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The partial difference equation
G ) =rlhj—D+ri—= L) +r(i—1,j+1)

where r(i,j) are defined for integer numbers / and j, i>0, by the conditions
r(0,/)=1 for all j and r(i, —1)=0 for i>1 is solved. For i>0 and ;>0 a com-
binatorial meaning of numbers r(i,j) is given. The solution is obtained by the
modern classical umbral calculus.  © 1990 Academic Press, Inc

1. INTRODUCTION

PROBLEM. Let S={(i,j):i,j=0,1,2,...}. Define in the set S the
relation p by

(i.j)p(p,q)ifand only if (p=igq=j—1)or (p=i—1,q=j) or
(p=i—1,g=j+1)

The point (i, j)€ S is said to be connected with the origin (0, 0)e S if and
only if there exist points (iy,/j;), (i3,/2)s o {inyj,) in S, where
(iy, j1) p(0,0), (i3, j2) i1, 41)s o (5, J) plins Ju). Our aim is to compute the
number r(i, j) of different connections of the point (i, j) € S with the origin
(0, 0). If we put it in the language of the graph theory, our problem is to
determine the number of linearly connected graphs with vertices in the set
S and with edges oriented parallel to the vectors (1, 0), (0, 1), and (1, —1).
Figure 1 shows one of the possible connections of the point (3, 2) with the
origin.

It is clear that #(0,j)=1 for j= 1. Define r(0,0)=1. By an easy com-
binatorial argument we get the partial difference equation

i, )=r(i,j—1y+r(i—1,)+r(i—1,j+1), izl,j=0;

(1)
r(0,/)=1,j>0; r(i, —1)=0,i>0.

A simple computation gives us the numbers r(i, j) in Table L.
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In the sequel we shall derive the formula for our numbers r(i, j), the
generating functions for the rows r(-,j), and the columns r(i, -).

The umbral calculus. We repeat the basic facts following Niven and
Roman (see [1, 2]). Let F denote the algebra of formal power series in the
variable ¢ over the field C. An element in F has the form

f()y= i a,t*, a,eC. 2)
k=0

The addition and multiplication are defined formally by

(e o] fe o e
Y oa b+ Y bt =Y (ar+bo)t*
k=0 k=0 k=0
®© w© [=o} k
k k
~0 k= k=0 \j=0
TABLE 1
The Numbers r(, j) for i=0, j=0
7 1 16 160
6 1 14 126 938
5 1 12 96 652
4 1 10 70 430
3 1 8 48 264 1408
2 1 6 30 146 714 3534
1 1 4 16 68 304 1412
0 1 2 6 22 90 394 1806
J
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Two formal power series are equal if and only if a, = b, for all k. Let F,
denote the set of all formal power series (2) where a, # 0 and F, the set of
all formal power series (2) where a,=0 and a, #0. If f(¢) e F, then f(¢) is
invertible, and the formal inverse will be denoted by f(¢) ~'. The coefficients
of the inverse can be computed solving a simple triangular system of equa-
tions. If f belong to the set F,, then a compositional inverse f(¢) exists,
such that f(f(:))=
The formal derivative of the series (2) is defined as

D, f(n)= i PR

Let P denote the algebra of polynomials in the single variable x over the
field C. Let P* be the vector space of all linear functionals on P. The action
of the functional L e P* on the polynomial p(x)e P will be denoted by

(LIp(x)).
Each formal power series
ac a .
f=3% ¢ (3)
k=0"""

defines a linear functional on P if we set

Sf)Ix")=a, for nz0.

For any linear functional L € P* we have a formal power series

°Z°: <LIX>k

which has the form (3) and satisfies the relation

SeIx">=<Lix"y  for n>0.

The map L — f,(¢) is a vector space isomorphism from P* to F.
In the sequel we shall need the formulas

(K p(x)>=p*0), k=0,p(x)eP (4)

e = 3 () cenin 5)

k=0

SO xp(x)y =D, f(1)] p(x)). (6)
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Any power series defines a linear operator on P. If f(¢) has the form (3),
then we define

n

fyx=7Y (Z)akx""‘ for n>0. (7)

k=0

Especially, for f(t)=t* we get

tx" = k! (Z) Xk,

the kth derivative of the power x”. Using the relation (5) we obtain

S() g p(x)> = (g f(1) p(x)). (8)

Sheffer sequences. For each series f(r)e F, and each series g(t)e F,
there exists a unique sequence of polynomials s,(x) such that

g f()*Isn(x)> =nd,,

where J,, denotes the Kronecker delta function and the polynomial s,(x)
has degree n. We say that the sequence s,(x) is Sheffer for the pair
(g(2), f£(2)). If s5,(x) is Sheffer for the pair (1, f(¢)) then s,(x) is associated
to f(¢). The Sheffer sequence s,(x) of the pair (g(¢),f(¢)) admits the
generating function

g7 () e = ¥ #) ©)

o k!

where yeC.

From (8) it follows that the sequence s,(x) is Sheffer for (g(t), f(¢)) if
and only if the sequence g(7) s,(x) is associated to f(z).

A sequence s,(x) is Sheffer for (g(1), (1)) for some g(¢) e F, if and only
if the relation

F(1) 5,(x) = ns,_(x) (10)
holds for all n=0.

The sequence s,(x) is associated to f(¢) if and only if {(1°|s,(x)>=34,,
and f(#) s,(x)=ns, _(x).
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For the series f(t)=a,t+a,t* + ..., a; #0, denote

()

—-t—=a1+azt+....

It is clear that f(¢)e F, and f(¢)/te F,. The inverse of the series f(¢)/r will
be denoted by t/f(¢).

We compute the associated sequence of the series f(¢) € F, by the transfer
formula

s,,(x)=x(-,t——> x"! (1)

for n= 1. Note that sqo(x)= 1.
These are the results of the excellent monograph [2]. We return now to
our problem.

2. MaIN RESULTS

Since the simple power series 1 + ¢ and 2 + ¢ are formally invertible the
formal power series

fO=t(1+0)""'2+0)! (12)

belongs to the set F,. For each series g(¢) € F, we have the unique sequence
of polynomials s,(x) which are Sheffer for (g(7), f(t)). Denote p,(x) as the
associated sequence for f(¢). It is clear that

sa(x)=2g(1)" " p.(x) (13)

for all n=0.

Lemma 1. Let s,(x) be Sheffer for (g(t), f(t)), where f(t) is given by
(12) and g(t) is an arbitrary invertible formal power series. Then the double
sequence

1 .
qlij) =5 (1 +1YIs(x)). i20jeZ. (14)
satisfies the partial difference equation

g, N=q(i,j—1)+qli—1,))+qli—1.j+1) (15)

foriztlandjel.
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Proof. For every jeZ and i > 1 we have
q(i, /) —q(i,j—1)—q(i—1,j}—q(i—1,j+1)

1 . 1 ,
=5 I+ 0Ylsfx)) —5 <1+ 1) " Hsdx)>

1 , 1
o (A 1)~ =y,

A+ 0y s y(x))

1 1
=5 <1+07" Celsdx)> — (——1—),<(1+1)’(2+I)IS. 1(x)).

Using the relation (10) we obtain
q(i, ))—q(i, j—1)—q(i—1,/)—q(i—1,j+1)
=2 U4 (1= (1 D+ DS ()] 5(3)) =0

because of (12).

LEMMA 2. If the invertible series g(t) in Lemma 1 has the form

g)=1+at+at>+---
then the sequence q(i, j) has the property
q(0,/)=1

for all je Z.

Proof. By (13) we have

q(0, j) = (1 +2) I so(x) > = (1 + 1)’ g(t) ™" polt)>
=<1+ 1) g(t)" 11> = <A1,

where the formal power series A(¢) has the form

h()=1+b,t+byt*+ -

By the definition of the power series as a linear functional on the vector
space P we get g(0,j)=1.

LEMMA 3. The unique invertible series g(t), such that the double sequence
q(i, j) in Lemma | has properties
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(i) ¢(0,7)=1 Jorall jeZ,
(i) q(i, —1)=0  forallieN
is the series g(t)=(1+1)"!
Proof. According to Lemma 2 we must prove only (ii). Let

gy '=l+ct+e,t?+ -

We have

1

q(, —1)=E<(1+f)“1g(t)”|lh(x)>
1
== <D pix)),

it

where
h(t)y=14+bt+ b7+ -+

with

Fori=1,2,3, .., we deduce, using the relation (4), that
Z by p“‘)(O

Note that p(x) is a polynomial of degree i, thus p’(0) # 0. The relation

(O pix)>=p0)=6 .o implies, according to (ii), the system of equations
for b,:

b, p1(0)=
b, p5(0) + b, p3(0) =
by p3(0) + b, p3(0) + b5 p5(0)=0

Step by step we conclude that b, =b,=b;=-..=0. From the other system
b =c;—1
by=c,—c,+1

b3=C3“C2+C1—’1
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we get ¢,=1, cy=c3=c4=---=0. Thus g(r) '=1+1t respectively
gty=(1+1)"",
Lemmas 1, 2, and 3 imply the following result:

THEOREM 1. The unique solution of the partial difference equation
ri,)=r(i,j—D)+r(i—1,))+r(i—1Lj+1)
with conditions
r0,/)=1 for all j and r(i, —1)=0 for iz1

is given by the formula
i+ 1 o -
r(i,j)=]—l.,— A+ 242y |x 1) (16)

foralljand iz 1.
Proof. 1t is clear that r(i,j)=gq(i,j) in Lemma 1 for g(t)=(14¢) .

For i >0 and every je Z we have

L1 , 1 .

r(i, Jy =75 <+ 1)]six) ) == (1 + 1)/ pdx)>.

By the transfer formula (11) we find an explicit form for the associated
sequence p,(x) of the series (12):

PA(X)=x(1+0)"2+)"x"", nx=1l

Using formula (6) we obtain
1 , . o
r(f,j)=5 (1 + (M + 0 Q2+ XY

=J¥ A+ |14y 2+1)x1

[\

U e R

for all i=1 and j. This concludes the proof.

THEOREM 2. The explicit form for the numbers r(i, j) for iz 1 and jeZ

is
con ] L i) i k+1
b)) == kzo( k ><k+1)2 '
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Proof. Formula (4) implies {¢*|x"> =n!d, ,. Using formula (5) we get
from (16)

i+1°2 i1 o o
)= Y (’ . )<(1+r)'+/|xk><<2+r)'rx' L,
© k=0

Since

<(1+1)"”lxk>=<izj)k! and (24 0) xR

— i k+1¢: Y
<k+1)2 (i—1 )!

the desired result follows from a simple computation.

In our case formula (10) gives the recurrence formula for the associated
polynomials

pux)y=n{p, (x)+3p, (x)+2p, ,(x))
for n =1 and the initial conditions p,(0)=4, ,. We find

Po(x) =1, p(x)=2x, po(x) =4x> + 12x, p3(x) = 8x> + 72x* + 132x.

3. GENERATING FUNCTIONS

The generating function for the sequence of polynomials p,(x) follows
immediately from the expansion (9)

(17)

e}f(l)z i p”('y) "
n—o -

If we differentiate this relation with respect to y, we obtain after setting
r=0

= pi0
j=3 20 (18)

n:

For n> 0 we have from (14)

1 1 1
r(n, 0)=— (1 + D pa(x) > =3 (P(0) +PL(0))=;P;(0)
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and so

o

f(=7Y rn,0)r. (19)

Since (0, 0) =1 we have the generating function for the row r(-, 0):

e o]

1+7(t)=Y r(n,0)r. (20)
n=0
Recall that for every formal power series (see [1])
h(t)=1+at+a’+---
there is a unique formal power series A(r)? of the form
W) *=1+byt+byt>+ -

such that (k(1)"/?)® = h(t). From (12) we obtain the candidate for the series

f(t):

—3t—(1—61+4 1212

1
fn= 5

(21)

We must show that the numerator in (21) has the correct form. Let
(1—6t+12)2=14bt+bt*+---.
We get the system of equations for the coefficients 5,,:
2by=—6
2b,+b1=1
2b5+2b b, =0 (22)
2b,+2b,b;+b2=0

Successively we compute:
b,=-3,b,=—4,b;=—12, b,= —44, .... The numerator in (21) is the
formal power series

47 + 124+ 447% + - -

and the compositional inverse f () of the series f(¢) should be

fOy=2t+624+223+--- .
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A straightforward computation shows that the right side in (21) is really
f(¢) in the sense of the formal power series theory. We omit the proof.

The solution of the system (22) is connected with the numbers r(i, 0),
namely,

r(0,0)=1,r(1,0)= —b,/2,r(2,0)= —b3/2, ...

We can find the row r(-, 0) independently of the other rows and columns.
Denote by G, (1) the generating functions of the nth row in Table I

G (1)= i r(i, n) t, nel. (23)

i=0
We have the result

—t—(1—6r+1%)"?

1
Golt) = 1+](0)= -

(24)

THEOREM 3. The generating functions G, (1) of the nth row of the
numbers r(i, j) are given by

(25)

G, (=1 +f([))n+1=<1—t—(1__6t+t X >”+ |

2t

Proof. 1f we differentiate the relation (17) k times with respect to y,
we get

o (k)
r t — pn (0) trl.
n!
By the binomial formula we have

m+1 m+1 © (k)o
a+foyr=y (" ="y (M) 3 20
k kK )= n!

k=0 k=0

m+1 1 n
> (" et

)
n=0 k=0 n.

L+ 0™ pu(x)> = X rlm,m) "

n=0

e o)
o n e
n=0
COROLLARY. For every integer p the relation
n

rin,m)="3 rik,p—1)r(n—k,m—p) (26)

k=0
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holds. Especially

r(n, m)= i (k,m—1)r(n—k,0).

In other words, the convolution product of the pth and gth rows gives the
(p+4q-+1)th row in the table of the numbers r(i, ;).
Similarly, we define the generating functions for the columns. Let

o

Hi(t)= Z

j=0

i)

i
Note that only the numbers r(i, j), i 0, =0, enter in this formal power
series,

THEOREM 4. For every non-negative number i the generating function for
columns of the numbers r(i, j) can be written in the form

H{t)= 1es(z) (27)

Proof. The definition of a formal power series as a linear functional on
P implies that

CH{)x") =r(i, n)

foriz0and n>=0.
Define

f(=5es(0)
We have
DX =5 s lx> = (s e
=5 1Y 150)> = rlism)

It follows that (H(t)]x"> = {f{t)]x"> which implies H,(t)=f(t). Note
that the series

yt e
M=1+4+— +?‘+
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implies {e”'| p(x)> =p(y) and e”'p(x)=p(x + y) for every ye C and every
polynomial p(x)e€ P. It is also easy to see that {p(¢)|q(x)) = {q(r)| p(x))
for any two polynomials p(x) and g(x). The proof is complete.

We now go a step further. It is possible to construct a generating
function for H(z). For a fixed s € C we define

%(s, )= i H{s) 1t
i=0

The function %(s, t) can be written in the closed form. Recall that

- Si(s) t,’

1+ e’=y =2

iZo 1!
because of the expansion (9). We obtain
Y(s, )= Z esﬁ tize:(l +f(t)) esf(l)
ico i!
=e'Gy(t) priul

Note that the form e* +/) is not correct because the series 1 + /() has
the zeroth coefficient different from 0.
Differentiating with respect to s we get

D,%(s, 1) =e'Gy(1)* 7",
D2%(s, t) = e°Gy(1)? €7,

Since f(f(f)) =t we have an equation for the function G,(¢):

tGo(t)(1+ Go(t))=Go(2) — 1.

THEOREM 5. The function 4(s, t) is a formal solution of the equation

(tD?+(t—1)D,+1)%(s,1)=0

with the boundary condition

D2%(0, 1) =%(0, 1)* #0.

Proof. A simple verification.

409/1491-2
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4. THE GROUP STRUCTURE

Table I contains the numbers r(i, j) for j >0 only. But we also can write
these for j<0. One method is by using generating functions G,(t). The
other, simplest, way to compute r(i, j) is with the recurrence relation

ri,j—1)=r(, ) —ri—Lj)—r(i—1,j+1).

Table II the central part of the extended table for numbers r(i, j). Denote
r(-,j)=a;,,. Define the convolution product x#*y of sequences x=

(xO’ X15 X2, a) and y= (yO, Y15 Va5 e ):

n

(x*y)n= Z Xie Vn—k-

k=0

It is easy to see that (x x y) x z=x = (y * z) for all sequences x, y, and z.
For our sequences g, we find the following properties:

a;*a;=a;,;

a;*ap=a,, a;*a_;=dap.
We have

THEOREM 6. The set {---, a_,,a_,, ay, 4y, as, ...,} with the convolution
product is a infinite cyclic group. The unit in this group is the sequence
a,=(1,0,0, ...,). The convolutional inverse of the sequence a; is the sequence
a_;. For any sequence y the equation a;* x=y has the unique solution
x=a_;*y. The group generator is the sequence a,.

TABLE II
(- 2) 1 6 30 146 714 a;
r(-, 1) 1 4 16 68 304 a;
(-, 0) 1 2 6 n 90 a
r(-, ~1) 1 0 0 0 0 aq
(-, ~2) 1 -2 -2 -2 ~22 a_,
(-, ~3) 1 —4 0 —4 ~16 a_,
(-, ~4) 1 ~6 6 -2 —6 a_,
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The generating function of numbers in a, is given by (24) and (20).
From the relation

l—r—(1—-61+2)"7=2 Y r(n—1,0)1" (28)

n=1

we obtain after formal derivation
1= (=31 =6+ 1212 = Z (n+1) r(n, 0) 1. (29)
Multiply (29) by 1 — 61+ 1% We get, again using (28), the relation

14+t+(r—3) i rin—1,0)¢"

n=1

=(1—6t+1%) i (n+1) r(n, 0) "

n=0

The equality principle of formal power series gives a new result:

THEOREM 7. The numbers r(n, Q) admit a three-term recurrent formula
(n+1)r(n,0)—32n—1)r(n—1,0)+(n—-2)r(n—-2,0)=0, n=2 (30)
with the initial conditions r(0,0)=1 and r(1,0)=2.

We can now get the numbers r(n,0) very quickly using (30):
r(6,0) = 1806, r(7,0)=28558, r(8, 0)=41586, r(9,0)=206098, r(10,0)=
1037718, r(11, 0) = 5293446, r(12, 0) =27297738.

We also can express the numbers r(n, 0) by Legendre polynomials P, (x).
The formal power series

(1=2xt+1%)" 2= Zka)t

gives us the numbers r(n, 0) in a closed form. It is easy to see that

Z (n,0)1"*'=1—1=Y P,(3)1""?
= n=0

+6F PG - T P3N
n=0

It follows that

2¢(n,0)= —P,_,(3) +6P,(3)~P,,(3) for n>1l.
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THEOREM 8. The numbers r(n, Q) can be written in the form
r(n,0)= —3(P,_,(3)—6P,(3)+ P, ,(3))

for every n= 1, where P,(x) denote the Legendre polynomials.
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