Some new binomial sums related to the Catalan triangle

Yidong Sun ${ }^{\dagger}$ and Fei Ma
Department of Mathematics, Dalian Maritime University, 116026 Dalian, P.R. China
† sydmath@aliyun.com

Submitted: Sep 7, 2013; Accepted: Feb 4, 2014; Published: Feb 13, 2014
Mathematics Subject Classifications: Primary 05A19; Secondary 05A15, 15A15.

Abstract

In this paper, we derive many new identities on the classical Catalan triangle $\mathcal{C}=\left(C_{n, k}\right)_{n \geqslant k \geqslant 0}$, where $C_{n, k}=\frac{k+1}{n+1}\binom{2 n-k}{n}$ are the well-known ballot numbers. The first three types are based on the determinant and the fourth is relied on the permanent of a square matrix. It not only produces many known and new identities involving Catalan numbers, but also provides a new viewpoint on combinatorial triangles.

Keywords: Catalan number, ballot number, Catalan triangle.

1 Introduction

In 1976, by a nice interpretation in terms of pairs of paths on a lattice \mathbb{Z}^{2}, Shapiro [44] first introduced the Catalan triangle $\mathcal{B}=\left(B_{n, k}\right)_{n \geqslant k \geqslant 0}$ with $B_{n, k}=\frac{k+1}{n+1}\binom{2 n+2}{n-k}$ and obtained

$$
\begin{align*}
\sum_{k=0}^{n} B_{n, k} & =(2 n+1) C_{n}, \\
\sum_{k=0}^{\min \{m, n\}} B_{n, k} B_{m, k} & =C_{m+n+1}, \tag{1}
\end{align*}
$$

where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}$ is the nth Catalan number. Table 1.1 illustrates this triangle for small n and k up to 6 . Note that the entries in the first column of the Catalan triangle \mathcal{B} are indeed the Catalan numbers $B_{n, 0}=C_{n+1}$, which is the reason why \mathcal{B} is called the Catalan triangle.

n / k	0	1	2	3	4	5	6
0	1						
1	2	1					
2	5	4	1				
3	14	14	6	1			
4	42	48	27	8	1		
5	132	165	110	44	10	1	
6	429	572	429	208	65	12	1

Table 1.1. The first values of $B_{n, k}$.
Since then, much attentions have been paid to the Catalan triangle and its generalizations. In 1979, Eplett [20] deduced the alternating sum in the nth row of \mathcal{B}, namely,

$$
\sum_{k=0}^{n}(-1)^{k} B_{n, k}=C_{n} .
$$

In 1981, Rogers [42] proved that a generalization of Eplett's identity holds in any renewal array. In 2008, Gutiérrez et al. [27] established three summation identities and proposed as one of the open problems to evaluate the moments $\Omega_{m}=\sum_{k=0}^{n}(k+1)^{m} B_{n, k}^{2}$. Using the WZ-theory (see [40, 52]), Miana and Romero computed Ω_{m} for $1 \leqslant m \leqslant 7$. Later, based on the symmetric functions and inverse series relations with combinatorial computations, Chen and Chu [13] resolved this problem in general. By using the Newton interpolation formula, Guo and Zeng [26] generalized the recent identities on the Catalan triangle \mathcal{B} obtained by Miana and Romero [37] as well as those of Chen and Chu [13].

Some alternating sum identities on the Catalan triangle \mathcal{B} were established by Zhang and Pang [53], who showed that the Catalan triangle \mathcal{B} can be factorized as the product of the Fibonacci matrix and a lower triangular matrix, which makes them build close connections among $C_{n}, B_{n, k}$ and the Fibonacci numbers. Motivated by a matrix identity related to the Catalan triangle \mathcal{B} [46], Chen et al. [14] derived many nice matrix identities on weighted partial Motzkin paths.

n / k	0	1	2	3	4	5	6
0	1						
1	1	1					
2	2	3	1				
3	5	9	5	1			
4	14	28	20	7	1		
5	42	90	75	35	9	1	
6	132	297	275	154	54	11	1

Table 1.2. The first values of $A_{n, k}$.

Aigner [3], in another direction, came up with the admissible matrix, a kind of generalized Catalan triangle, and discussed its basic properties. The numbers in the first column of the admissible matrix are called Catalan-like numbers, which are investigated in [5] from combinatorial views. The admissible matrix $\mathcal{A}=\left(A_{n, k}\right)_{n \geqslant k \geqslant 0}$ associated to the Catalan triangle \mathcal{B} is defined by $A_{n, k}=\frac{2 k+1}{2 n+1}\binom{n n+1}{n-k}$, which is considered by Miana and Romero [38] by evaluating the moments $\Phi_{m}=\sum_{k=0}^{n}(2 k+1)^{m} A_{n, k}^{2}$. Table 1.2 illustrates this triangle for small n and k up to 6 .

The interlaced combination of the two triangles \mathcal{A} and \mathcal{B} forms the third triangle $\mathcal{C}=\left(C_{n, k}\right)_{n \geqslant k \geqslant 0}$, defined by the ballot numbers

$$
C_{n, k}=\frac{k+1}{2 n-k+1}\binom{2 n-k+1}{n-k}=\frac{k+1}{n+1}\binom{2 n-k}{n} .
$$

The triangle \mathcal{C} is also called the "Catalan triangle" in the literature, despite it has the most-standing form $\mathcal{C}^{\prime}=\left(C_{n, n-k}\right)_{n \geqslant k \geqslant 0}$ first discovered in 1961 by Forder [24], see for examples $[1,6,9,23,30,38,47]$. Table 1.3 illustrates this triangle for small n and k up to 7 .

n / k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	2	2	1					
3	5	5	3	1				
4	14	14	9	4	1			
5	42	42	28	14	5	1		
6	132	132	90	48	20	6	1	
7	429	429	297	165	75	27	7	1
Table 1.3. The first values of $C_{n, k}$								

Clearly,

$$
A_{n, k}=C_{n+k, 2 k} \text { and } B_{n, k}=C_{n+k+1,2 k+1} .
$$

Three relations, $C_{n, 0}=C_{n}, C_{n+1,1}=C_{n+1}$ and $\sum_{k=0}^{n} C_{n, k}=C_{n+1}$ bring the Catalan numbers and the ballot numbers in correlation [4, 29, 43]. Many properties of the Catalan numbers can be generalized easily to the ballot numbers, which have been studied intensively by Gessel [25]. The combinatorial interpretations of the ballot numbers can be found in $[5,8,10,11,14,18,19,21,22,28,31,35,39,41,44,50,51]$. It was shown by Ma [33] that the Catalan triangle \mathcal{C} can be generated by context-free grammars in three variables.

The Catalan triangles \mathcal{B} and \mathcal{C} often arise as examples of the infinite matrix associated to generating trees $[7,12,34,36]$. In the theory of Riordan arrays [45, 46, 49], much interest has been taken in the three triangles \mathcal{A}, \mathcal{B} and \mathcal{C}, see $[2,14,15,16,17,32,34,48,51]$. In fact, \mathcal{A}, \mathcal{B} and \mathcal{C} are Riordan arrays

$$
\mathcal{A}=\left(C(t), t C(t)^{2}\right), \quad \mathcal{B}=\left(C(t)^{2}, t C(t)^{2}\right), \text { and } \mathcal{C}=(C(t), t C(t))
$$

where $C(t)=\frac{1-\sqrt{1-4 t}}{2 t}$ is the generating function for the Catalan numbers C_{n}.
Recently, Sun and Ma [51] studied the sums of minors of second order of $\mathcal{M}=$ $\left(M_{n, k}(x, y)\right)_{n \geqslant k \geqslant 0}$, a class of infinite lower triangles related to weighted partial Motzkin paths, and obtained the following theorem.

Theorem 1. For any integers $n, r \geqslant 0$ and $m \geqslant \ell \geqslant 0$, set $N_{r}=\min \{n+r+1, m+r-\ell\}$. Then there holds

$$
\sum_{k=0}^{N_{r}} \operatorname{det}\left(\begin{array}{cc}
M_{n, k}(x, y) & M_{m, k+\ell+1}(x, y) \tag{2}\\
M_{n+r+1, k}(x, y) & M_{m+r+1, k+\ell+1}(x, y)
\end{array}\right)=\sum_{i=0}^{r} M_{n+i, 0}(x, y) M_{m+r-i, \ell}(y, y) .
$$

Recall that a partial Motzkin path is a lattice path from $(0,0)$ to (n, k) in the XOYplane that does not go below the X-axis and consists of up steps $\mathbf{u}=(1,1)$, down steps $\mathbf{d}=(1,-1)$ and horizontal steps $\mathbf{h}=(1,0)$. A weighted partial Motzkin path (not the same as stated in [14]) is a partial Motzkin path with the weight assignment that all up steps and down steps are weighted by 1 , the horizontal steps are endowed with a weight x if they are lying on X-axis, and endowed with a weight y if they are not lying on X-axis. The weight $w(P)$ of a path P is the product of the weight of all its steps. The weight of a set of paths is the sum of the total weights of all the paths. Denote by $M_{n, k}(x, y)$ the weight sum of the set $\mathcal{M}_{n, k}(x, y)$ of all weighted partial Motzkin paths ending at (n, k).

n / k	0	1	2	3	4
0	1				
1	x	$x+y$	1	$x+2 y$	
2	$x^{2}+1$	$x^{2}+x y+y^{2}+2$	1		
3	$x^{3}+2 x+y$	$x^{2}+2 x y+3 y^{2}+3$	$x+3 y$	1	

Table 1.4. The first values of $M_{n, k}(x, y)$.
Table 1.4 illustrates few values of $M_{n, k}(x, y)$ for small n and k up to 4 [51]. The triangle \mathcal{M} can reduce to \mathcal{A}, \mathcal{B} and \mathcal{C} when the parameters (x, y) are specalized, namely,

$$
A_{n, k}=M_{n, k}(1,2), \quad B_{n, k}=M_{n, k}(2,2) \text { and } C_{n, k}=M_{2 n-k, k}(0,0) .
$$

In this paper, we derive many new identities on the Catalan triangle \mathcal{C}. The first three types are special cases derived from (2) which are presented in Section 2 and 3 respectively. Section 4 is devoted to the fourth type based on the permanent of a square matrix, and gives a general result on the triangle \mathcal{M} in the $x=y$ case. It not only produces many known and new identities involving Catalan numbers, but also provides a new viewpoint on combinatorial triangles.

2 The first two operations on the Catalan triangle

Let $\mathcal{X}=\left(X_{n, k}\right)_{n \geqslant k \geqslant 0}$ and $\mathcal{Y}=\left(Y_{n, k}\right)_{n \geqslant k \geqslant 0}$ be the infinite lower triangles defined on the Catalan triangle \mathcal{C} respectively by

$$
\begin{aligned}
& X_{n, k}=\operatorname{det}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{n+k, 2 k+1} \\
C_{n+k+1,2 k} & C_{n+k+1,2 k+1}
\end{array}\right) \\
& Y_{n, k}=\operatorname{det}\left(\begin{array}{cc}
C_{n+k+1,2 k+1} & C_{n+k+1,2 k+2} \\
C_{n+k+2,2 k+1} & C_{n+k+2,2 k+2}
\end{array}\right) .
\end{aligned}
$$

Table 2.1 and 2.2 illustrate these two triangles \mathcal{X} and \mathcal{Y} for small n and k up to 5 , together with the row sums. It indicates that the two operations contact the row sums of \mathcal{X} and \mathcal{Y} with the first two columns of \mathcal{C}.

n / k	0	1	2	3	4	5	row sums
0	1						$1=1^{2}$
1	0	1					$1=1^{2}$
2	0	3	1			$4=2^{2}$	
3	0	14	10	1		$25=5^{2}$	
4	0	84	90	21	1		$196=14^{2}$
5	0	594	825	308	36	1	$1764=42^{2}$

Table 2.1. The first values of $X_{n, k}$.

n / k	0	1	2	3	4	5	row sums
0	1						$1=1 \times 1$
1	1	1					$2=1 \times 2$
2	3	6	1				$10=2 \times 5$
3	14	40	15	1		$70=5 \times 14$	
4	84	300	175	28	1		$588=14 \times 42$
5	594	2475	1925	504	45	1	$5544=42 \times 132$

Table 2.2. The first values of $Y_{n, k}$.
More generally, we obtain the first result which is a consequence of Theorem 1.1.
Theorem 2. For any integers $m \geqslant \ell \geqslant 0$ and $n \geqslant 0$, set $N=\min \{n+1, m-\ell\}$. Then there hold

$$
\begin{align*}
& \sum_{k=0}^{N} \operatorname{det}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{m+k, 2 k+\ell+1} \\
C_{n+k+1,2 k} & C_{m+k+1,2 k+\ell+1}
\end{array}\right)=C_{n} C_{m, \ell}, \tag{3}\\
& \sum_{k=0}^{N} \operatorname{det}\left(\begin{array}{cc}
C_{n+k+1,2 k+1} & C_{m+k+1,2 k+\ell+2} \\
C_{n+k+2,2 k+1} & C_{m+k+2,2 k+\ell+2}
\end{array}\right)=C_{n+1} C_{m, \ell}, \tag{4}
\end{align*}
$$

or equivalently,

$$
\begin{align*}
C_{m, \ell} C_{n} & =\sum_{k=0}^{N} \frac{(2 k+1)(2 k+\ell+2) \lambda_{n, k}(m, \ell)}{(2 n+1)_{3}(2 m-\ell)_{3}}\binom{2 n+3}{n-k+1}\binom{2 m-\ell+2}{m-k-\ell}, \tag{5}\\
C_{m, \ell} C_{n+1} & =\sum_{k=0}^{N} \frac{(2 k+2)(2 k+\ell+3) \mu_{n, k}(m, \ell)}{(2 n+2)_{3}(2 m-\ell+1)_{3}}\binom{2 n+4}{n-k+1}\binom{2 m-\ell+3}{m-k-\ell}, \tag{6}
\end{align*}
$$

where $\lambda_{n, k}(m, \ell)=(2 m-\ell)(2 m-\ell+1)(n-k+1)(n+k+2)-(2 n+1)(2 n+2)(m-$ $\ell-k)(m+k+2), \mu_{n, k}(m, \ell)=(2 m-\ell+1)(2 m-\ell+2)(n-k+1)(n+k+3)-(2 n+$ $2)(2 n+3)(m-\ell-k)(m+k+3)$ and $(a)_{k}=a(a+1) \cdots(a+k-1)$ for $k \geqslant 1$.

Proof. Setting $(x, y)=(0,0)$ and $r=1$, replacing n, m respectively by $2 n, 2 m-\ell-1$ in (2), together with the relation $C_{n, k}=M_{2 n-k, k}(0,0)$, where

$$
M_{n, k}(0,0)=\left\{\begin{array}{ll}
\frac{k+1}{n+1}\binom{n+1}{\frac{n-k}{2}}, & \text { if } n-k \text { even, } \tag{7}\\
0, & \text { otherwise }
\end{array} \quad\right. \text { [51, Example (iv)] }
$$

we can get (3). After some simple computation, one can easily derive (5) from (3).
Similarly, the case $(x, y)=(0,0)$ and $r=1$, after replacing n, m respectively by $2 n+1,2 m-\ell$ in (2), reduces to (4), which, by some routine simplification, leads to (6).

Taking $m=n$ in (5) and (6), we have

$$
\begin{aligned}
& \lambda_{n, k}(n, \ell)=(\ell+1)(n+k+2)(2 k(2 n+1)+\ell(n-k+1)) \\
& \mu_{n, k}(n, \ell)=(\ell+1)(n+k+3)((2 k+1)(2 n+2)+\ell(n-k+1))
\end{aligned}
$$

which yield the following results.
Corollary 3. For any integers $n \geqslant \ell \geqslant 0$, there hold

$$
\begin{align*}
\frac{1}{2 n-\ell+1}\binom{2 n-\ell+1}{n-\ell} C_{n} & =\sum_{k=0}^{n-\ell} \frac{(2 k+1)(2 k+\ell+2) \bar{\lambda}_{n, k}(\ell)}{(2 n+1)_{2}(2 n-\ell)_{3}}\binom{2 n+2}{n-k+1}\binom{2 n-\ell+2}{n-k-\ell}, \tag{8}\\
\frac{1}{2 n-\ell+1}\binom{2 n-\ell+1}{n-\ell} C_{n+1} & =\sum_{k=0}^{n-\ell} \frac{(2 k+2)(2 k+\ell+3) \bar{\mu}_{n, k}(\ell)}{(2 n+2)_{2}(2 n-\ell+1)_{3}}\binom{2 n+3}{n-k+1}\binom{2 n-\ell+3}{n-k-\ell}, \tag{9}
\end{align*}
$$

where $\bar{\lambda}_{n, k}(\ell)=2 k(2 n+1)+\ell(n-k+1)$ and $\bar{\mu}_{n, k}(\ell)=(2 k+1)(2 n+2)+\ell(n-k+1)$.
It should be pointed out that both (8) and (9) are still correct for any integer $\ell \leqslant-1$ if one notices that they hold trivially for any integer $\ell>n$ and both sides of them can be transferred into polynomials in ℓ. Specially, after shifting n to $n-1$, the case $\ell=-1$ in (8) and (9) generates the following corollary.

Corollary 4. For any integer $n \geqslant 1$, there hold

$$
\begin{aligned}
\binom{2 n}{n} C_{n-1} & =\sum_{k=0}^{n} \frac{(2 k+1)^{2}(4 n k-n-k)}{(2 n-1)^{2}(2 n)(2 n+1)}\binom{2 n}{n-k}\binom{2 n+1}{n-k}, \\
\binom{2 n}{n} C_{n} & =\sum_{k=0}^{n} \frac{(k+1)^{2}(4 n k+n+k)}{n(n+1)(2 n+1)^{2}}\binom{2 n+1}{n-k}\binom{2 n+2}{n-k}
\end{aligned}
$$

3 The third operation on the Catalan triangle

Let $\mathcal{Z}=\left(Z_{n, k}\right)_{n \geqslant k \geqslant 0}$ be the infinite lower triangle defined on the Catalan triangle \mathcal{C} by

$$
\begin{array}{ccc}
Z_{2 n, 2 k}=C_{n+k, 2 k} C_{n+k+1,2 k+1}, & Z_{2 n, 2 k+1}=C_{n+k+1,2 k+1} C_{n+k+1,2 k+2}, \quad(n \geqslant 0) \\
Z_{2 n-1,2 k}=C_{n+k, 2 k} C_{n+k, 2 k+1}, & Z_{2 n-1,2 k+1}=C_{n+k, 2 k+1} C_{n+k+1,2 k+2}, \quad(n \geqslant 1) .
\end{array}
$$

Table 3.1 illustrates the triangle \mathcal{Z} for small n and k up to 6 , together with the row sums and the alternating sums of rows. It signifies that the sums and the alternating sums of rows of \mathcal{Z} are in direct contact with the first column of \mathcal{C}. Generally, we have the second result which is another consequence of Theorem 1.1.

n / k	0	1	2	3	4	5	6	row sums	alternating sums of rows
0	1						1	$1=1^{2}$	
1	1	1					2	0	
2	2	2	1				5	$1=1^{2}$	
3	4	6	3	1			14	0	
4	10	15	12	4	1		42	$4=2^{2}$	
5	25	45	36	20	5	1		132	0
6	70	126	126	70	30	6	1	429	$25=5^{2}$

Table 3.1. The first values of $Z_{n, k}$.
Theorem 5. For any integers $m, n \geqslant 0$, let $p=m-n+1$. Then there hold

$$
\begin{align*}
& \sum_{k=0}^{\min \{m, n\}} C_{m+k+1,2 k+1}\left(C_{n+k, 2 k}+C_{n+k+1,2 k+2}\right)=C_{m+n+1}, \tag{10}\\
& \sum_{k=0}^{\min \{m, n\}} C_{m+k+1,2 k+1}\left(C_{n+k, 2 k}-C_{n+k+1,2 k+2}\right)=\left\{\begin{aligned}
\sum_{i=0}^{p-1} C_{n+i} C_{m-i}, & \text { if } p \geqslant 1, \\
0, & \text { if } p=0, \\
-\sum_{i=1}^{|p|} C_{n-i} C_{m+i}, & \text { if } p \leqslant-1,
\end{aligned}\right. \tag{11}
\end{align*}
$$

Proof. The identity (10) is equivalent to (1), if one notices that

$$
C_{m+k+1,2 k+1}=B_{m, k}, B_{n, k}=C_{n+k+1,2 k+1}=C_{n+k, 2 k}+C_{n+k+1,2 k+2} .
$$

For the case $p=m-n+1 \geqslant 0$ in (11), setting $(x, y)=(0,0)$ in (2), together with the relation $C_{n, k}=M_{2 n-k, k}(0,0)$ and (7), we have

$$
\begin{aligned}
& \sum_{k=0}^{\min \{m, n\}} C_{m+k+1,2 k+1}\left(C_{n+k, 2 k}-C_{n+k+1,2 k+2}\right) \\
&= \sum_{k=0}^{n}\left\{\operatorname{det}\left(\begin{array}{cc}
C_{n+k, 2 k} & 0 \\
0 & C_{n+p+k, 2 k+1}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cc}
0 & C_{n+k+1,2 k+2} \\
C_{n+p+k, 2 k+1} & 0
\end{array}\right)\right\} \\
&=\sum_{k=0}^{2 n} \operatorname{det}\left(\begin{array}{cc}
M_{2 n, k}(0,0) & M_{2 n, k+1}(0,0) \\
M_{2 n+2 p-1, k}(0,0) & M_{2 n+2 p-1, k+1}(0,0)
\end{array}\right) \\
&=\sum_{i=0}^{2 p-2} M_{2 n+i, 0}(0,0) M_{2 n+2 p-i-2,0}(0,0) \\
&=\sum_{i=0}^{p-1} M_{2 n+2 i, 0}(0,0) M_{2 n+2 p-2 i-2,0}(0,0) \\
&=\sum_{i=0}^{p-1} C_{n+i} C_{n+p-i-1}=\sum_{i=0}^{p-1} C_{n+i} C_{m-i},
\end{aligned}
$$

as desired.
Similarly, the case $p \leqslant-1$ can be proved, the details are left to interested readers.
Note that a weighted partial Motzkin path with no horizontal steps is just a partial Dyck path. Then the relation $C_{n, k}=M_{2 n-k, k}(0,0)$ signifies that $C_{n, k}$ counts the set $\mathcal{C}_{n, k}$ of partial Dyck paths of length $2 n-k$ from $(0,0)$ to $(2 n-k, k)$ [35]. Such partial Dyck paths have exactly n up steps and $n-k$ down steps. For any step, we say that it is at level i if the y-coordinate of its end point is i. If $P=L_{1} L_{2} \ldots L_{2 n-k-1} L_{2 n-k} \in \mathcal{C}_{n, k}$, denote by $\bar{P}=\bar{L}_{2 n-k} \bar{L}_{2 n-k-1} \ldots \bar{L}_{2} \bar{L}_{1}$ the reverse path of P, where $\bar{L}_{i}=\mathbf{u}$ if $L_{i}=\mathbf{d}$ and $\bar{L}_{i}=\mathbf{d}$ if $L_{i}=\mathbf{u}$.

For $k=0$, a partial Dyck path is an (ordinary) Dyck path. For any Dyck path P of length $2 n+2 m+2$, its $(2 n+1)$-th step L (along the path) must end at odd level, say $2 k+1$ for some $k \geqslant 0$, then P can be uniquely partitioned into $P=P_{1} L P_{2}$, where $\left(P_{1}, \overline{P_{2}}\right) \in \mathcal{C}_{n+k, 2 k} \times \mathcal{C}_{m+k+1,2 k+1}$ if $L=\mathbf{u}$ and $\left(P_{1}, \overline{P_{2}}\right) \in \mathcal{C}_{n+k+1,2 k+2} \times \mathcal{C}_{m+k+1,2 k+1}$ if $L=\mathbf{d}$. Hence, the cases $p=0,1$ and 2, i.e., $m=n-1, n$ and $n+1$ in (11) produce the following corollary.
Corollary 6. For any integer $n \geqslant 0$, according to the $(2 n+1)$-th step \mathbf{u} or \mathbf{d}, we have
(a) The number of Dyck paths of length $4 n$ is bisected;
(b) The parity of the number of Dyck paths of length $4 n+2$ is C_{n}^{2};
(c) The parity of the number of Dyck paths of length $4 n+4$ is $2 C_{n} C_{n+1}$.

4 The fourth operation on the Catalan triangle

Let $\mathcal{W}=\left(W_{n, k}\right)_{n \geqslant k \geqslant 0}$ be the infinite lower triangle defined on the Catalan triangle by

$$
\begin{aligned}
W_{2 n, k} & =\operatorname{per}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{n+k, 2 k+1} \\
C_{n+k+1,2 k} & C_{n+k+1,2 k+1}
\end{array}\right), \\
W_{2 n+1, k} & =\operatorname{per}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{n+k, 2 k+1} \\
C_{n+k+2,2 k} & C_{n+k+2,2 k+1}
\end{array}\right),
\end{aligned}
$$

where $\operatorname{per}(A)$ denotes the permanent of a square matrix A. Table 4.1 illustrates the triangle \mathcal{W} for small n and k up to 8 , together with the row sums.

n / k	0	1	2	3	4	5	6	7	8	row sums
0	1								1	
1	2								2	
2	4	1							5	
3	10	4							14	
4	20	21	1						42	
5	56	70	6						132	
6	140	238	50	1					429	
7	420	792	210	8					1430	
8	1176	2604	990	91	1				4862	

Table 4.1. The first values of $W_{n, k}$.
This, in general, motivates us to consider the permanent operation on the triangle $\mathcal{M}=\left(M_{n, k}(x, y)\right)_{n \geqslant k \geqslant 0}$. Recall that $M_{n, k}(x, y)$ is the weight sum of the set $\mathcal{M}_{n, k}(x, y)$ of all weighted partial Motzkin paths ending at (n, k). For any step of a partial weighted Motzkin path P, we say that it is at level i if the y-coordinate of its end point is i. For $1 \leqslant i \leqslant k$, an up step \mathbf{u} of P at level i is R-visible if it is the rightmost up step at level i and there are no other steps at the same level to its right. If $P=L_{1} L_{2} \ldots L_{n} \in \mathcal{M}_{n, k}(x, y)$, denote by $\bar{P}=\bar{L}_{n} \ldots \bar{L}_{2} \bar{L}_{1}$ the reverse path of P, where $\bar{L}_{i}=\mathbf{u}, \mathbf{h}$ or \mathbf{d} if $L_{i}=\mathbf{d}, \mathbf{h}$ or \mathbf{u} respectively.

Theorem 7. For any integers m, n, r with $m \geqslant n \geqslant 0$, there holds

$$
\sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{cc}
M_{n, k}(y, y) & M_{n+r, k+1}(y, y) \tag{12}\\
M_{m, k}(y, y) & M_{m+r, k+1}(y, y)
\end{array}\right)=M_{m+n+r, 1}(y, y)+H_{n, m}(r),
$$

where

$$
H_{n, m}(r)=\left\{\begin{aligned}
\sum_{i=0}^{r-1} M_{n+i, 0}(y, y) M_{m+r-i-1,0}(y, y), & \text { if } r \geqslant 1 \\
0, & \text { if } r=0 \\
-\sum_{i=1}^{|r|} M_{n-i, 0}(y, y) M_{m-|r|+i-1,0}(y, y), & \text { if } r \leqslant-1
\end{aligned}\right.
$$

Proof. We just give the proof of the part when $r \geqslant 0$, the other part can be done similarly and is left to interested readers. Define

$$
\begin{aligned}
\mathcal{A}_{n, m, k}^{(r)} & =\left\{(P, Q) \mid P \in \mathcal{M}_{n, k}(y, y), Q \in \mathcal{M}_{m+r, k+1}(y, y)\right\} \\
\mathcal{B}_{n, m, k}^{(r)} & =\left\{(P, Q) \mid P \in \mathcal{M}_{n+r, k+1}(y, y), Q \in \mathcal{M}_{m, k}(y, y)\right\}
\end{aligned}
$$

and $\mathcal{C}_{n, m, k}^{(r, i)}$ to be the subset of $\mathcal{A}_{n, m, k}^{(r)}$ such that for any $(P, Q) \in \mathcal{C}_{n, m, k}^{(r, i)}, Q=Q_{1} \mathbf{u} Q_{2}$ with $Q_{1} \in \mathcal{M}_{i, k}(y, y)$ and $Q_{2} \in \mathcal{M}_{m+r-i-1,0}(y, y)$ for $k \leqslant i \leqslant r-1$, where the step \mathbf{u} is the last R-visible up step of Q. Clearly, $\mathcal{C}_{n, m, k}^{(r, i)}$ is the empty set if $r=0$.

It is easily to see that the weights of the sets $\mathcal{A}_{n, m, k}^{(r)}$ and $\mathcal{B}_{n, m, k}^{(r)}$ are

$$
\begin{aligned}
w\left(\mathcal{A}_{n, m, k}^{(r)}\right) & =M_{n, k}(y, y) M_{m+r, k+1}(y, y), \\
w\left(\mathcal{B}_{n, m, k}^{(r)}\right) & =M_{n+r, k+1}(y, y) M_{m, k}(y, y) .
\end{aligned}
$$

For $0 \leqslant i<r$, the weight of the set $\bigcup_{k=0}^{i} \mathcal{C}_{n, m, k}^{(r, i)}$ is $M_{n+i, 0}(y, y) M_{m+r-i-1,0}(y, y)$. This claim can be verified by the following argument. For any $(P, Q) \in \mathcal{C}_{n, m, k}^{(r, i)}$, we have $Q=Q_{1} \mathbf{u} Q_{2}$ as mentioned above with $Q_{1} \in \mathcal{M}_{i, k}(y, y)$ and $Q_{2} \in \mathcal{M}_{m+r-i-1,0}(y, y)$, then $P \bar{Q}_{1} \in$ $\mathcal{M}_{n+i, 0}(y, y)$ such that the last $(i+1)$-th step of $P \bar{Q}_{1}$ is at level k. Summing k for $0 \leqslant k \leqslant i$, all $P \bar{Q}_{1} \in \mathcal{M}_{n+i, 0}(y, y)$ contribute the total weight $M_{n+i, 0}(y, y)$ and all $Q_{2} \in$ $\mathcal{M}_{m+r-i-1,0}(y, y)$ contribute the total weight $M_{m+r-i-1,0}(y, y)$. Hence, $w\left(\bigcup_{k=0}^{i} \mathcal{C}_{n, m, k}^{(r, i)}\right)=$ $M_{n+i, 0}(y, y) M_{m+r-i-1,0}(y, y)$, and then

$$
w\left(\bigcup_{i=0}^{r-1} \bigcup_{k=0}^{i} \mathcal{C}_{n, m, k}^{(r, i)}\right)=w\left(\bigcup_{k=0}^{r-1} \bigcup_{i=k}^{r-1} \mathcal{C}_{n, m, k}^{(r, i)}\right)=\sum_{i=0}^{r-1} M_{n+i, 0}(y, y) M_{m+r-i-1,0}(y, y)=H_{n, m}(r)
$$

Let $\mathcal{A}_{n, m}^{(r)}=\bigcup_{k=0}^{n+r-1} \mathcal{A}_{n, m, k}^{(r)}, \mathcal{B}_{n, m}^{(r)}=\bigcup_{k=0}^{m+r-1} \mathcal{B}_{n, m, k}^{(r)}$ and $\mathcal{C}_{n, m, k}^{(r)}=\bigcup_{i=k}^{r-1} \mathcal{C}_{n, m, k}^{(r, i)}$. To prove (12), it suffices to construct a bijection φ between $\mathcal{B}_{n, m}^{(r)} \bigcup\left(\mathcal{A}_{n, m}^{(r)}-\bigcup_{k=0}^{r-1} \mathcal{C}_{n, m, k}^{(r)}\right)$ and $\mathcal{M}_{m+n+r, 1}(y, y)$.

For any $(P, Q) \in \mathcal{B}_{n, m, k}^{(r)}, P \bar{Q}$ is exactly an element of $\mathcal{M}_{m+n+r, 1}(y, y)$. Note that in this case, the first R-visible up step of P is still the one of $P \bar{Q}$ and it is at most the $(n+r)$-th step of $P \bar{Q}$.

For any $(P, Q) \in \mathcal{A}_{n, m, k}-\mathcal{C}_{n, m, k}^{(r)}$, find the last R-visible up step \mathbf{u}^{*} of Q, Q can be uniquely partitioned into $Q=Q_{1} \mathbf{u}^{*} Q_{2}$, where $Q_{1} \in \mathcal{M}_{j, k}(y, y)$ for some $j \geqslant r$, then $P \bar{Q}_{1} \mathbf{u}^{*} Q_{2}$ forms an element of $\mathcal{M}_{m+n+r, 1}(y, y)$. Note that in this case, the last R-visible up step \mathbf{u}^{*} of Q is still the one of $P \bar{Q}_{1} \mathbf{u}^{*} Q_{2}$. Moreover, the \mathbf{u}^{*} step is at least the $(n+r+1)$-th step of $P \bar{Q}_{1} \mathbf{u}^{*} Q_{2}$.

Conversely, for any path in $\mathcal{M}_{m+n+r, 1}(y, y)$, it can be partitioned uniquely into $P Q$, where $P \in \mathcal{M}_{n+r, k}(y, y)$ for some $k \geqslant 0$. If the unique R-visible up step \mathbf{u}^{*} of $P Q$ is lying in P, then $k \geqslant 1$ and $(P, \bar{Q}) \in \mathcal{B}_{n, m, k-1}^{(r)}$; If the \mathbf{u}^{*} step is lying in $Q, P Q$ can be repartitioned into $P_{1} P_{2} \mathbf{u}^{*} Q_{1}$ with $P_{1} \in \mathcal{M}_{n, j}(y, y)$ for some $j \geqslant 0$, then $\left(P_{1}, \overline{P_{2}} \mathbf{u}^{*} Q_{1}\right) \in \mathcal{A}_{n, m, j}-\mathcal{C}_{n, m, j}^{(r)}$.

Clearly, the above procedure is invertible. Hence, φ is indeed a bijection as desired and (12) is proved.

Theorem 8. For any integers m, n, p with $m \geqslant n \geqslant 0$, there hold

$$
\begin{align*}
\sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{n+p+k, 2 k+1} \\
C_{m+k, 2 k} & C_{m+p+k, 2 k+1}
\end{array}\right) & =C_{m+n+p, 1}+F_{n, m}(p), \tag{13}\\
\sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{cc}
C_{n+k, 2 k+1} & C_{n+p+k+1,2 k+2} \\
C_{m+k, 2 k+1} & C_{m+p+k+1,2 k+2}
\end{array}\right) & =C_{m+n+p, 1}+F_{n, m}(p), \tag{14}
\end{align*}
$$

where

$$
F_{n, m}(p)=\left\{\begin{aligned}
\sum_{i=0}^{p-1} C_{n+i} C_{m+p-i-1}, & \text { if } p \geqslant 1 \\
0, & \text { if } p=0 \\
-\sum_{i=1}^{|p|} C_{n-i} C_{m-|p|+i-1}, & \text { if } p \leqslant-1
\end{aligned}\right.
$$

Proof. To prove (13), replacing n, m, r respectively by $2 n, 2 m, 2 p-1$ and setting $(y, y)=$ $(0,0)$ in (12), together with the relation $C_{n, k}=M_{2 n-k, k}(0,0)$ and (7), we have

$$
\begin{aligned}
& \sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{cc}
C_{n+k, 2 k} & C_{n+p+k, 2 k+1} \\
C_{m+k, 2 k} & C_{m+p+k, 2 k+1}
\end{array}\right) \\
& \quad=\sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{ll}
M_{2 n, 2 k}(0,0) & M_{2 n+2 p-1,2 k+1}(0,0) \\
M_{2 m, 2 k}(0,0) & M_{2 m+2 p-1,2 k+1}(0,0)
\end{array}\right) \\
& \quad=\sum_{k=0}^{2 m} \operatorname{per}\left(\begin{array}{cc}
M_{2 n, k}(0,0) & M_{2 n+2 p-1, k+1}(0,0) \\
M_{2 m, k}(0,0) & M_{2 m+2 p-1, k+1}(0,0)
\end{array}\right) \\
& \quad=M_{2 n+2 m+2 p-1,1}(0,0)+H_{2 n, 2 m}(2 p-1) \\
& \quad=C_{m+n+p, 1}+F_{n, m}(p)
\end{aligned}
$$

as desired.
Similarly, replacing n, m, r respectively by $2 n-1,2 m-1,2 p+1$ and setting $(y, y)=$ $(0,0)$ in (12), together with the relation $C_{n, k}=M_{2 n-k, k}(0,0)$ and (7), one can prove (14), the details are left to interested readers.

The case $p=0$ in (13) and (14), after some routine computation, gives
Corollary 9. For any integers $m \geqslant n \geqslant 1$, there hold

$$
\begin{aligned}
& C_{n+m}=\sum_{k=0}^{n} \frac{(2 k+1)(2 k+2)(4 m n-2(m+n) k)}{(2 n)(2 n+1)(2 m)(2 m+1)}\binom{2 n+1}{n-k}\binom{2 m+1}{m-k} \\
& C_{n+m}=\sum_{k=0}^{n-1} \frac{(2 k+2)(2 k+3)(4 m n+4 m+4 n+2(m+n) k)}{(2 n)(2 n+1)(2 m)(2 m+1)}\binom{2 n+1}{n-k-1}\binom{2 m+1}{m-k-1}
\end{aligned}
$$

Specially, the $m=n$ case produces

$$
\begin{aligned}
C_{2 n} & =\sum_{k=0}^{n-1} \frac{(2 k+1)(2 k+2)}{n(2 n+1)}\binom{2 n}{n-k-1}\binom{2 n+1}{n-k}, \\
C_{2 n} & =\sum_{k=0}^{n-1} \frac{(2 k+2)(2 k+3)}{n(2 n+1)}\binom{2 n}{n-k-1}\binom{2 n+1}{n-k-1} .
\end{aligned}
$$

The cases $p=1$ in (13) and $p=-1$ in (14), replacing n and m in (14) by $n+1$ and $m+1$, after some routine computation, yield
Corollary 10. For any integers $m \geqslant n \geqslant 0$, there hold

$$
\begin{align*}
& C_{n+m+1}+C_{n} C_{m}=\sum_{k=0}^{n} \frac{(2 k+1)(2 k+2) \eta_{n, m}(k)}{(2 n+1)(2 n+2)(2 m+1)(2 m+2)}\binom{2 n+2}{n-k}\binom{2 m+2}{m-k}, \tag{15}\\
& C_{n+m+1}-C_{n} C_{m}=\sum_{k=0}^{n} \frac{(2 k+2)(2 k+3) \rho_{n, m}(k)}{(2 n+1)(2 n+2)(2 m+1)(2 m+2)}\binom{2 n+2}{n-k}\binom{2 m+2}{m-k}, \tag{16}
\end{align*}
$$

where $\eta_{n, m}(k)=4 m n+5(m+n)+2 k(m+n+1)+4$ and $\rho_{n, m}(k)=4 m n+m+n-$ $2 k(m+n+1)$. Specially, the $m=n$ case produces

$$
\begin{aligned}
& C_{2 n+1}+C_{n}^{2}=\sum_{k=0}^{n} \frac{(2 k+1)(2 k+2)}{(n+1)(2 n+1)}\binom{2 n+1}{n-k}\binom{2 n+2}{n-k} \\
& C_{2 n+1}-C_{n}^{2}=\sum_{k=0}^{n} \frac{(2 k+2)(2 k+3)}{(n+1)(2 n+1)}\binom{2 n+1}{n-k-1}\binom{2 n+2}{n-k} .
\end{aligned}
$$

Subtracting (16) from (15), after some routine simplification, one gets

$$
C_{n} C_{m}=\sum_{k=0}^{n} \frac{(2 k+2)((2 k+1)(2 k+3)(m+n+1)-(2 n+1)(2 m+1))}{(2 n+1)(2 n+2)(2 m+1)(2 m+2)}\binom{2 n+2}{n-k}\binom{2 m+2}{m-k}
$$

which, in the case $n=m$, reduces to Corollary 3.7 in [51].
In the case $y=2$ and $r=p$ in (12), together with the relations $B_{n, k}=M_{n, k}(2,2)$ and $B_{n, 0}=C_{n+1}$, similar to the proof of (13), we obtain a result on Shapiro's Catalan triangle.
Theorem 11. For any integers m, n, p with $m \geqslant n \geqslant 0$, there holds

$$
\sum_{k=0}^{m} \operatorname{per}\left(\begin{array}{cc}
B_{n, k} & B_{n+p, k+1} \tag{17}\\
B_{m, k} & B_{m+p, k+1}
\end{array}\right)=B_{m+n+p, 1}+F_{n+1, m+1}(p)
$$

The case $p=0$ in (17), after some routine computation, generates

Corollary 12. For any integers $m \geqslant n \geqslant 0$, there holds

$$
\frac{2}{n+m+1}\binom{2 n+2 m+2}{n+m-1}=\sum_{k=0}^{n} \frac{(2 k+2)(2 k+4) \nu_{n, k}(m)}{(2 n+2)_{2}(2 m+2)_{2}}\binom{2 n+3}{n-k}\binom{2 m+3}{m-k}
$$

where $\nu_{n, k}(m)=2 m n+3 m+3 n-6 k-2 k^{2}$. Specially, the $m=n$ case produces

$$
\frac{1}{2 n+1}\binom{4 n+2}{2 n-1}=\sum_{k=0}^{n-1} \frac{(k+1)(k+2)}{(n+1)^{2}}\binom{2 n+2}{n-k-1}\binom{2 n+2}{n-k}
$$

Acknowledgements

The authors are grateful to the referee for the helpful suggestions and comments. The work was partially supported by the Fundamental Research Funds for the Central Universities.

References

[1] Catalan's Triangle, Wolfram MathWorld, http://mathworld.wolfram.com/ CatalansTriangle.html
[2] J. Agapito, N. Mestre, P. Petrullo and M.M. Torres, Riordan arrays and applications via the classical umbral calculus, arXiv:1103.5879
[3] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A, 87 (1999), 33-51.
[4] M. Aigner, Catalan and other numbers - a recurrent theme, in: H. Crapo, D. Senato (Eds.), Algebraic Combinatorics and Computer Science, Springer, Berlin (2001), 347390.
[5] M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
[6] J.-C. Aval, Multivariate Fuss-Catalan numbers, Discrete Math., 308(20) (2008), 46604669.
[7] D. Baccherini, D. Merlini, and R. Sprugnoli, Level generating trees and proper Riordan arrays, Applicable Analysis and Discrete Mathematics, 2 (2008), 69-91.
[8] D.F. Bailey, Counting arrangements of 1's and - 1's, Math. Mag., 69(1996), 128-131.
[9] E. Barcucci and M.C. Verri, Some more properties of Catalan numbers, Discrete Math., 102(3) (1992), 229-237.
[10] K. Baur and V. Mazorchuk, Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras, Journal of Algebra, 372 (2012), 85-107.
[11] M. Bennett, V. Chari, R. J. Dolbin and N. Manning, Square-bounded partitions and Catalan numbers, J. Algebraic Combinatorics, 34(2011), 1-18.
[12] A. Bernini, M. Bouvel, L. Ferrari, Some statistics on permutations avoiding generalized patterns, Pure Mathematics and Applications, 18 (2007), 223-237.
[13] X. Chen and W. Chu, Moments on Catalan numbers, J. Math. Anal. Appl., 349 (2) (2009), 311-316.
[14] W.Y.C. Chen, N.Y. Li, L.W. Shapiro and S.H.F. Yan, Matrix identities on weighted partial Motzkin paths, Europ. J. Combin., 28 (2007), 1196-1207.
[15] G.-S. Cheon, S.-T. Jin, Structural properties of Riordan matrices and extending the matrices, Linear Algebra and its Appl., 435 (2011), 2019-2032.
[16] G.-S. Cheon and H. Kim, Simple proofs of open problems about the structure of involutions in the Riordan group, Linear Algebra and its Appl., 428 (2008), 930-940.
[17] G.-S. Cheon, H. Kim and L.W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312(12-13) (2012), 2040-2049.
[18] L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht, 1974.
[19] B.A. Earnshaw, Exterior blocks and reflexive noncrossing partitions, MS Thesis, Brigham Young University, 2003.
[20] W.J.R. Eplett, A note about the Catalan triangle, Discrete Math., 25 (1979), 289-291.
[21] S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Taylor expansions for Catalan and Motzkin numbers, Adv. Applied Math., 29 (2002), 345-357.
[22] I. Fanti, A. Frosini, E. Grazzini, R. Pinzani and S. Rinaldi, Characterization and enumeration of some classes of permutominoes, Pure Math. Applications, 18(3-4) (2007), 265-290.
[23] D. Foata and G.-N. Han, The doubloon polynomial triangle, The Ramanujan Journal 23(1-3) (2010), 107-126.
[24] H.G. Forder, Some problems in combinatorics, Math. Gazette, 45 (1961), 199-201.
[25] I. Gessel, Super ballot numbers, J. Symbolic Comput., 14 (1992), 179-194.
[26] V.J.W. Guo and J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory, 130 (1) (2010), 172-186.
[27] J.M. Gutiérrez, M.A. Hernández, P.J. Miana, N. Romero, New identities in the Catalan triangle, J. Math. Anal. Appl. 341 (1) (2008) 52-61.
[28] S. Heubach and T. Mansour, Staircase tilings and lattice paths, Congressus Numerantium, 182 (2006), 94-109.
[29] P. Hilton and J. Pedersen, Catalan numbers, their generalization and their uses, Math. Intelligencer, 13 (1991), 64-75.
[30] S. Kitaev and J. Liese, Harmonic numbers, Catalan's triangle and mesh patterns, Discrete Math., 313(14) (2013), 1515-1531.
[31] D.E. Knuth, The Art of Computer Programming, 3rd edn., Addison-Wesley, 1998.
[32] A. Luzona, D. Merlini, M.A. Moronc and R. Sprugnoli, Identities induced by Riordan arrays, Linear Algebra and its Appl., 436 (2012), 631-647.
[33] S.-M. Ma, Some combinatorial arrays generated by context-free grammars, Europ. J. Combinatorics, 34(7) (2013), 1081-1091.
[34] D. Merlini, Proper generating trees and their internal path length, Discrete Applied Math., 156 (2008), 627-646.
[35] D. Merlini, R. Sprugnoli and M.C. Verri, Some statistics on Dyck paths, J. Statistical Planning and Inference, 101 (2002), 211-227.
[36] D. Merlini, M. C.Verri, Generating trees and proper Riordan arrays, Discrete Math., 218 (2000), 167-183.
[37] P.J. Miana and N. Romero, Computer proofs of new identities in the Catalan triangle, Biblioteca de la Revista Matemática Iberoamericana, in: Proceedings of the "Segundas Jornadas de Teoría de Números", (2007), 1-7.
[38] P.J. Miana and N. Romero, Moments of combinatorial and Catalan numbers, J. Number Theory, 130 (2010), 1876-1887.
[39] J. Noonan and D. Zeilberger The enumeration of permutations with a prescribed number of "forbidden" patterns, Adv. in Appl. Math. 17 (1996), 381-407.
[40] M. Petkovs̆ek, H.S. Wilf and D. Zeilberger, $A=B$, A. K. Peters, Wellesley, MA, 1996.
[41] L.H. Riddle, An occurrence of the ballot numbers in operator theory, Amer. Math. Monthly, 98(7) (1991), 613-617.
[42] D.G. Rogers, Eplett's identities for renewal arrays, Discrete Math., 36 (1981), 97-102.
[43] D.G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math., 22 (1978), 301-310.
[44] L.W. Shapiro, A Catalan triangle, Discrete Math., 14 (1976), 83-90.
[45] L.W. Shapiro, Bijections and the Riordan group, Theoret. Comput. Sci., 307 (2003), 403-413.
[46] L.W. Shapiro, S. Getu, W.-J. Woan, L.C. Woodson, The Riordan group, Discrete Appl. Math., 34 (1991), 229-239.
[47] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
[48] R. Sprugnoli, Combinatorial sums through Riordan arrays, J. Geom. 101 (2011), 195-210.
[49] R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math., 132 (1994), 267-290.
[50] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, New York, 1999.
[51] Y. Sun and L. Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths, Europ. J. Combinatorics, 2014, to appear.
[52] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11 (1991), 195-204.
[53] Z. Zhang and B. Pang, Several identities in the Catalan triangle, Indian J. Pure Appl. Math., 41(2)(2010), 363-378.

