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1 . INTRODUCTION 

In developing a Zeckendorf theorem for double-ended sequences , Hoggatt and 
B ickne l l - Johnson [1] found a remarkable p a t t e r n a r i s i n g from app ly ing K l a r n e r f s 
theorem [ 2 ] , [3] on s imul taneous r e p r e s e n t a t i o n s u s i n g F ibonacc i numbers. Here 
we s tudy the p r o p e r t i e s of the a r r a y g e n e r a t e d , a f t e r f i r s t p r o v i d i n g enough 
background in fo rmat ion to make t h i s paper s e l f - c o n t a i n e d . We s h a l l show r e l a -
t i o n s h i p s wi th the Lucas numbers, t he Wythoff p a i r s equences , and g e n e r a l i z e d 
Wythoff numbers [ 7 ] , 

David Kla rne r [2] has proved 

K l a r n e r 1 s Theorem: Given nonnega t ive i n t e g e r s A and J3, t h e r e e x i s t s a unique 
s e t of i n t e g e r s {kl9 k2» k39 . . . , kr] such t h a t 

A= \ + ** ,+ ' • • + **,. B = Fki + 1+Fk2+1+ - . . +Fkr+1, 
for \k^ - kj\ ^ 2 , i ^ j , where each Fi i s an element of t he sequence { F ^ } ^ * 
F . A 1 = F. + F. , , F, = 1, F„ = 1. 

%+l ^ ^ - 1 ' 1 ' 2 

Thus, to represent a single integer m > 0, we merely solve 
A = 0 - \ + 1 + V x + •'" +FK^' B-m-Fki +Fkz + ••• + F^ , 

which has a unique solution by Klarner?s Theorem. A constructive method of 
solution is given in [3], and we will soon use this idea to generate a most 
interesting array. 

We shall also need some properties of Wythoff pairs (an, bn) 9 which are 
formed by letting a± = 1 and taking an as the smallest positive integer not yet 
used, and letting bn - an + n. Wythoff pairs have been discussed, among other 
sources, in [4], [5], [6], [7], and [8]. Early values are shown below. 

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

an: 1 3 4 6 8 9 11 12 14 16 17 19 21 22 

bn: 2 5 7 10 13 15 18 20 23 26 28 31 34 36 

We list the following properties: 

ak + k = bk (1.1) 
abn

 = an + hn and bbn = an + 2&n (1 .2 ) 

&an = &n - 1 and ^an = a n + bn - 1 (1 .3 ) 
( 2 , fc = a n 

U» & = bn 
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(39 k = an 
hk+i ~ hk = \ (1.5) 

U, k = bn 

Further, (an9 bn) are related to the Fibonacci numbers in several ways, one 
being that, if A = {an} and B = {bn}, then A and 5 are the sets of positive 
integers for which the smallest Fibonacci number used in the unique Zeckendorf 
representation has respectively an even or an odd subscript [9]. 

Also, the Wythoff pairs are related to the Golden Section Ratio 

a = (1 + /5)/2, 

and recall that Fn = (an - 0n)/(a - (3), where 3 = 1/a, as 

an = [na], bn = [na2], (1*6) 

where [x] is the greatest integer in x. 

Lastly, we recall the generalized Wythoff numbers An9 Bns and Cn of [7] 
with beginning values 

2 3 4 5 6 7 8 9 10 11 12 13 14 

4 5 8 11 12 15 16 19 22 23 26 29 30 

7 10 14 18 21 25 28 32 36 39 43 47 50 

6 9 13 17 20 24 27 31 35 38 42 46 49 

and the following properties useful in this paper: 

An = 2an - n (1.7) 

Bn = an + 2n = bn + n (1.8) 

Cn = an + In - 1 = bn + n - 1 = aa^+ n (1.9) 

Cn + 1 = Bn and Cn - 1 = A U n (1.10) 

n: 
A ' 

Bn-

1 
1 

3 
2 

1 , n = bk 

3 , n = ak 

i4 - 4 = < ( l . H ) 

3 , 

4 , n = a-, 
Bn+1 - * „ - < a -") 

C - C = < ( 1 - 1 3 ) 
u n + 1 u n ^ 

' 3 , n = £>fe 

^4, n = ak 

An = a„ + In - 2 and Bn = 3an + n - 1 (1 .14) 
*« 

\ ' \ + 1 -AK+i ( 1 ' 1 5 ) 

The sequences 4 „ , £ „ , and C„ d i v i d e the p o s i t i v e i n t e g e r s i n t o t h r e e d i s -
j o i n t s u b s e t s , c l a s s i f i e d by Zeckendorf r e p r e s e n t a t i o n us ing Lucas numbers 
[ 9 ] . 

1985] 309 



GENERALIZED WYTHOFF NUMBERS FROM SIMULTANEOUS FIBONACCI REPRESENTATIONS 

2. AN ARRAY ARISING FROM KLARNER'S DUAL 

ZECKENDORF REPRESENTATION 

Recall the Klarner dual Zeckendorf representation given in §1, where 

A = Fv , + F + • • • + F, A n = 0 
1 2+ (2 1) 

B =FK + ^ 2 + ••• + **, = ̂ > 

where n = 1, 2, 39 . .., \k^ ~~ kj\ ^ 29 i ^ j , and the Fibonacci number Fj comes 
from the double-ended sequence {F--}™^. The constructive method described in 
our earlier work [3] for solving for the subscripts kj to represent A and B 
leads to a symbolic display with a generous sprinkling of Lucas numbers Ln 
(L1 = 1, L2 = 3 , Ln+2 = Ln+± + Ln) and Wythoff pairs. 

Here we use only two basic formulas, 

F „ + 2 = F n + 1 + F n and 2Fn = F n + 1 + Fn_2, (2.2) 

to push both right and left in forming successive lines of the array. The dis-
play is for expressions for B only; A is a translation of one space to the 
right. At each step, B = n and A = 0. 

The basic column centers under F_1. We continue to add F_1 = 1 at each 
step, using the rules given in (2.2) to simplify the result. For example, for 
n = 1, we have F_x = 1. For n = 2 9 F_ x + F_x = 2F_ x = F0 + F_ 3 = 2. For n = 3, 
F-i + F0 + F-3 becomes Fx + F-3 = 1 + 2 = 3. We display Table 2.1 on the fol-
lowing page. 

Many patterns are discernible from Table 2.1. There are always the same 
number of successive entries in a given column. Under F_2 there are Li; under 
F_39 L2; under F_h9 L3; and under F_£, Lk + 1 successive entries. The columns to 
the right of F_± (under FQS for instance) have Ln ± 1 alternately successive 
entries9 but the same number of successive entries always appears in a given 
column. Also, we notice that once we have all spaces cleared except the ex-
treme edges in the pattern being built, we start again in the middle, as in 
lines 4, 8, 199 48, ..., L2k + 1 , ... . 

Reading down the columns, we write the sequence of numbers first using that 
Fk is its representation. For example, the sequence of numbers using F_x is 1, 
4,8, 11, 15, 19, ..., with first difference Ax = 3 and second difference A2 = 4. 
We want only the numbers first used when reading down the columns, so for F_3 
we would use 2, 9, 20, 27, ..., and ignore 3, 49 10, 11, 21, 22, ... . We list 
sequences appearing beneath Fk in Table 2.1 along with first and second differ-
ences : 

F 0 i 2, 6, 9, 13, 17, 20, 24, 27, ... Ax = 3, A2 - 4 

F1i 3, 10, 14, 21, 28, 32, 39, 43, ... Ax = 7, A2 = 4 

F2: 5, 16, 23, 34, 45, 52, ... Ax = 11, A2 = 7 

F3i 7, 25, 369 54, 72, ... Ax = 18, A2 = 11 

Fh: 12, 41, 59, 88, ... Ax = 29, A2 = 18 

F_x: 1, 4, 8, 11, 15, 19, 22, 26, ... Ax = 3, A2 = 4 

F : 5, 12, 16, 23, 30, 34, 41, 45, ... A, = 7, A2 = 4 
' -2 (continued) 
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Tab1e 2.1 Fn Used To Represent B from Klarnerfs Theorem 

Subsc r ip t n: 

B _9 _ 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

1 x 
2 x x 
3 x x 
4 x x x 
5 x x x 
6 x x x 
7 x x 
8 x x x 
9 x x x x 

10 x x x x 
11 x x x x x 
12 x x x x 
13 x x x x 
14 x x x x 
15 x x x x x 
16 x x x x 
17 x x x x 
18 x x 
19 x x x 
20 x x x x 
21 x x x x 
22 x x x x x 
23 x x x x x 
24 x x x x x 
25 x x x x 
26 x x x x x 
27 x x x x x x 
28 x x x x x x 
29 x x x x x x x 
30 x x x x x 
31 x x x x x 
32 x x x x x 
33 x x x x x x 
34 x x x x x 
35 x x x x x 
36 x x x x 
37 x x x x x 
38 x x x x x x 
39 x x x x x x 
40 x x x x x x x 
41 x x x x x 
42 x x x x x 
43 x x x x x 
44 x x x x x x 
45 x x x x x 
46 x x x x x 
47 x 
48 x x 
49 x x x 
50 x x x 
51 x x x x 
52 x x x x 
53 x x x x 
54 x x x 
55 x x x x 
56 x x x x x 
57 x x x x x 
58 x x x x x x 
59 x x x x x 
60 x x x x x 
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^-3 2, 9, 20, 27, 38, 49, ... Ax = 7, A2 = 11 

12, 30, 41, 59, 77, 88, ... Ax = 18, A2 = 11 

5, 23, 52, 70, 99, ... Ax = 18, A2 = 29 

Surely the reader sees the Lucas numbers 1,3, 4, 7, 11, 18, 29, ..., as the 
first and second differences. In the next section, we write formulas for each 
term in the sequences given, and find both Lucas numbers and the Wythoff pair 
numbers. 

As a final observation, notice that the sequences associated with Fk when k 
is a negative odd integer have different behavior than all the others listed. 
For those sequences, A2 > A-L, and successive differences follow the pattern 
A15 A2, Ax, A2, A2, ..., while all the others have A2 < A-ĵ  and a pattern of 
successive differences that begins Ax, A2, Ax, Ax, A2, ... . 

3. LUCAS NUMBERS AND THE WYTHOFF PAIRS 

We write the general term un for the sequence of numbers first using F^ in 
its representation as observed from Table 2.1 for k ^ 0. 

F0: un = In + an - 1 

F1 : un = n + 3an - 1 

F2: un = 3n + kan - 2 

F3: un = 4n + 7an - 4 

i^: wn = In + llan - 6 

F5: un = lln + lSan - 11 

F6: un = 18n + 29an - 17 

Again we see the Lucas numbers Ln, defined by 

L1 = 1, L2 ~ 3, and Ln+1 = Ln + Ln_±. 

Observe that the last terms are either Ln or one less than Ln9 and the pattern 
of general terms seems to be 

Fk : un = Lkn + Lk+1an - [Lk - (1 + (-l)fe)/2], 

where an is the first member of a Wythoff pair. 

Theorem 3-1- The sequence of numbers first using F^9 k ^ 0, in its representa-
tion arising from Klarnerfs theorem is given by 

Fk: un = nLk + anLfe+1 - [Lk - (1 + (-l)k)/2]. 

Proof: From [8], all Fibonacci representations can be put in the form 

un = (2n - 1 - an)A2 + (an - n)Ax + u19 (3.1) 

where Ax and A2 are the first and second differences and u1 is the beginning 
term of the sequence. By the method of generation of the array, 

(Lk+1, k even 
Wi = { 

[Lk+1 + 1, k odd 
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and A2 = Lk + 2, A± = Lk+3 for k > 1. Substitution of these values into (3.1) 
yields the result quite quickly. 

For k - 09 we note that the sequence for FQ can be written from (3.1) by 
letting Ax = 3 , A2 = 49 and ux = 2. 

The sequence of general terms for the sequences using Fk when k is negative 
gives us a different story. First, take k negative and even: 

F_2: un = n + 3an + 1 Ax = 79 A2 = 4 
F-h

l un = 4n + 7an + 1 Ax = 18, A2 = 11 

suggesting 

F_k: un = nLk^ + anLk + 1 A, = Lfe + 29 A2 = Lk+1 

When & is negative and odd9 we let m = n - 1 and list 

F_1: un = 2/?7 + am + 1 

F_3: un = 3m + 4am + 2 

F : Uv, = 1m + 11a™ + 5 
• 5 °  """ ™ 

suggesting 

* V un = ̂ - l + amLfe + Lk-2 +1-

Theorem 3.2: The sequence of numbers first using F_k in its representation is 
given by 

(i) F_2j: un = nL2j_1 + anL2j + 1; 

(ii) F^i un = 2(n - 1) + an_1 + 1; 

Proof: (i) follows readily from (3.1) by taking 

A l = L 2 j + 2> A 2 = L2j+3> a i l d U l = L 2 j + 1 + l ' 

(ii) is proved by mathematical induction. Note that (ii) is true for early 
values. Study the pattern of successive differences A1 = 39 A2 = 49and by the 
rules for generation of the array, we have 

(3, n - 1 = bi 
Un + 1 - Un = < 

( 4 9 n - 1 = a • 
Assume uk = 2(k - 1) + ak_± + 1. Then9 when k - 1 = bi9 (1 .4 ) l e t s us w r i t e 

wfe+i = 3 + u k = 3 + 2(k - 1) + ak_1 + 1 
= 3 + 2(fc - 1) + afc 

= 2fc + afc + 1. 
When Zc - 1 = a^-, we aga in apply (1 .4 ) 9 and 

uk + 1 = 4 + ufe = 4 + 2(fc - 1) + afe_1 4- 1 

= 2k + (afe_x + 2) + 1 

= 2k + ak + 1, 
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so that uk+1 again has the form of (ii), establishing (ii) by mathematical in-
duction. 

The general case (iii) can be proved by mathematical induction in a similar 
way by using (1.4), if we take Ax = £2j + 2> ^2 = ^2j + 3> and

 ui = L2j-i + 1# W e 

again have Ax when n - 1 = b^ and A2 when n - 1 = aj. 

Corollary 3*2: A second formula for the sequence of numbers first using F. in 
its representation is given by 

F-i 
F 
-(2j + l) 

6»L2*-1 +a^2j'-2 + !• ^ ' > 0 ' 

^n = « + in-x 

i ,])„. + (a , + 1)L0 . + 1, j > 0. 
n-l 2j v n - l '2,7-1 ' ^ 

Proof: Change the form of the sequence for F given in Theorem 3.2 by apply-
ing (1.1): ° 

un = nL2j-x + ̂ nL2. + 1 = nty.! + On^.x + a„i2i-2 + 1 

-V 2 J - -1 +anL2j-2 + ^ 
Again apply (1 .1 ) t o F ^ : 

un = 2(n - 1) + a n - 1 + 1 = (n - 1) + (n - 1 + a n _ x ) + 1 

= n + Vl" 
The proof for F_,2i+i') is s i m i l a r -

If we take k negative and odd, and apply (3.1) to write the terms of the 
sequences, we 

F-i--
F-3--
F-s--

leading us to 

observe 
un = 5n -

un = I5n 

un = 40n 

an - 3 

- han - 9 

- llan - 24 

Theorem 2.3: If /c is odd and greater than 1, then the sequence of numbers first 
using F_k in its representation arising from KlarnerTs Theorem is given by 

F_kt un = 5nFk+1 - Lkan - 5Fk + 1. 

Proof: Let u1 = Lk_2 + 1, A2 = Lk+2, and Ax = Lk + 1 in (3.1) and simplify using 
Lk+2 + Lk = 5Fk+i' 

h. THE GENERALIZED WYTHOFF NUMBERS 

The generalized Wythoff numbers A n 9 Bn9 and Cn of [7] provide another de-
scription of the general term of the sequences arising from using Fk in the 
representation from Klarnerfs theorem. Observe that, for FQ9 

un = 2n + an - 1 = Cn 

by (1.9). Each sequence we have generated is a subsequence of the sequence for 
A n 9 Bn9 or Cn. The sequences for FQ and F_3 contain only C^'s, while the se-
quences for F2k+1 contain only B^s9 k ̂  0. All of the other sequences contain 
A^'s exclusively. 
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Theorem 4.1: The sequences arising from first using F2k+i9 ^ ̂  ̂ s i n t*le reP~" 
resentation from Klarnerfsi Theorem are 

F1: un - Ban 

F3: un = Bb 

F5: un - Bb 
D n 

F2k+1, k> Oi un = flfc 

kS^ban 

Proof: We simplify the form B^ to demonstrate that un has the form given by 
Theorem 3.1. For F19 observe (1.14). 

For F35 we apply (1.8) and then (1.2) and (1.3) in sequence finishing with 
(1.1) to obtain 

Bban= aban
+ 2 ^ n = (a*n+ b«J + 2K " &n ~ D + 3 ( a n + fcn - 1) 

= 4&n + 3an - 4 = 4(n + an) + 3an - 4 = hn + 7an - 4. 

For F55 we apply the same sequence of steps repeatedly to reduce the sub-
scripted subscripts. For F2k+is t*ie eduction of subscripted subscripts will 
always follow the same steps repeatedly. We show Lemma 4.1 to demonstrate one 
step of the subscript-reduction process and to show that we will end with the 
required form in terms of Lucas numbers. 

Lemma 4.1: L.+ la, +Li<h._ =ii+3%_
 +Li+2<h,. 

Proof: Apply (1.2) followed by (1.1). 

Li+iabh
 + L i ^ b . - Li+iabb

 + L i + i ^ b . + Li^b. 
)s^ba„ * \>» k^ba„ ls^a„ 

h+iabb. + h+2^b._ 

-N>«. kN.'2>a 

L. a, + L. l.bh + a, \ 

LH-3ahb. + Li+Z^b._ 

Theorem 4.2: F„: wn = Cn, *•_ : u„ = 4 x, and f_ : u„ = Ca 
an -1 + i 

Proof: The form for F0 follows by comparing (1.9) and Theorem 3.1. For F_lt 
we apply (1.11) and (1.14) and then compare with Theorem 3.2: 

Aan_1 + 1 = Aan.y + 3 = (an_x + 2(w - 1) - 2) + 3 = 2(71 - 1) + an_x + 1 
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For F_3, by (1.9) followed by (1.3), (1.4), and (1.5): 

Cn .. = an + 2a „ , , - 1 = (ba . Al - 1) + 2an 4.1 - 1 
•Lan_l + l a a n _ l + l n-x + l- X = (V1 +1- 1} + 2 a « B - 1 + l 

= (Z?a + 3) - 1 + 2(aa + 2) - 1 = fca + 2aa + 5 
v an-l ' an-l ' an-l "n-1 

Next, use (1.3) finished by (1.1), 

Caani + 1 " K-i + *„-i - D + 2»n-i - 1) + 5 - an_x + 2 2 ^ + 2 

= an_1 + 3(an_x + (n - 1)) + 2 = 3(n - 1) + kan_x + 2, 

and compare with Theorem 3.2. 

Theorem 4.3: F2: un = Aa = A^ +1 

F h l un = ^ , +i 

F2k, k> 0: un = Abb + 1 

kK^*, 

Proof: For F2, use (1.15) and (1.14), followed by (1.2) and (1.1): 

A„ = ah + 2bn - 2 = (bn + an) + 2bn - 2 
On n 

= 3(n + an) + an - 2 = 3n + 4an - 2 

Then compare with un as given in Theorem 3.1. 

For Fh9 first apply (1.15) ,and then (1.7). After than, use (1.2) followed 
by (1.1) repeatedly to reduce the subscripted subscripts. 

4 xl = 4 + 1 = 2a, - bh + 1 = 2 (a, + bh ) - bh + 1 
" n un an 

= 2aban + (aban+ Kn) + 1 = 3(aa n + ban) + ban + 1 

= 3 a a n + 4 ( a a ^ + an) + 1 = 7(&n - 1) + 4an + 1 

= 7(a„ + n) + 4a„ - 6 = 7n + l l a n - 6 

Now compare with Theorem 3.1. 

For F2k , the steps are always the same as for Fh , except for more repeti-
tions. 

Theorem 4.4: F_2: un = Ab +1 . 

F-h- un = Abbn + i 

F_2k, k > 0: un = Abb + 1 
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Proof: Use (1.15) and (1.7). Then reduce the subscripted subscripts repeatedly 
by applying (1.2) followed by (1.1), and compare with Theorem 3.2. Because the 
proof is so much like that for Fh and F2k in Theorem 4.3, we show only F_ . 

Abn+1= Abn
 + X = 2abn ~ K + 1 = 2(an + K) ~ ^n + 1 

= 2an + (an + ri) + 1 = 3an + n + 1. 

Theorem k.5: F_5: un = Aa 

F : u„ = A a 
-7 n aa 

F-w+»> k>2'-

2fc-3\«t 

Proof: In a manner similar to the proofs of Theorem 4.2 and Theorem 4.39 the 
subscripted subscripts can be painfully reduced, eventually9 to match the form 
of Theorem 3.2. But, we almost have subscripted subscripts using the Wythoff 
pairs numbers an and bn9 except for the last subscript. 

We apply results of [8]. Let U = {un}™=1 be a sequence of integers. If U* 
is a subsequence of U such that the general term is formed by subscripted sub-
scripts taken from the Wythoff pair numbers, then we give each a-subscript 
weight 1 and each b-subscript weight 2. Then, U has first and second differ-
ences A* and A* given by 

A* F A 4- F A and ^A2 +^U-A. 
where w is the weight of the sequence and A1 and A2 are the first and second 
differences of U9 the original sequence. 

Notice that F_ has weight 4 because the last subscript could be either ai 

or bj . Aan_l+1 is the original sequence, so we have Ax = 3, A2 = 4 because, by 
Theorem 4.2, we are looking at the sequence for F_±a Then 

A* = 4F5 + 3Fh = 4 - 5 + 3 • 3 

A* = t+Fh + 3F3 = 4 * 3 + 3 - 2 

where these are the known value for 
have the same sequence. 

For F 

29 

18 

L7 

Since we know w, for F_ we must 

-(2fc + 1)s fc ̂  2, the weight is 2fc, and 

A ; = ^ 2 f c + i + 3F2k 
= L 2fe+ 3 

^ 2 * + 3 F 2 * - 1 = L 2 * + 2 > 

which we recognize from earlier sections. 

Discussion: The weights for all of the other sequences for Fy. are easier to 
calculate. For example, F2k in Theorem 4.3 has weight 2k + 1 and we can use An 

as the original sequence, with Ax = 3 , A2 = 1, so that 
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A l = 3 F 2 f e + 2
 + F2k+l = ^tfe+3 ^ 4 = 3 F 2 k + l + F2k = ^ + 2 

which we recognize. From Theorem 4.1, the weight of F2k+1 is also 2k + 1, and 
Bn gives the original sequence5 so that Ax = 4, A2 = 3 , 

A l = « " 2 * + 2 + 3 F 2 f e + l = £ 2 f c + * a n d A*2 - 4 F 2 k + l + 3F2k m L2k+3' 
which again are known from earlier work. 

Notice that we can use original sequences to relate all of the sequences 
of this paper to the sequences for F0, F19 F_x, and F_ 2 , by looking at the next 
to last subscript in un. The original sequence related to F_f2k+D then is 

Aan_1 + i> 

the sequence for F_±. Even the sequence for F_3 is so related, because 

^ . i + i = ^a^.i + i + 1-

Now, F2k+1 has original sequence Ban , which is Fx, while ^_2^ goes with Ab , 
which gives F_2. Lastly, F2k has original sequence Aan , which is related to 
F0, since £„ = Aan + 1. 

Further, all of the sequences are related to the sequences^for F_±, FQ, or 
F . All of the sequences for F2^+1 are subsequences of Bn and thus are related 
to F1; F_3 and FQ have sequences that are subsequences of Cn. All of the other 
sequences are subsequences of An9 making them related to the sequence for F_1. 
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