq. 1.5]).
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