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ABSTRACT. We express the zeros of the Weierstass ℘-function in
terms of generalized hypergeometric functions. As an application
of our main result we prove the transcendence of two specific hy-
pergeometric functions at algebraic arguments in the unit disc.
We also give a Saalschützian 4F3–evaluation.

1. Introduction

The Weierstrass ℘-function is defined for z ∈ C and τ ∈ H, the
upper half-plane, by

℘(z, τ) = z−2 +
∑

ω 6=0

(
(z + ω)−2 − ω−2

)
,

where ω runs over the lattice Z+ τZ. For τ fixed, ℘ and its derivative
℘z are the fundamental elliptic functions for Z + τZ. The fact that
the zeros of ℘z in the torus C/(Z+ τZ) occur at the points of order 2,
namely 1/2, τ/2 and (1 + τ)/2, is basic for the theory. On the other
hand, the zeros of ℘ itself are not nearly as easy to describe. Since ℘
assumes every value inC∪{∞} exactly twice inC/(Z+τZ), it follows
that ℘ has two zeros there which, ℘ being even, can be written in the
form ±z0. Almost a century after Weierstrass’ lectures on elliptic
functions were published [14], Eichler and Zagier [6] found the first
explicit formula for z0.
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This formula gives z0 as a certain modular type integral of weight
3 in terms of τ . Here we will “deuniformize” their formula and ex-
press z0 as a multi-valued function of the classical modular invariant

(1) j(τ) = q−1 + 744 + 196884q + . . . (q = e2πiτ ),

although it is, in fact, better to work with

(2) x = 1− 1728/j.

Along these lines, it was already understood in the nineteenth cen-
tury that τ can be written as the ratio of two solutions of the second
order hypergeometric equation in x:

[δ(δ − 1
2
)− x(δ + 1

12
)(δ + 5

12
)]Y = 0 where δ = x d

dx
.

Similarly, we will show that z0 can be expressed as the ratio of two
solutions of the third order hypergeometric equation in x:

[δ(δ − 1
2
)(δ − 1

4
)− x(δ + 1

12
)(δ + 5

12
)(δ + 3

4
)]Y = 0.

To be more specific, we will use (generalized) hypergeometric series
defined for |x| < 1 by

F (x) = F (a1, . . . , am; b1, . . . , bm−1 | x) =
∞∑

n=0

(a1)n . . . (am)n

(b1)n . . . (bm−1)n

xn

n!
,(3)

where (a)n = Γ(a+n)/Γ(a) and no (bk)n = 0. It is well known that for
any fixed choice of b ∈ {1, b1, . . . , bm−1}, the function xb−1F (x) satis-
fies an m-th order hypergeometric equation and has an analytic con-
tinuation to a multi-valued function on the Riemann sphere punc-
tured at {0, 1,∞}. In terms of these functions it can be shown using
the classical method of Fricke [9, I. p.329 ] (see also [10, p.159]) that

(4) τ =
c1 F ( 1

12
, 5

12
; 1

2
| x)

F ( 1
12

, 5
12

; 1 | 1− x)
− i

(
c1 = 2i

√
π

Γ(7/12)Γ(11/12)

)
.

Our main result, proved in the following section, gives a similar ex-
pression for z0.

THEOREM 1. The zeros of the ℘-function are given by ±z0, where

(5) z0 =
1 + τ

2
+

c2 x
1
4 F

(
1
3
, 2

3
, 1 ; 3

4
, 5

4
| x)

F ( 1
12

, 5
12

; 1 | 1− x)

(
c2 = − i

√
6

3π

)
.

Here τ is given in (4) and x in (2).

In addition to its basic interest for the theory of elliptic functions,
Theorem 1 has some simple applications to hypergeometric series
worth noting. One concerns the transcendence of their special val-
ues. Suppose that all parameters ak and bk of F (x) given by (3) are
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rational. It is a well known problem to determine the set of algebraic
x with |x| < 1 for which the value F (x) of such an F is algebraic.
When F is a Gauss hypergeometric series (m=2) this set is known to
be finite unless F is an algebraic function or is one of a finite number
of explicitly known exceptional functions (see [1] and its references,
particularly [5]). For generalized hypergeometric functions (m ≥ 3)
there seem to be no nontrivial examples known where this question
is settled. It is shown in §3 that Theorem 1 together with a classical
result of Schneider provide two such examples.

COROLLARY 1. For algebraic x 6= 0 with |x| < 1 the values

F (1
3
, 2

3
, 1; 3

4
, 5

4
| x) and F (3

4
, 5

4
, 1; 4

3
, 5

3
| x)

are both transcendental.

Eichler and Zagier also gave an amusing corollary of their for-
mula for τ = i:

∞∑
n=1

An

n2
e−2πn =

π − log(5 + 2
√

6)

72
√

6
,

where An = 1, 732, 483336, . . . are defined through the q-series
∞∑

n=1

Anqn =
q
∏

n≥1(1− qn)24

(1− 504
∑

n≥1 σ5(n)qn)3/2

(
σs(n) =

∑

d|n
ds

)
.

In the same spirit, in the limiting case Im τ → ∞ we present a hy-
pergeometric counterpart.

COROLLARY 2. We have

F
(

3
4
, 5

4
, 1, 1 ; 4

3
, 5

3
, 2 | 1) = −128

9
log(2

√
6− 4).

This curious Saalschützian 4F3–evaluation does not seem to fol-
low easily from classical results [3]. It is derived in §4 from Theorem
1 and a delicate asymptotic formula discovered by Ramanujan.

2. The Eichler-Zagier formula

To state the Eichler-Zagier formula we need the Eisenstein series

E4(τ) = 1 + 240
∑
n≥1

σ3(n)qn and E6(τ) = 1− 504
∑
n≥1

σ5(n)qn,

and the normalized discriminant function

∆(τ) = 1
1728

(E3
4(τ)− E2

6(τ)) = q
∏
n≥1

(1− qn)24,

all familiar modular forms.
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THEOREM (Eichler–Zagier). The zeros of the Weierstrass ℘ -function
are given by

(6) z = m + 1
2
+ nτ ±

(
log(5+2

√
6)

2πi
+ 144πi

√
6

∫ i∞

τ

(σ− τ)
∆(σ)

E6(σ)3/2
dσ

)

for all m,n ∈ Z, where the integral is to be taken over the vertical line
σ = τ + iR+ in H.

They gave two proofs of (6) in [6]. The first is based on the fact
that if z0(τ) is a zero of ℘(z, τ), then z′′0 (τ) is a modular form of weight
3 that can be determined explicitly. The second proof uses elliptic
integrals in a more direct manner.

Proceeding to the proof of Theorem 1, by analytic continuation it
is enough to assume that τ = iy with y ≥ 1. Any fractional powers
that occur are assumed to be principal values. It is convenient to
begin with the modular function t = 1−x = 1728/j, where as before
j = E3

4/∆. We have the relations

(7) t =
1728∆

E3
4

, 1− t =
E2

6

E3
4

and
1

t

dt

dτ
= 2πi

E6

E4

.

To obtain the last one we use the formulas of Ramanujan for deriva-
tives with respect to τ [11, p.142.]:

E ′
4 = 2πi

3
(E2E4 − E6), E ′

6 = πi(E2E6 − E2
4), ∆′ = 2πiE2∆,

where
E2(z) = 1− 24

∑
n≥1

σ1(n)qn.

It is a classical fact that a pair of linearly independent solutions
to the hypergeometric equation

(8) t(1− t)Y ′′ + (1− 3
2
t)Y ′ − 5

144
Y = 0

is given by

(9) F1(t) = F ( 1
12

, 5
12

; 1 | t) and F2(t) = τ(t)F1(t),

where τ(t) is the inverse of t(τ) ([9, I. p. 336.]). We need the remark-
able identity of Fricke [9] (see also [1, p. 256]):

(10) F1(t(τ)) = E
1/4
4 (τ).

Using (7) and (10) we obtain the Wronskian

(11)
∣∣∣∣
F1(t) F2(t)
F ′

1(t) F ′
2(t)

∣∣∣∣ = F1(t)F
′
2(t)− F2(t)F

′
1(t) = 1

2πi
t−1(1− t)−1/2
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as well as the identity

(12)
1728∆(τ)

E
3/2
6 (τ)

= 1
2πi

(1− t)−5/4F1(t)
dt

dτ
.

Write u = t(τ) and let

(13) H(u) = 4π2F1(u)

∫ τ(u)

i∞
(σ − τ(u))

1728∆(σ)

E6(σ)3/2
dσ.

Changing variables σ 7→ t and we get using (12) and τ(u) = F2(u)
F1(u)

that

H(u) = 2πi

∫ u

0

(
F1(t)F2(u)− F1(u)F2(t)

)
(1− t)−5/4 dt.

Now apply the differential operator

Lu = u(1− u) d2

du2 + (1− 3
2
u) d

du
− 5

144

to this integral to get

LuH(u) = 2πiu(1− u)(F1F
′
2 − F2F

′
1)(1− u)−5/4,

where we are using that F1 and F2 satisfy (8). Thus by (11)

LuH = (1− u)−3/4

or, in other words, H(u) satisfies an inhomogeneous hypergeometric
equation. Letting x = 1− u this equation can be written

(14) x(1− x)Y ′′ + (1
2
− 3

2
x)Y ′ − 5

144
Y = x−3/4.

By using the method of Frobenius (see [2, p.201.]), it is easy to find a
particular solution to (14) in the form

(15) −16x1/4F (1
3
, 2

3
, 1; 3

4
, 5

4
| x) = −16x1/4F (x),

say. Thus it follows from (13) that for some constants a and b we
have

F1(t)

∫ τ

i∞
(τ − σ) ∆(σ)

E6(σ)3/2 dσ = 4(1−t)1/4

(12)3π2 F (1− t) + aτF1(t) + bF1(t),

where t = t(τ) = 1728∆(τ)

E3
4(τ)

and τ = F2(t)
F1(t)

, with F1(t) = F ( 1
12

, 5
12

, 1 | t)

from (9). Finally we get from (6) with m = n = 0 and the minus sign
that for some other constants c and d the zeros can be represented by

(16) z0 = z0(τ) = −i
√

6(1−t)1/4

3πF1(t)
F (1− t) + cτ + d.
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In order to compute the constant c, let τ = iy and take y → ∞. The
first term asymptotics of the zero-balanced hypergeometric series F
from (15) is easily obtained:

(17) F (1− t) = −
√

6
8

(2πiτ) + O(1), as y →∞.

When combined with (16) and (6) this shows that c = 1/2. Taking
d = 1/2 gives z0(i) = (1+ i)/2, known to be a (double) zero of ℘(z, i).
Theorem 1 now follows. ¤

We remark that Eichler and Zagier generalized their formula in
[6] to equations of the form ℘(z, τ) = φ(τ) for any meromorphic φ(τ)
and also to the zeros of Jacobi forms in [7]. However, one finds in
those cases where the above technique applies that a solution to the
resulting inhomogeneous hypergeometic equation is not usually ex-
pressible in a simple way in terms of a hypergeometric function.

3. A theorem of Schneider

For arithmetic purposes it is best to define ℘ for any full lattice
Λ ⊂ C as the sum over non-zero ω ∈ Λ

℘(z) = ℘(z, Λ) = z−2 +
∑

ω 6=0

(
(z + ω)−2 − ω−2

)
.

As is well known, ℘ satisfies

(18) ℘2
z = 4℘3 − g2℘− g3,

where g2 = g2(Λ) = 60
∑

ω 6=0 ω−4 and g3 = g3(Λ) = 140
∑

ω 6=0 ω−6. It
is a fundamental fact that

(19) g3
2 − 27g2

3 6= 0

and that, given any pair of complex numbers g2, g3 satisfying (19),
there is a (unique) lattice Λ whose ℘-function satisfies (18). Of course,
℘(z, Λ) = ω−2

1 ℘(z/ω1, τ) when Λ = ω1(Z + τZ) for a non-zero ω1 ∈ C
and τ ∈ H, which is always possible to arrange. In this case we have
the identities

(20) g2 = 4π4

3ω4
1
E4(τ) and g3 = 8π6

27ω6
1
E6(τ).

Turning now to the proof of Corollary 1, we need the following
classical result of Schneider [13].

THEOREM (Schneider). If g2 and g3 are algebraic, then, for any alge-
braic z 6= 0, ℘(z, Λ) is transcendental.
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A short proof of this result can be found in [4, Chapter 6]. Theo-
rem 1 and (10) together with (20) imply that

w = 2i
√

g3

g2
F

(
1
3
, 2

3
, 1; 3

4
, 5

4
| 27g2

3

g3
2

)

differs from a zero of ℘(z, Λ) by a point of order 2 in C/Λ. The du-
plication formula for the ℘-function [9, II. p.184] applied at this zero
yields the evaluation

℘(2w) = − g2
2

16g3

.

Thus for the lattice Λ with invariants g2 = g3 = 27
x

we have that

℘
(

4
9

√−3x F (1
3
, 2

3
, 1; 3

4
, 5

4
| x)

)
= − 27

16x
.

Schneider’s theorem now gives the first statement of Corollary 1.
A parallel treatment of the proof of Theorem 1, but starting with

the modular function v = 1− 1/x and the identity

F ( 1
12

, 7
12

, 1 | v(τ)) = E
1/6
6 (τ),

(see [1, p. 256]) shows that

w = i
48

g2
2√
g3
3

F
(

3
4
, 5

4
, 1; 4

3
, 5

3
| g3

2

27g2
3

)

differs from a zero of ℘(z, Λ) by a point of order 3 in C/Λ. Now the
triplication formula for ℘ [9, II. p.184] applied at this zero yields the
evaluation

℘(3w) =
8g3

g2

− 28g3
3

g4
2

.

Thus for the lattice with invariants g2 = g3 = 27x we see that

℘
(

3
16

√−3x F (3
4
, 5

4
, 1; 4

3
, 5

3
| x)

)
= 8− 28

27x
.

As before, the second statement of Corollary 1 now follows from
Schneider’s Theorem. ¤

4. A result of Ramanujan

It is instructive to compare Theorem 1 with the corresponding
result for the degenerate ℘–function

lim
Im τ→∞

℘(z, τ) =
π2

sin2 πz
− π2

3
.

The zeros of this function are given by ±z0 + Z, where

(21) z0 = 1
2

+ i
2π

log(5 + 2
√

6).



8 W. DUKE AND Ö. IMAMOḠLU

In order to compare this with Theorem 1, we need to determine ex-
plicitly the constant term in the asymptotic formula (17). Such a
result was found by Ramanujan and appears in his notebook [12,
p.132] without proof.

THEOREM (Ramanujan). If a + b + c = d + e and Re(c) > 0 then

(22) lim
x→1−

Γ(a)Γ(b)Γ(c)
Γ(d)Γ(e)

F (a, b, c ; d, e | x) + log(1− x) = L, where

L = 2ψ(1)− ψ(a)− ψ(b) +
∞∑

n=1

(d− c)n(e− c)n

(a)n(b)n n
,

with ψ(a) = Γ′(a)/Γ(a).

Ramanujan’s method of deriving this is unknown. In 1984 Evans
and Stanton [8] gave a proof of it in a more precise form; their proof
is rather intricate. To derive Corollary 2, specialize (22) to

(23) lim
x→1−

4
√

6
3

F (1
3
, 2

3
, 1; 3

4
, 5

4
| x) + 2πiτ + log 1728 = L,

after using (1), (2) and the duplication and triplication formulas

Γ(2z) = 22z−1√
π

Γ(z)Γ(z + 1
2
) and

Γ(3z) = 33z−1/2

2π
Γ(z)Γ(z + 1

2
)Γ(z + 2

3
).(24)

By Theorem 1 and its proof we have from (23)

L = 4πi(z0 − 1
2
) + log 1728,

where z0 in (21) is the correct degenerate zero, as follows from the
discussion above (16). Thus

(25) L = −2 log(5 + 2
√

6) + 3 log 12,

By (24) we get easily that

2ψ(1)− ψ(1/3)− ψ(2/3) = 3 log 3.

Now Corollary 2 follows from (25) after shifting indices n 7→ n+1 in
the sum in L and using that 1/(n + 1) = (1)n/(2)n. ¤

Acknowledgment: We thank the referee for several suggestions
improving the exposition of the paper.
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