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1. INTRODUCTION

In developing a Zeckendorf theorem for double-ended sequences, Hoggatt and
Bicknell-Johnson [1] found a remarkable pattern arising from applying Klarner's
theorem [2],[3] on simultaneous representations using Fibonacci numbers. Here
we study the properties of the array generated, after first providing enough
background information to make this paper self-contained. We shall show rela-
tionships with the Lucas numbers, the Wythoff pair sequences, and generalized
Wythoff numbers [7].

David Klarner [2] has proved

Klarner's Theorem: Given nonnegative integers A and B, there exists a unique
set of integers {ky, kss K3» ..., K.} such that

kb Pttt B, B=hR f R s AR
for Iki - kjl 22, 1 # J, where each F, is an element of the sequence {E;}Tw;
F;+1 = E; +-E;_1, Fl =1, F2 = 1.

Thus, to represent a single integer m > 0, we merely solve

A =0 = F + F B:m:Fkl+Fk2+-..+Fk,

k,+1 k2+1+"'+F

Kp+12
which has a unique solution by Klarner's Theorem. A constructive method of
solution is given in [3], and we will soon use this idea to generate a most
interesting array.

We shall also need some properties of Wythoff pairs (a,, b,), which are
formed by letting a3 =1 and taking a, as the smallest positive integer not yet
used, and letting b, = a, + n. Wythoff pairs have been discussed, among other
sources, in [4], [5], [6], [7], and [8]. Early values are shown below.

n: 1 2 3 4 5 6 7 8 910 11 12 13 14

a,: 1 3 4 6 8 9 11 12 14 16 17 19 21 22

b,: 2 5 7 10 13 15 18 20 23 26 28 31 34 36
We list the following properties:

ak + k = bk (1.1)

a, =a, + b, and bp = a, + 2b, (1.2)

g, =b, -1 and by, =a, +Db, -1 (1.3)
{2, k =a,

a. -a, = (l.l})

k+1 k 1, k-b,
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]

3, k=a,

byyr = by = { (1.5)
2, k=2>b,

Further, (a,, by) are related to the Fibonacci numbers in several ways, one
being that, if 4 = {a,} and B = {b,}, then 4 and B are the sets of positive
integers for which the smallest Fibonacci number used in the unique Zeckendorf
representation has respectively an even or an odd subscript [9].

Also, the Wythoff pairs are related to the Golden Section Ratio
o= (1+V5)/2,
and recall that F, = (@" - B")/(a - B), where B = l/a, as
a, = [nal, by, = [na?], (1.6)
where [x] is the greatest integer in x.

Lastly, we recall the generalized Wythoff numbers 4,, B,, and C, of [7]
with beginning values

n: 1 2 3 4 5 6 7 8 91011 12 13 14
Ay, 1 4 5 811 12 15 16 19 22 23 26 29 30
B,: 3 7 10 14 18 21 25 28 32 36 39 43 47 50
Cp: 2 6 9 13 17 20 24 27 31 35 38 42 46 49

and the following properties useful in this paper:

4, = 2a, - n (1.7)
B, =a, +2n=>b, +n (1.8)
Chn=ap+2n-1=b,+n-1=q, +n (1.9)
Cc, +1=58, and Cn =1 =A4q, (1.10)
1, n = bk
A, -4, = (1.11)
3, n o= a;
3, n = bk
Bn+1 - B, = (1.12)
4, n o= a
3, n = bk
Corr ~ Cp = (1.13)
4, n o= ag
Ay =a, +2n -2 and B, = 3a, +n -1 (1.14)
A, =4, +1=4, 1 (1.15)
b a Ay

n n

The sequences 4,, B,, and C, divide the positive integers into three dis-
joint subsets, classified by Zeckendorf representation using Lucas numbers

[97.
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2. AN ARRAY ARISING FROM KLARNER'S DUAL
ZECKENDORF REPRESENTATION

Recall the Klarner dual Zeckendorf representation given in §1, where

A=F +F  ++E =0
(2.1)

B=F, +F + ' +F =n,

wheren =1, 2, 3, ""lki - kj! 2 2,47 #J, and the Fibonacci number F; comes
from the double-ended sequence {Ey}fw. The constructive method described in
our earlier work [3] for solving for the subscripts k; to represent 4 and B
leads to a symbolic display with a generous sprinkling of Lucas numbers L,
(Zy =1, L, =3, L,y = L,4, + L,) and Wythoff pairs.

Here we use only two basic formulas,
Fopo = Fpeq + Fy and 2F, = Fyiq + Fy_ s (2.2)

to push both right and left in forming successive lines of the array. The dis-
play is for expressions for B only; 4 is a translation of one space to the
right. At each step, B =% and 4 = 0.

The basic column centers under F_;. We continue to add F_; = 1 at each
step, using the rules given in (2.2) to simplify the result. For example, for
n =1, we have F_,=1. Form =2, F_., +F_,=2F_ 1 =Fy+F_ 3 =2. Formn-=3,
F-1 + Fy + F-3 becomes F; + F-3 = 1 + 2 = 3. We display Table 2.1 on the fol-
lowing page.

Many patterns are discernible from Table 2.1. There are always the same
number of successive entries in a given column. Under F., there are L;; under
F_3, Ly; under F_,, L;; and under F_j, Ly,; successive entries. The columns to
the right of F_, (under F,, for instance) have L, * 1 alternately successive
entries, but the same number of successive entries always appears in a given
column. Also, we mnotice that once we have all spaces cleared except the ex-
treme edges in the pattern being built, we start again in the middle, as in
lines 4, 8, 19, 48, ..., Ly + 1, ...

Reading down the columns, we write the sequence of numbers first using that
F, is its representation. For example, the sequence of numbers using F.y is 1,
4,8, 11,15, 19, ..., with first difference A; = 3 and second difference A, = 4.
We want only the numbers first used when reading down the columns, so for F_,
we would use 2, 9, 20, 27, ..., and ignore 3, 4, 10, 11, 21, 22, ... . We list
sequences appearing beneath #, in Table 2.1 along with first and second differ-
ences:

Fo: 2, 6, 9, 13, 17, 20, 24, 27, Ay =3, Ay =4
F,: 3, 10, 14, 21, 28, 32, 39, 43, By =7, by =4
F,: 5, 16, 23, 34, 45, 52, Ay =11, Ay =7
Fy: 7, 25, 36, 54, 72, A, =18, A, = 11
F,: 12, 41, 59, 88, ... A, =29, A, = 18
F: 1, 4, 8, 11, 15, 19, 22, 26, ... Ay =3, A, =
F_: 5,12, 16, 23, 30, 34, 41, 45, A, =7, 4, =4

(continued)
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Table 2.1 F, Used To Represent B from Klarner's Theorem

Subscript n:

W
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F_y: 2,9, 20, 27, 38, 49, ... Ay =7, 0, =11
F_,: 12, 30, 41, 59, 77, 88, ... A, =18, b, = 11
F_o: 5, 23, 52, 70, 99, ... A, = 18, A, = 29

Surely the reader sees the Lucas numbers 1,3, 4, 7, 11, 18, 29, ..., as the
first and second differences. In the next section, we write formulas for each
term in the sequences given, and find both Lucas numbers and the Wythoff pair
numbers.

As a final observation, notice that the sequences associated with F, when k
is a negative odd integer have different behavior than all the others listed.
For those sequences, A, > A;, and successive differences follow the pattern
Ayy Ayy Ay Ayy Ayy ..., while all the others have A, < A, and a pattern of
successive differences that begins A;, A,, Ay, Ay, A,,

3. LUCAS NUMBERS AND THE WYTHOFF PAIRS

We write the general term u, for the sequence of numbers first using Fj in
its representation as observed from Table 2.1 for k = 0.

Fo: Uy, =2n+a, -1

=
—
[

U, =n+ 3a, -1

Foi u, =3n+ ba, - 2

Fay: u, =4n + 7Ja, - 4
Fy,: u, =7n+ lla, - 6
Fg: u, = 1lln + 18a, - 11

&
o
N
S
]

187 + 29a, - 17

Again we see the Lucas numbers L,, defined by
Ly =1, L, =3, and Lpyyqy = Dy + Doy

Observe that the last terms are either I, or one less than L,, and the pattern
of general terms seems to be

Fk: un = Lkn + Lk+lan - [Lk - (l + (_1)7()/2]’
where a, is the first member of a Wythoff pair.
Theorem 3.1: The sequence of numbers first using Fy, K > 0, in its representa-
tion arising from Klarner's theorem is given by
Fpi uy = nly + ayly,, - [Ip = (1 + (-1)¥%)/2].
Proof: From [8], all Fibonacci representations can be put in the form
u, = (2n - 1 -a)h, + (a, - M)A, + uy, (3.1)

where A, and A, are the first and second differences and u, is the beginning
term of the sequence. By the method of generation of the array,

Lysrs k even
U, =

Ly, + 1, k odd
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and A, = Ly ,,, Ay = Ly, for k 2 1. Substitution of these values into (3.1)
yields the result quite quickly.

For k = 0, we note that the sequence for F, can be written from (3.1) by
letting A; = 3, A, = 4, and u,; = 2.

The sequence of general terms for the sequences using Fj, when X is negative
gives us a different story. First, take K negative and even:

F_,: u,=mn+3a, +1 Ay =7, A, =4
Fo,t U, =4tn+7a, +1 A, =18, A, =11
suggesting
F gt uy, =nlp_y +a,ly +1 By = Lysns By = Lyyy
When k is negative and odd, we let m = n - 1 and list
F i u, =2m+an+1

F_ .t U, =3m+ bay, + 2
F .+ u,=7m+ 1lla, + 5
suggesting
Fopi Uy =mhy_+aly + L, +1.
Theorem 3.2: The sequence of numbers first using F_, in its representation is
given by
(i) F_y;t
(ii) F i tn
(iii) F

Up = nly; oy + aply; + 13
2(n - 1) + a , + 1;

§>0: wuy=(n- DL, +a, I, +L, ,+1

]

-(24+1)°
Proof: (i) follows readily from (3.1) by taking
Ay = Los00, By = Ljsygs and uy = Logyy + L.

(ii) is proved by mathematical induction. Note that (ii) is true for early
values. Study the pattern of successive differences A, = 3, A, = 4, and by the
rules for generation of the array, we have

3, n—l=bi
Upp1 — Up =

by, n-1=a;
Assume u, = 2(k - 1) + a5, + 1. Then, when k-1=b;, (1L.4) lets us write

3+ 2k -1) +a,_, +1
342k - 1) +a;
2k + a; + 1.

Uper = 3+ Uy

When kK - 1 = a;, we again apply (1.4), and

=4 +u, =4+2k-~-1)+a,_, +1
2k + (ak_l+2) + 1

2k + a; + 1,

Upsa
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so that u,,, again has the form of (ii), establishing (ii) by mathematical in-
duction.

The general case (iii) can be proved by mathematical induction in a similar
way by using (1.4), if we take A; = Lyiggs A, = Lyjezs and u; = Lyjoy + 1. We
again have A, when n - 1 = b; and A, when n - 1 = a;.

Corollary 3.2: A second formula for the sequence of numbers first using F_, in
its representation is given by

—2j Un = anzj—l + aanj_z +1, § > 0;
Fit u,=n+b, _,
F_&j+1): u, = bn_lej + (an_l + l)sz_1 + 1, 4> 0.
?roof: Change the form of the sequence for sz given in Theorem 3.2 by apply-
ing (1.1):
U, =nlb,;_, + aanj + 1= ”sz—l + aanj_l tapl,;_, + 1
=b,L,. , + Al , + 1.

Again apply (l.1) to F_,:
U, =2(m - 1) + a, , +1= n-1)+ n-1+ an_l) + 1
=n+b, ;.
The proof for F-Qj+1) is similar.
If we take Kk negative and odd, and apply (3.1) to write the terms of the
sequences, we observe
F .1 u,=5-a, -3
F ¢ u, =15n - 4a, - 9

40n - lla, - 24

F .+ u,

leading us to

Theorem 2.3: If kX is odd and greater than 1, then the sequence of numbers first
using F_; in its representation arising from Klarner's Theorem is given by

F_k: U, = nky,, - Lya, - 5F, + 1.

Proof: Let u; = Ly, + 1, A, = L3,,, and Ay = Lz,; in (3.1) and simplify using
Lyso * Ly = 5Fpy,-

4. THE GENERAL!IZED WYTHOFF NUMBERS

The generalized Wythoff numbers 4,, By, and C, of [7] provide another de-
scription of the general term of the sequences arising from using F, in the
representation from Klarner's theorem. Observe that, for F,

U, =2n+a, -1 =20,

by (1.9). Each sequence we have generated is a subsequence of the sequence for
Aps Bys or Cy. The sequences for F, and F_, contain only (;'s, while the se-
quences for F,,,, contain only B;'s, kX > 0. All of the other sequences contain

A;'s exclusively.
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Theorem 4.1: The sequences arising from first using F k 2 0, in the rep-

resentation from Klarner's Theorem are Pl
Fit uy, = By,
Foiou, = Bba
n
Feoouy, = Bbb

F2k+ 1

k>20: u, =B,

k “%n
Proof: We simplify the form B; to demonstrate that u, has the form given by
Theorem 3.1. For F,, observe (l.14).

For F,, we apply (1.8) and then (1.2) and (1.3) in sequence finishing with
(1.1) to obtain

By, = a, *+ 2b, = (ag, + ba,) + 2by, = (b, - 1) + 3(a, + by - 1)

=4b, +3a, -4 =4(n+a,) +3a, -4 =4n + Ta, - 4.

For Fy;, we apply the same sequence of steps repeatedly to reduce the sub-
scripted subscripts. For F,, ., the reduction of subscripted subscripts will
always follow the same steps repeatedly. We show Lemma 4.1 to demonstrate one
step of the subscript-reduction process and to show that we will end with the
required form in terms of Lucas numbers.

Lemma 4.1: Li+1abb + L bbu = Li+3abb +L;,, bb_
}\:ban k-1 .'baﬂ k—l\ban

Proof: Apply (1.2) followed by (1.1).
i1, *Lidp, =1L

\\\\ i+1abb i+1 . i .
k\\.:ban k .ban k—xban }\"ban }\:ban

N by

n

Theorem 4.2: F_:

0f Up = Cps F =4z 41> and F_y: u, = C

aan_1+1

Proof: The form for F, follows by comparing (1.9) and Theorem 3.1. For F_,»s
we apply (1.11) and (1.14) and then compare with Theorem 3.2:

Aam4+1 =4, ,+3= (an_l +2(n-1) -2)+3=2(n-1) + a, , +1
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For F_,, by (1.9) followed by (1.3), (1.4), and (1.5):

Cy =q + 2a - 1= (ban_ - 1) + 2a,

Ap-1+1 Aq, ,+1 Ap-1t1 1+1

(g,  +3) -1+ 2@, +2)-1=b, +2 + 5

Next, use (1.3) finished by (1.1),

C -1)+5=a + 2b + 2

n-1 n-1

o 4y (@,_, +b, _, -1 +20,_,

a + 3(a + 2,

n-1 + (n=-1)) +2=3n-1)+4da,_

n-1 1

and compare with Theorem 3.2.

Theorem 4.3: F,iouy, = Aabﬂ= 4y

an+l

Fo:ou, = Abb 1
aYl

sz,k>0: un:Abb‘+1

KN_Pa

n

Proof: For F,, use (1.15) and (1.14), followed by (1.2) and (1l.1):
Aab=ab + 2b, -2 = (b, +a,) +2b, -2

=3(n+ay) +ta, -2=3n+4ba, -2

Then compare with u, as given in Theorem 3.1.

For F,, first apply (1.15) and then (1.7). After than, use (1.2) followed
by (1.1) repeatedly to reduce the subscripted subscripts.
4y + 1= 2abb - bban+ 1= 2(aban + by, ) - bban+ 1

n an

A =
bba-tl 1 ba

2a, + (a, +bg)+ 1 =3(a,+ by)+ bg + 1

3ag,+ 4(ag,+a,) + 1 =7(, - 1) + ba, +1

7(a, +n) + 4a, - 6 = Tn + lla, - 6

Now compare with Theorem 3.1.

For F,, , the steps are always the same as for F, , except for more repeti-
tions.
Theorem L.4: F u, = 4,

-2° n+1

-y Uy =Abbn+1

F-Zk’ k>0: un Ab +1
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Proof: Use (1.15)and (1.7). Then reduce the subscripted subscripts repeatedly
by applying (1.2) followed by (1.1), and compare with Theorem 3.2. Because the
proof is so much like that for F, and sz in Theorem 4.3, we show only F_,.

Ap p1=4p, + 1 =20, -b, +1=2(a, +Dby) -b,+1

2a, + (a, +n) +1 =3a, +n+ 1.

Theorem 4.5: F__: wu, =4,

F_orenys K > 2: u, =4,

Proof: In a manner similar to the proofs of Theorem 4.2 and Theorem 4.3, the
subscripted subscripts can be painfully reduced, eventually, to match the form
of Theorem 3.2. But, we almost have subscripted subscripts using the Wythoff
pairs numbers a, and b,, except for the last subscript.

We apply results of [8]. Let U = {u,},-; be a sequence of integers. If U*
is a subsequence of U such that the general term is formed by subscripted sub-

scripts taken from the Wythoff pair numbers, then we give each a-subscript
weight 1 and each b-subscript weight 2. Then, U* has first and second differ-

ences A} and A} given by
Az =F .0, + F,A and A¥ =F A, +F _,A,
where w is the weight of the sequence and A, and A, are the first and second
differences of U, the original sequence.
Notice that F_, has weight 4 because the last subscript could be either a;
or b;. Ag, ,+1 is the original sequence, so we have A, = 3, A, = 4 because, by
Theorem 4.2, we are looking at the sequence for F_,. Then

AY = 4Fg + 3F, = 4+5+3-3=29=1,
A¥ = 4F, + 3F, = 43+ 32 =18 = L

where these are the known value for F_.. Since we know u, for F_;, we must
have the same sequence.

For F_ iy 41y> k 2 2, the weight is 2k, and

* —
A2 =4F 0 t 3F2k = Loges
* _ =
Al - 4sz + 3F2k-1 - sz+z’

which we recognize from earlier sectiomns.

Discussion: The weights for all of the other sequences for Fj are easier to
calculate. For example, F,; in Theorem 4.3 has weight 2k + 1 and we can use 4,
as the original sequence, with A, = 3, AZ = 1, so that
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* _ _ x _ _ 7
Al - 3F2k+2 + F2k+1 - L2k+3 and A2 - 3F2k+1 + sz = Lorro

which we recognize. From Theorem 4.1, the weight of F,,,, is also 2k + 1, and
B, gives the original sequence, so that Ay =4, A, =3,

AT = 4Fypy, + 3F = Dypyy and  A) = 4F

which again are known from earlier work.

+ 3F,, =1L

2k+1 2k+1 2k 2k+3?

Notice that we can use original sequences to relate all of the sequences
of this paper to the sequences for F,, F,, F_;,and F_,, by looking at the next
to last subscript in u,. The original sequence related to F—Qk+1) then is

A

an—l+1’
the sequence for F_,. Even the sequence for F_, is so related, because
Can—1+1 = Aarz—1+1 + 1.

Now, Fyx,; has original sequence B, , which is F;, while F_,; goes with 4, ,
which gives F_,. Lastly, F,, has original sequence 4, , which is related to
Fy, since ¢, =4, +1

Further, all of the sequences are related to the sequences.for F_,, Fy, or
F,. All of the sequences for F,x;; are subsequences of B, and thus are related
to F,; F_, and F; have sequences that are subsequences of C,. All of the other
sequences are subsequences of 4,, making them related to the sequence for F_,.
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