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1. A SURVEY ON RECURRENCE FORMULAE FOR SUMS WITH
BINOMIAL COEFFICIENTS AND A NEW FIVE-TERM FORMULA

9 by a liuear series transformation
»interested o linear recirrences
we

Sinve Apery [1] has proved the wrationality of ((3) in 197
with powers of binoniial coeflicients, many mathematicia
for finite smns of powers of binomial coeflicients, Apery’s prool is based ou the recur
formula

{1+ 13ty (3dn® + Bln? 4 2Tn + 5ty o+ 0y = 0 o

for the sum

- (Z)(’ . ‘)2

k)
R. Askey and J A Wilson [2] found a three-tenm recurvence tormula for

i—: (n‘ nbadd\(n+k4bge (’n o ke j‘>
o \k ) ( ko dd ) ke b e ) ko f e

where a4 d = b+ ¢. From this identity one can devive (1) by taking

It is well-known that ...

2’-’: (n) (/A 4 k
k) k k

(591 + 35) (1 = 1)z + (20507 ~ 1200 — 60n + 35)u, .y

satisfies a four-tern recurrence formnula:

(28010 + 136502 = 3760 ~ 240), ~ 2501 — 24) (0 + 1) ungr = 0

k

Y\ e k e ,
l ( ) satigfies a three-term recurrence formla

k=0

Wity t 4 (1107 4 Lo+ Bt = (0 Dy = 0

n n+h o ) it
salisties a five-term reenrrence fornmnla, [2):
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P {7ty b pe (Vo b pa ()t 4 pa() g1+ po(n )t

with integer polynomiands py, po. py. paps of degree 8

Sttty 4 (TR 4 Trot 2)ity ~ (1 + Doppy = 03

84
}_4 (l) satisties o three-term recurrence formula, (2], [8):
) Y

du(dn ~ )40+ Dty -+ 2020 + D3 + 30+ Dy~ 0+ l)iu,,,{ L= 0.

M.A. Perlstadt {13] has proved fone-term veenrrences for

" LN
Y 2 g~ ‘
E_’ (k) and L (/\)

k) k)

G

by using a computer, namely

9

32(550% 4+ 330+ 6)(n - 1)y

(1941508 - 27181n" + 74580 -+ 828903 - 95602 ~ 276n + 96)q...
(11E5AS 4 69305 - T320% — T1En® 4 4502 + 2100 + 50)w,
F(5502 = TTn+ 28) (1 + Dupag = 0
and
26m ~ T) {200 = )60~ 5HOLn® + Oln® 4 350+ 5) (- 1 s

20° -+ 18531107 + 296005 ~ 31631n - 88n* + 523007 - G10n?

~[153881n" ~ 30
4400 4 100)uty,.. ¢

- (3AB80 4 172007« 204708« 22050° + 9010t 4 1190n" 4 B2n® ~ 2280 - G0)uy

(01 - 1822 4 126m - 30) (i 4+ DPuy iy = 0

respectively. A new approach to definite and indefinite smniuation problens is by the applica-
tion of algovithmic technigues for swamation, Two of several powertul methods ave known as
Gosper’s algorithm for indefinite hypergeometric summation as well as Zeilberyer's algovithm
for definite hypergeometric sinnmation. Tn [11] the up-to-date algorithmic techniques ave de-
seribed in detail and worked out using Maple programs, Particularly, in chapter 7 of the book
Zeilberger's algovithm is introduced as an extension of Gosper’s algorithm with which one can
not only prove hypergeometric identitios but also sum definite series in many cases, provided
that they represent hypergeomeiric lerms, The corresponding Maple procedure is printed out
on page 100, In what follows, we apply Zeilberger's algorithm to prove some resnlts, but also
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introduce a very simple numeric algorithm using only standard Maple commands, which allows
to compute easily all the recwrrence formmlae given in this paper. First, let us consider the
sums

" x 2 7 N\ 3
n n+k
thy, 0 = Z (I) ( b )
k=) i '
n n n+l nt+l n+l, . 5
i ( t 1 1 ] i ) @)

i ‘)2 +k\?
i =3 k- (‘x;) < k )

bez=l)

> : [ —n+ =71 + +d +2 n+2
. 1)_, _ -',F.i( n') 1 n‘?+ 1 n ] n ) n -+ “) ) 3)

On the one side we shall state a linear recnrrence formula for (2) resp. (3), on the other side
we prove a muich simpler identity involving both swus. By Zeilberger's algorithin, we first got
the following result.

Theorem 1: For all positive integers n the recurrence formulae
Prn)uszn + Po(n)ty o+ Pa(nug o + Pi(nYugiro + Ps(n)unsop = 0
and
Qu(n)up-21 + Qa1+ Qs 1 + Qa(11)Unsr 1 + Qs(Mitnyny = 0
fwld for polynomials Pi(n). Qi(n) fori= 1,2,3,4,5. Particularly. one has:
Py(n) =
n*(n - 1) (8437190% + 48405510° + 111789790 + 133177050% + 86659020+
+2035212n + 406064)
Pa(n) =
n2(3627991701" + 13558385907 + 1270478370° — GOIGIT38.T — 11057480005 4
+205339180° + 48T084061" - 53646280 - 1180916202 + 6546440 -+ 1218192) |
Py(n) =
173637370202 + 00618530580t + 222771183130 ™ + 231857048931 + 809475207515 —
515954277507 ~ 5379560162n" — 7358205961" + 85494206007 + 33071519605 —
= 279307520 — 338394400 — 4927520
Py(n) =

= (n -+ 11096834700 + 629271630n" + 1276828039n° + 88322168607 — 3114919957° -
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—513643850n° + TRATEB2n" 4 1186198200 + 524952n% — 100386720 + 143520) ,

Py(n) =
(n+1)%(n + 2)1 (84371908 — 221763n° ~ 367991n? - 1320194 + 3693602 — 189520 + 1196) ;
Qi(n) =

o (- 1)3(R437190% 4 699700507 + 2603134808 4 50399270n° -+ 624382270 + 487587330+
+23462050n% -+ 63617920 -+ 744400) |
Qa(n) =
n*(n+ 1)(36279917n'" 4 19203146400 + 3253666820 + 6386715115 — 33004084157 —
= 172445298n° + 193400596n" + 1245852990 ~ 57601426n0" — 40293765802 -+ 67069601+

83264) .
Qs(n) =

17363737020 " 4 126634625880 + 3761707304902 + 5652076281 20" + 4064056263110+

+4324668130n" — 1IBTAO5G8437Tn® — 482727462407 + 155942033 1n" + 75239235405

~ 460798228 — 1942315600 + 70509632n% + 166624000 + 6653440 |
Qu(n) =
(0 1)* (109683470 + 6902437100 + 1628605979017 + 16208052861 + 2862525361." -
~H54888138n7 2108598690 + 10485420617 + 363401080 — 263237207° — 797088002+
+4292352n + 1589760) .
Qs(n) =

4 18476n"

550n° - 0997Tn® + 77252n

(n -+ 1)%(n + 2)*(843719n% + 24725307 ~ 32
202400% — 14720 + 9944) .

Assuming five-termn recirrence formulae for Uy o and 1y, y . one can compute the coeflicients
of the polynomials P and Q;. respectively, by the following simple Maple-procedire solving n
linear quadratic system of equations. Here is the procedure for -, o

sowith(linalg) :

> [ == sum(binomial (1, k)2 « binomial (1 + k, k)8, k = 0..1) :
> g2

> pi=ix(l+yg):

> hl
> h2 = m = —m mod(g + 1) :

> M= Matriz(p.p, (n,m) — (n+ 2 (h2(m)) = f{hl{n.m))) :
> b= Vectorfrow)(p,n — 0)

= (n,m) =+ floor((m ~ 1)/(1 + g)) :

> = linsolve (M, by;
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The coeflicients a; . of the polynomials

g
pilz) = > tipzt % (#=1,2,3,45)
k=0
are the nuknowns of the homogeneous (p x p)-system. The matrix of the system is given by
4 P X pi-sy Yy 8 3

(' f(n=2),n?  fln—2), ., fn~ 209 fln - 1), 09 fln - 1), ..., fo=1)mP f(n)... ¢

nf fn+2). .., fn+2)),-4
The output of the above Maple-procedure is a one-dimensional vector space in 7. The
smallest nontrivial integer solution of this space (apart from its sign) gives the desived integer
coefficients

LML B

(TN T, gr02,0s - 2,97 3A5 000 ar, _q)’

Choosiug g smaller than 12, the system of equations has no nontrivial solution, which proves
that there are no polynomials in the five-term recwrrence formula for w,y baving a degree
smaller than 12 cach.  Conversely, the existence of a nontrivial solution for g 12 does
not prove that the recurrence formula in Theorem 1 holds for all positive integers n. But this
follows from Zeilberger's algorithm, which produces the same polynomials as the above Maple-
procedure. To compute the eocflicients of the polyuomials @, in Theorem 1, the algorithm
works by setting

= sum(k « binomial (t, k)2 * binomial(t 4 k, k)3, k = 0..4) :

Put ¢ = 14: there is no nontrivial solution for any smaller g.
By the result of the following theorem a much simpler linear equation is found involving
hoth sums, w, y and w,
Theorem 2:
12160 + 125) up10 — (3471n* + 6057n® + 4278n% + 14720 + 207) 1, o+
Lo 4
+23(n + 1) wpa1,0+

n2(76n +41) w11 + (11610% + 108302 + 2070 ~ 28)u, g = 0 (4)

This five teru reenrrence does uot follow antomatically froan Zeilberger's algorithm. The
idea to find the coefficients of the polvnomials is to modify the above Maple-procedure in the
following way:

t = sum(binomial(t, k)2 « binomial(L + k. k)" 3. k
L= sum(k « binomial (t, k)2 « binomdal (t + k, k)3, k =

(m, g) ~ floor(abs((m — 1)/(2 % (1 + g)) ~ 1/2)) :

=0ty
0..4):

4:
>pr= Gk (l4g):
>kl (nym) = n-+ floor((m - 1)/(1+g)):
> h2:= n— —m mod{g + 1) :

> M= Matriz(p, p, (nom) — (n 4 4) (h2(m)) * (1 - r(m, g)) * e(h1{n + 3. m))
+r(m,g) = fUl(n,m)))) -

Vectorlrouwl(p,n — 0) :

linsolve( M, b);
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s k,n with 0 < k < n, we put

Proof of Theorem 2:  For integ
2 3
i n+k
Aak = (I.) ( x ) ;

Ag = n3(216n + 125),

Ay = B (T6n + 41) ,

By = — (3471n" +6057n® + 42781 + 14720 + 207)
By = 1161n* + 1083n* + 207n - 23,

Co = 2n-+1)",

Dy = 4(144n% + 252n? + 1380 + 23) |

Dy = 4(2961° + 288n + 69),

Lo = Ao+ By + Co + Dik + Dyk?

where Ay =0 itk <Oork>mn.

The proof of the theorem is based on the identity
(Ap+ Ark) Atk + (Bo+ Bik) Mg + Codrprk
= Lakdngk = Lnk-1An g1 (5

n. We divide (5) by A, note that

<n.Let 0 <

forn>1,0<

An-1x  nln-

Putting these terms into (5), multiplying with (n + 1)(n + k):’(n — k4 l)2 and arranging the
terms with respect to the powers of k, we get

{(4o + By + Co)n®(n+1)"}
H{=2A40n  (n + 1)(2n? +3n + 1) + Byn?(n+ 1)(n? +4n + 3)
+3C 3 (n + 1)2 (20 + 1) 4 (A Bond(n -+ l)"}k
+{Agnln + 1)(6n2 + -+ 1) ~ Bonl(n+ 1)(20° — 3)
+3Con{n -+ 1)(5n* + bn -+ 1) = 24102 (n+ 1)(2n* + 3n + 1)
+B1n?(n + 1)(n® + 4n + 3) k2
H =2Agnin + 1)(2n + 1) — Bo(n -+ 1)(2n® + 4n - 1)
+Ch(2n + (1007 + 10n + 1) + Ayn(n + D(6n® +6n + 1)
-Byn(n + 1)(2n? - 3)}k*
HAgn{n + 1) + Byln -+ 1)1~ 2) + 30, (5n* + dn+ 1)
~2A1n(n+ 1){2n + 1) = Bi(n+ 1)(2n2 +4n — 1)}1k!
H{Bo(n+1) +3C(2n + 1) + Ayn(n+ 1) + By(n + 1)(n - 2) 143
H{Co + By(n + 138
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= {(Ap + By + Copn®(n + 1)*}
+{ Dyt (m ])3 4+ (Ag + By + Coyn?(n + 1)(n? + dn + 3)}k
H{ D2 (n -+ 1)(n? -+ An -+ 3) + Dyn®(n -+ 1)°

~( Ay + By + Co)nln + 1)(2n2 — 3)}k2
H+{=Din(n+1)(2n2 — 3) + DonP(n+ 1)(n? + 4n + 3)

~(Ag + By + Co)(n + ]_)('..).Ilz + 4 — 1)“;3
A{=Dy(n+ 1)(20% + 4dn ~ 1) ~ Dynln + 1)(2n* ~ 3)

+(Ag + By + Co)(n + D)(n - 2}
+{Dy(n+ 1)(n~2) ~ Dyln+1)(2n2 + 4n — 1) + (Ay + By + Co)(n -+ 1) 45
H{Dy(n A+ 1) + Dy(n + 1) (n - 2)}°
H{ Dy -+ 1)}E"
~{=Dy(n+ 1) + Dy(n+ 1) + (Ap + By + Co)(n + 1) }&°
~{ Dy (14 1) — 2Do(n + 1) k8
~{Dy(n + 1) IE7

-

(6) may he considered as a polynomial in k of degree 7. Therefore it suffices to treat the
polynomials in n belonging to the same power of & by straightforward computations. This
can be simplified if we put in for n sufficiently many of the numbers 0, 1,2, .. to check the
identities of the polynomials in . Hence (5} is proved. Finally, we swm up from & = 0 to
niu (5). We have

n
Z(Ln,}.)\rr,k o TnpedMam=t) = DN
=)

(by Ap, -1 =0) and

n n-1
~ =
§ A1k = 5_‘:\,, 1k = fln-1p
k=0 k==t

(by Aum b = 0).

So one gets

n
(.%Un 10+ By ftno + Co - z ne A-) F A ptu-1,0 + B = By A -

k=0
To finish the proof of the theorem it sulfices to shiow that
CoAngrnsr = Lan Ay s
which is equivalent with

8Co(2n 4+ 1 )’)'

Here the identity

(4 1)* (Ao + Bo+ Cy + Dyn+ Dyn®) = 0.

<&

Anblntl (2-(2u + 1)\):5

A n41
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is used. The last but one identity can be verified by straightforward compntations. The proof
of the theorem is complete. 0
It has been already mentioned in the introduction that

"
Upy = g

k=0

isfies a five-term recurrence formuda with integer polynomials of degree 8. Morcover, the

s true for the sum
2N ik
Uy, == Lk(}\) ( & )
-0 /

with integer polynomials of degree 10. Shuilarly to the result of Theorem 2, one can prove a
much simpler linear identity involving both sws, w4, ¢ and v, 12

Theorem 3:
202 (3M3n + 135) ta—1.0 + ( 412n° + 53702 + 272n + 51) vpg-
— 17(n + l):” Uyt
+06n(Sn + 3y v,or1 ~ (1620% + 990 + 1Ty 0,5 = 0.

The arguments in proving that result are the same as in the proof of Theorem 2. The coelficients
of the polynomials can be found by a Maple-procedure adapted to v,y and v, 4.

2. EXPLICIT FORMULAE FOR THE LIMITS OF SOME
SERIES WITH BINOMIAL COEFFICIENTS

It is of great interest that Apery’s proof of the irrationality of ((3) leads to an infinite

series consisting of terns associated with ('), which converges rapidly to ¢(3):

@

(9)

(10)

(8), (9). and (10} can be obtained from

2 {arcsin 2}
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by computing the first and second devivative at the point z = & (see [15], [3]). The same

arguments yield (at the point z =

(1)
(12)
(13)
(13) can be found in [10]. Tt was conjectured by A. van der Poorten that
m 36
H [ = _7,) = o 14
W= g) "1 o

Finally this conjectwre was proved by A. van der Poorten himself {14], [15] and by H.
Clohen [4] . In the same paper 4] H. Cohen has generalized the ideas of R, Apery for {(2r-+1)

and ((2r) (r > 1}, which leads (unfortunately) to no vew irvationality proofs, but to some new
identities. For instance:

for some related identities see [12].

In the following we state the limits of some related sums; all these identities can be proved
by using the real (or complex) Taylor expansion of a certain function, or by taking advantage
of the known value ol a certain integral. For more results we refer the reader to the chapter
on numerical power series in {10}

9

2 g)

(17

(18)

"\t i i (19)

=) e o
n+1) &)
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These identities are proved by the integral

1
T mz0).
2(2m+ 1) () R

(see [9.v0l.2,331-30]), and by [9,vol.1,231-10b].

(20)
(21)
(22)
(23)

arcsin z == \:‘ ) (lzf< 1)

T L 2n - W SRR

n=0
and Abel’s { theorem. For the proof of (22) one may use the tables in [9.vol.2,341-6a].

(24)
(25)

For a proof of (25) it is useful to apply the Taylor expansion of the function (arcsine)?. The
identity then follows by computing the limit on the right side of the identity

i
Iim/ ( _,
& '”v e

= ],JL,‘ [ ~(aresint) - (cotaresint) |
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The identity in (24) follows easily applying (10). (25). anc = 7‘,

The series §; and Sy from the following theorem involving binomial coefficients (,z’)
depend on a parameter They satisfy a homogeneous three-term x
Applications of the identities (7) and (i) are given in Theorems 5.6 b

a connection between the numbers V3 and V5 log p with p = (1 4+ V5)/2.
2L f )

rrence formula each.

Theorem 4: For ceery integer k > 0 we have

.
@ Sk = -
@ si0=3 (2n+1)(2n+3)- ... 20+ 2k -+ 1) (*)

=)

(i) @k+3)" Sk +2)+4(k+2) - Si(k+1)~3-Si(k) =

N (~1)"
i) So(k) = e 8y,
a al Z; (20t D@n+8) . (2n+ 26+ 1) ()

. 1+v5 o %
e | BFE 1 ] .
i G Z;zk Sy

(i) (2k+38)* Sok +2) — A3k +1) - Salk + 1)+ 5 Sy(k) = 0.

For instance, we get for k = 1,2,3:

205
Bs(2) = —[3”-1 log (

I the case when b equals to zero we define as nsual Z:]U( ) tobe 0, and 1:3- ... (2k - 1)
to be 1 :

(20)

(27)

ow and they provide
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Proof:  The linear three-termn recurrences for Sy (k) and Sy(k) from this theorem are
homogeneous ones. We apply herger’s algorithm to both sums. Then one gets two inho-
niogeneons first order reenrrences:

351 (k) + (2k+ 1)1 (k+1) = 4- »( 589 (k) = (2k 1) S (k+ 1) = 4

l}i'

One easily verifies that

or

+(1:3:
which gives the left recwrrence fornuda in (28). To prove the identity in (i) it suffices to show
that it holds for & = 0, since both sides in () satisfy the same linear first order recurrence
formula. So it remains to prove (26). For this purpose we apply the results from (9) and (16).
By

(n =z 0)

we get

which gives (26). By similar arguments one shows that the identity in (7id) holds by using (13)
and (16).
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It can easily be seen that the three-term reciurence in (i) follows from the first mrlm
recurrence in (29). Writing down this equation a second time with k replaced by & + 1 and
then multiplying by (2k + 3), one gets an identity having the same right side as above. So
a linear equation with respect to S7k), Sk + 1), and Sf(k + 2) results which proves the
identity from (ii) by St(k) = Si(k). The recurrence in (iv) can he proved analogounsly. This
finishes the proof of fhv theorem. 0O

The identitics in (1) and ““,) also follow from the integral

1 B 2" . n}
/ sin®*( . cos? iy dt = 7
Joy

(2k +1)(2k +3) - 2k 420 + 1)

@n+1)E2n+3)- .. 2n+ 2k +1) (3

where 2(k) = 1.8.5- 7., (2k ~ 1) (k > 1), 2(0) == 1 (see [9,v0].2,331-21c]). We leave the
details to the reader.

Finally we show by the precec ling results that the ordinary hype rgeomet ric
the announced close connection between the numbers Vir and Vilog p with /
Putting

ies provides
= (L+/B)/2.

£~ " om!

i {(m2>1),

Oy 1

one easily checkes by straightforward ealenlations that

Pt -1 e e
Gl 1F i 2 B 30
2~ 1) @n T ‘.?_;D i+ (30)
«F (1. Lin+

holds for all integers n 2 1. Here,

Fla,byeyx) = oF, (? bl,;:)

denotes the ordinary hypergeometric function. A simila identity can be found for 87, So we
have proved the following result.

Theorem 5: For cvery positive infeger n there are rationals q,r, s,t such that

F(l.l;n-rr i’ll) = qVar +7

1-‘(1.1;:1 + ;

and

= sv";’:)/y i
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hold.
But two more general identities can be proved. Let
1 1
8y = (1+§+~ -‘—;—) -logn (n>2).
Oune has
sy =y + Ot 22,

where 4 denotes Euler’s constant. In [6] the author has shown that

. _qyek(n kT =1\ () M«..'(L' 1!
Z( 1) ( B ) I.-) Skpr = ¥+ 0 G

raard +1
holds for all integers » > 1 and 7 > 2. The specific linear form in Sryee ey Spge with integer
coetf (s converges more rapidly to v than the basic series s,. The unrlcrlym;; idea of that
eries ssformation goes back to an identity proved by J. Ser in 1925 [17]. The form of Ser’s
resulL the author has used in [6] is the lollowing one:

Snpr = Y

(n 2 0)

with explicitly given rationals ¢,,,. As can be seen by (30), a similar series transformation can
be applied to S (and to Sy, of course). Finally, one gefs:

s satisfying m 2 2n. Then there are rationals

Theorem 6: Let n and m denote positive integer

q.r, 5.t such that

/3 (n.n + Lim 4+

) = q»/f'zﬂ i
and
. } 11 -
Flan+Lm+ 374 = sVhp+t

hold.
For instance, we have for n =5 and m = 10;

¥ (5‘ 5}
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