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SOME IDENTITIES OF POLYNOMIALS ARISING FROM
UMBRAL CALCULUS

DAE SAN KIM, TAEKYUN KIM, SEOG-HOON RIM

ABSTRACT. In this paper, we study some properties of associated se-
quences in umbral calculus. From these properties, we derive new and
interesting identities of several kinds of polynomials.

1. Introduction

We recall that the Bernoulli polynomials are defined by the generating
function to be

ett—le vt — Bt ZB (a: k. (see[7,8]),
with the usual convention about replacmg B"™(z) by Bp(z).

In the special case, x = 0, B, (0) = B, are called the n-th Bernoulli numbers
(see[l —14]).

For r € Z, the higher order Bernoulli polynomials are also defined by the
generating function to be

t ' ot t t ot o (r) "
(et—1> € _<et—1>m<et—1>e —Z)Bn (m)m

'

r—times
In the special case, x = 0, (r (0) = Bq(f) are called the n-th Bernoulli
numbers of order r (see [5, 6]). From the definition of Bernoulli numbers, we

note that
By=1, (B+1)"—=B, =01, (see[7,8,10]),

where 0y, ; is the Kronecker’s symbol.
As is well Known, the Euler and higher-order Euler polynomials are also
defined by the generating functions as follows:

2
e = ZE (x

and
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with the usual convention about replacing (E(T)(a:))n by EY) () (see[3,4,5,6]).
Let C be the complex number field and let F be the set of all formal power
series in the variable ¢ over C with

F={ft)=Y &t larec}.
n=0

Let P = CJt] and let P* be the vector space of all linear functional on P.
Now, we use the notation < L | p(z) > to denote the action of a linear
functional L on a polynomial p(x) (see[4,11]).

The formal power series

F(t) = %t’“e}“, (see[4,11]),
k=0

define a linear functional on P by setting
< f(t) | 2" >=ap, for all n>0, (see[4,1l]).
Thus, we have

<th |z >=nld,p, (see[d]).

Let fr(t) = > ico %tk. Then, we note that < fr(t) | 2" >=<
L | 2™ > and so as linear functionals L = f7(¢). It is known in [11] that the
map L — fr(t) is a vector space isomorphism from P* on to F. Henceforth,
F will denote both the algebra of formal power series in ¢t and the vector
space of all linear functionals on P and so an element f(t) of F will be
thought of as both a formal power series and a linear functional. We shall
call F the umbral algebra. The umbral calculus is the study of umbral alge-
bra and modern classical umbral calculus can be described as a systematic
study of the class of Sheffer sequences (see[11]). The order O(f(t)) of the
power series f(t) # 0 is the smallest integer k for which aj does not vanish.
The series f(t) has a multiplicative inverse, denoted by f(¢)~! or #t) if and

only if O(f(t)) = 0. Such a series is called invertible series. A series f(t)
for which O(f(t)) = 1 is called a delta series (see[4, 11]). Let f(t),g(t) € F.
Then, we see that

< f()g(t) | plx) >=< f(t) | g(t)p(x) >=<g(t) | f(t)p(x) >, (see[ll]).
In [11], we note that for all f(¢) in F

< ft) ] 2P >
piy =y TOIE 2
k=0 ’
and for all polynomials p(z)
N < tF ] p(x) >
pla) = 3o <L 20,
k=0 ’
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Thus, we get

o0

d*p(x)
k E
) = dxk

<tl\p(a:)>a:_,

and

) =<t* | p(x) > and <1 |p®(z) >=p®)(0).

From this, we have t*p(z) = p()(z) = d* p(x ,(k > 0). Tt is not difficult to
show that e¥'p(z) = p(x+y) (see[4, 11]). Let Sn(x) be a polynomial with deg
Sn(x) =n, f(t) a delta series and let g(t) be an invertible series. Then there
exists a unique sequence Sy, (z) of polynomials with < g(t)f(t)* | Sp(z) >=
i, (n,k > 0). The sequence Sy (z) is called the Sheffer sequence for
(9(£), f(t)), which is denoted by Sn(x) ~ (g(£), f(2)) . If Sn(z) ~ (1, f(1)),
then S, (z) is called the associated sequences for f(t), or S, (x) is associated
to f(t). If Sy(xz) ~ (g(t),t), then S,(x) is called the Appell sequence for
g(t) or S,(x) is Applell for g(t) (see[4,11]). For p(z) € P, we have <
# | p(z) >= foy p(u)du (see[4,11])

In this paper, we study some properties of associated sequences in umbral
algebra. From these properties, we derive new and interesting identities of
several kinds of polynomials.

2. Some identities of polynomials arising from umbral calculus

Let py(x) ~ (1, f(t)) and g,(x) ~ (1,9(t)). Then, for n > 1, we have

f(t)>n -1

1 qnm:a:(— T pp(x), (seelll]).

(1) (z) o) (), (see[ll])

Let us take p,(z) = (), and g, (x) = 2". Then we see that (z), ~ (1,e'—1)
and z" ~ (1,1).

It is easy to show that

(2) (ett_1>n: (ett_1>.. (e _1> Z(z Sl + n)t,

~
n—times

where Ss(n, k) is the stirling number of the second kind.
For n > 1, by (1), we get

(3) x”zm(ett_1>nm_l(m)n

= <ett_1>n(l’— D)p—1

_J;Z (l SQ(Z-‘rﬂ n)t(z —1)n_1,
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where (z), = z(z —1)...(x —n +1).
The stirling number of the first kind is defined by

(4) (@)n = > _Si(n,D)al, (see[6,11]).
1=0
By (3) and (4), we get
(5)
n n—l
:lz:(l-t SQ(l+n+1 n+1 ZSl(n,l—&-m)a:m(l—&—m)l
=0 m=0
n n-—-m l+m
= Hnﬂ So(l+n+1,n+1)S1(n,l +m)z™
m=0 [=0
and
" /n
™ = m
(6) =3 <m>m

m=0

Therefore , by (5) and (6), we obtain the following theorem.

Theorem 1 . For m,n € Zy+ = N{J{0} with n > m >0, we have

n n—m <l+m>
( ):Z —— Sl +n+1,n+1)Si(n,l+m).

m i <l+7+1>
It is known that
(7) "~ (1,t), (z)n ~ (L€' —1), (see[ll]).
By (1) and (7), we get
n t " - n
(8) (z) :x<et—1> el
=z <et t_ 1) "t = J,’B(n 1(z).
Thus, by (8), we have
(9) B™ (z) = (z = 1)p_1, (n € N).

Therefore, by(9), we obtain the following lemma.

Lemma 2 . For n € N, we have

B (z 4+ 1) = (2),.
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Note that

/et —1 (n+1) t et —1 t ntl ot
(10) 2 <—t ) B, (a:)ﬂ " o e
t " xt
()
S )
= Z B, (x)ﬁ
=0

By comparing the coefficients on the both sides of (10), we get

(11) (et t_ 1) B (z) = B™(z), (1>0).
From (11), we have
(12) (S B0 = B, (20

By Lemma 2, (11) and (12), we get

(13) B (z4+1) = (e t_ 1) B (z 4 1)

x+1
- / (u)ndu
From (4) and (13), we have
z+1 n z
(14) / (u)pdu = ZSl(n,l) /1 uldu
—ZS}(ff (@ — (e~ 1)),

Therefore, by (13) and (14), we obtain the following theorem.

Theorem 3 . For n > 1, we have

Bén)(x_;'_ ZSl(nl l+1( H—l (J,’—l)H_l).
=0

For a # 0, Abel sequence is defined by A,(z;a) = z(z — an)" L.

In [11], we note that A, (z;a) ~ (1,te™).
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Let us consider the following associated sequences:

(15) Ap(zia) = z(x —an)" "t ~ (1,te®), a #0,

x
(Z)?’LN(lvebt_l)v (b#O)
For n > 1, by(1), we get
x te® \" |
(16) o= () o At

T bt " an n—
= (ebt—_1> e (x —an)" ",
where
bt " ant > k o(n) [ GT th
(17) (—ebt . 1) et = %b B! <T) o

From (16) and (17), we have

xT xT i n an k ~
k=0 '

n—1
_ ken p(n) (A (n— 1) n—1l—k
—arkng By, (T) T(m—an)

n—1
= Z bk_”B,gn) (%) (n ; 1)1:(1: —an)" 17k

n—1 k—n p(n) (AN
= < k )b By <T) Ap_g(x —ak;a).

Il
Ve N NV N
S S =l
N’ N N
3
&
TN
o
g
o
| |+
—
N
3
S
i
—

n—1 E)
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Theorem 4 . For n > 1, we have

n—1
Ty n=1\ y npm) fan Al
(g)n = % < k >b By, ( b )An—k(x ak; a)
T _(n) T
— 2B (3.
b n—1 b)
Moreover,
n—1
(n) T\ =1\ k_pni1 ) (a0 )
B\ (3) = % ( . )b B! <T) Api(z — ak;a).
Remark . For b=1,n > 1, we have
n—1 n—1
(2)n = J,’Bfln_)l(l’) = Z < k‘ )B,in)(an)An_k(m —ak;a).
k=0
Let ¢n(z) = > 7_y S2(n, k)2* be exponential polynomial.
Then, we note that
(20) Pn(z) ~ (1,log(L +1)), a™ ~(1,1).
It is well known that
n 0 p(ntk) .k
log(1 +1) By
21 = ANV R - :
(21) (FEEED) Y P eelsio)
k=0
By (1) and (20), we get
log(1 "
(22) "=z (M) 7Y, ()
(n+k) Lk
B,
- ﬂf{”kz Fn Re 9@
- nz Z B(”+k Sa(n, Dz~
k=0 1= k+1
n—1 n—=k <k+m—1> (i)
— k n m
_”ZZ ——y B, Sy (n,k+m)x

Thus, by (22), we obtain the following theorem.

Theorem 5 . For n > 1 with 1 < m < n, we have

n—m k+m—1
3 MBW*’“ )So(n, k +m) = G-
— n+k
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Let M,(x) = Z’,% o (1) (n = 1), 2%(x);, be Mittag-Leffler polynomials
with My, (z) ~ (1,%=L). Then, let us consider the following associated

' et+1
Sequence:
(23) Ma(a) ~ (1, 522), (@) ~ (L — 1)
n aj b et + 1 b m n 76 .
For n > 1, by (1) and (23), we get
—1
20) (1) =2 ( - 1) My (2)

" /n K 1 "
= — _ _1 —
M(’f)(n Doss () o= i
n k-1 n
n 1 2
= — D281k —1,0)—2 | —— —1)
3 (1) = Dok =10 e () -
n k-1 n
-y ¥ <k> (n = 1) k281 (k = 1,02E™ (& — 1).
k=0 1=0

Thus, by (24), we obtain the following proposition.

Proposition 6 . For n > 1 , we have
n k—1

> ( >(n—1 k2678 (k= 1,0z E™ (2 — 1).
k=0 =0
For n > 1, by (1) and (23), we get
(25) M, (z) = z(e! + )"z~ Y x), = z(e' + 1) (x — 1)1

n

_ q:; (Z)ekt(a: i =y (Z) (x4 k— 1)

k=0
The equation (25) is different from the expression

ARED 31 () [ER et

k=0
Therefore, by (25), we obtain the following corollary.

Corollary 7 . For n > 1, we have

M, (z) = xé (Z) (x4 k—1)ns

Let L%a)(a:) be the Laguerre polynomials of order a(€ R). Then we note
that L%a)(a:) ~ (1 —t)71 A5). Especially, Ly(z) ~ (1,75). By the
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definition of associated sequences, we see that

t n
From (26), we have
t n

— L,(— =nldy k.
(27) < <t+1> | Lp(—z) >=nld,
Thus, by (27), we get

t
)~ (1, — ).

(28) Ln(=2) ~ (1, )

As it is shown in Roman [11], one can find an explicit expression for L, (x)
by using the transfer formula

Ly(—x) = Z (Z: 1) Z—;mk, (n>1), (see[l1]).

k=1
It is well known that

t _ > (k)tk
(29) (1+1t)log(1+1) _I;Bk H,(see[S,G]).

Thus, by (29), we get

t "N k ) |
= B ..B" | —.
(30) ((1+t)log(1+t)> D 2. k(zl,...,z) h b k!

k=0 ll+---+ln:
From (1),(20) and (28), we have

t
(L) fn(z) == ((1+t) log(1+ ¢t

t " &< (n—1\n
_x<(1+t)log(1+t)> ’ mzzl<m—1>m!x '
By (30) and (31), we get

)>nm_1Ln(—m)

(32)
Pn(z)
n m—1
n—1\n! k {1 (ln tr m—1
-2 <m— 1) it (l l )Bhl)'"Bln Sk
m=1 C k=0 Lt A=k N '
n m—1
n—1\/m—1\ n! k (1) (In) m—k
- — BY..B "™
m—1>< k >m! (zl,...,zn> bl T

n—1\(/m—=1\n [ m—=01\ _u) L)
il B ..B™ .
1 (m—1><l—1>m! (llv"'vlTL) h I
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From (20), we have
n n
(33) On(x) =Y So(n, k)a® =" So(n, k)a", (n>1).
k=0 k=1
Therefore, by (32) and (33), we obtain the following theorem.

Theorem 8 . For n > 1 with 1 <[ < n, we have
SQ(nv l)

n—1\/m—=1\n!( m—=01\_a) L,
i B Y..B™.
DR D G | oy - R L

I<m<nli+..+lp=m—I

It is well known in [5,6] that

oy Co ey (Y

k=0 =0

<‘)52(j+n,n) b tk

From (35), we have

(35)
ebt—l " '2n00 i kj<>52(j+nn) k—j1j tk
— ) =) P DI W(an) vl
k=0 \ j=0 J

where a,b # 0.
By (1) and (15), we get
(36)

e —1\" |z
An(a:;a):a:< roat ) x (Z)”

et —1\" 1 x

- G L T
( teat ) p(5 ~ Do
n-1( k ( )S2(j +n,n) \ ¢k g
— ()2 3" (—an)FIp 7 (5~ Dt
k=0 \ j=0 j
where
n—1
k(T k(L l

2 Dy = —1 21

B G- g&m DG 1)

—Z&m—u )@( ~ 1k
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From (36) and (37), we have
(38)

Ap(z;a) = z(x —an)™ ™t

n—1 k n—1
e o OOSG+nmsn-10\ +
= (n!)" Z Z ( ) <j+n> a:(g -1
k=0 \j=0 [= J
Therefore, by (39), we obtain the following lemma.
Lemma 9 . For n > 1, we have
An(z;0)
n—1 k n—1
_ o2l any k=i () ()82 +nn)Sin =10\ o
U IO (—7) 7 2(3 -1k
k=0 \j=0 I=k j
Remark. Let b = 1. Then we have
An(z;a) = z(z —an)"™
n-l f k n-1 <,)<Z)Sg(j+n n)Si(n —1,1)
k ) ) _
= (n!) Z Z ( : 7t w(z 1)
Jj=0 = ( J )
It is well known in[5,6] that
A4+ "M R phontn), 1
39 — = B —.
(39) (log(1+ 1)) kz% e @y
From (39), we have
t(1+t)* (k—n+1) tF
40 —_ By
(40) <log(1+t)> kz% (an+ )k:'
Let us consider the following associated sequences:
(41) Sn(x) ~ (Lt +1)%),(a #0), ="~ (1,1).
Then, for n > 1, by (1) and (41), we get
t " -1_.n
(42) Sn(l‘) =T <m> r X

:x(1+)ann1

. kz_o <_Z”> (n — 1)z~ 1k

= (;ﬁe{;) (n — 1)n_kl’k.
k=1
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Therefore, by (42), we obtain the following proposition.

Proposition 10 . For n > 1, let S,,(z) ~ (1,¢(1 +t)?), (a # 0).
Then, we have

By (1), (20) and (41), we get

(43) qsn(a:):a:(%) 50 (0)

(N e
- <log(1+t)> ;(n_J( 1)z
From (40) and (43), we get

(44)

oo =3 ()= ()

n -1
—an k—n+1 1 -
= < )(n—l)n_l E B,g " )(an—&—l)Hmtka:l !
=1 k=0

n—I

n 2l 1—1 b1
= ZZ (n B l) (n — 1)n—l< k )B](€ —n+ )(an+ 1)1,1—]{}

=1 k=0

n —an [—1 I 1
3D DY (A [T ] (el - e R

=1 m=1

"L~ [ —an [—1 I—n—m m

— Z{Z (n B l) (n—1), (m B 1) Bl(_m ™ (an +1)}2™.

m=1 l=m

Therefore, by (20) and (44), we obtain the following theorem.

Theorem 11 . For n > 1 and m > 0, we have

Sa(n,m) = <n_inl> (n—1)n— (nl,b__ll> B (an + 1),

m<i<n

Let us consider the following associated sequences:

¢
1
(45) s ~ (10D
Then, by (1) and (45), we get
] 2 \" a1 (n)
(46) Sp(z)=x <et n 1) 2" =aE, " ().
304
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For n > 1, by (1), (15) and (46), we get

2 n
; 1) ednt (x — an)”_1
et +

@ eB e =

(n)
E
=2z Z (an —k k(g — an)" !

n—1

. (n ; 1>E,(€”)(an)a:(a: —an)" 1k,

k=0

Therefore, by (47) , we obtain the following theorem.

Theorem 12 . For n > 1, we have

n

E(” [(z) = Z (n ; 1>E,(€n)(an)An_k(a: — ak;a).

k=0
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