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Abstract

In this paper, we study some properties of Sheffer sequences for the
powers of Sheffer pairs under umbral composition. From our properties
we derive new and interesting identities of Sheffer sequences of special
polynomials for the powers of Sheffer pairs under umbral composition.
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1 Introduction and Preliminaries

For α ∈ R, the Bernoulli polynomials of order α are defined by the generating

function to be (
t

et − 1

)α

ext =

∞∑
n=0

B(α)
n (x)

tn

n!
, (see [1, 3, 5]) . (1)

In the special case, x = 0, B
(α)
n (0) = B

(α)
n are called the n-th Bernoulli numbers

of order α.

The Stirling number of the first kind is defined by

(x)n =
n∑

k=0

S1(n, k)xk, (2)

where (x)n = x(x − 1) · · · (x − n + 1).

From (2), we note that

x(n) = x(x + 1) · · · (x + n − 1) = (−1)n(−x)n =

n∑
k=0

|S1(n, k)| xk. (3)

Let F be the set of all formal power series in the variable t over C with

F =

{
f(t) =

∞∑
k=0

ak

k!
tk|ak ∈ C

}
. (4)

Suppose that P is the algebra of polynomials in the variable x over C and P
∗

is the vector space of all linear functionals on P. The action of the linear func-

tional L on a polynomial p(x) is denoted by 〈L|p(x)〉. For f(t) =
∑∞

k=0
ak

k!
tk ∈

F , let us define a linear functional on P by setting

〈f(t)|xn〉 = an, (n ≥ 0), (see [2, 4]). (5)

By (4) and (5), we easily get

〈tk|xn〉 = n!δn,k (n, k ≥ 0), (see [2, 4]), (6)

where δn,k is the Kronecker’s symbol.

For fL(t) =
∑∞

k=0
〈L|xk〉

k!
tk, we have 〈fL(t)|xn〉 = 〈L|xn〉.
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Thus, we note that the map L �−→ fL(t) is a vector space isomorphism from

P
∗ onto F . Henceforth, F is thought of as both a formal power series and a

linear functional. We call F the umbral algebra. The umbral calculus is the

study of umbral algebra (see [4]).

The order O(f(t)) of the nonzero power series f(t) is the smallest integer k for

which the coefficient of tk does not vanish (see [2, 4]).

If O(f(t)) = 0, then f(t) is called an invertible series. If O(f(t)) = 1, then

f(t) is called a delta series. For O(f(t)) = 1 and O(g(t)) = 0, there exists a

unique sequence sn(x) of polynomials such that 〈g(t)f(t)k|sn(x)〉 = n!δn,k for

n, k ≥ 0.

The sequence sn(x) is called the Sheffer sequence for (g(t), f(t)) which is de-

noted by sn(x) ∼ (g(t), f(t)).

Let f(t) ∈ F and p(x) ∈ P. Then we see that

f(t) =

∞∑
k=0

〈f(t)|xk〉
k!

tk, p(x) =

∞∑
k=0

〈tk|p(x)〉
k!

xk, (see [4]). (7)

By (7), we easily see that

tkp(x) = p(k)(x) =
dkp(x)

dxk
, (see [2, 4]). (8)

Let sn(x) ∼ (g(t), f(t)). Then the generating function of Sheffer sequence

sn(x) is given by

1

g(f̄(t))
exf̄(t) =

∞∑
k=0

sk(x)
tk

k!
, (see [2, 4]), (9)

where f̄(t) is the compositional inverse of f(t).

For pn(x) ∼ (1, f(t)), qn(x) ∼ (1, g(t)), we note that

qn(x) = x

(
f(t)

g(t)

)n

x−1pn(x), (see [2, 4]). (10)

The pair (g(t), f(t)) will be called a Sheffer pair where O(g(t)) = 0 and

O(f(t)) = 1 (see [2, 4]). Let m be nonnegative integer. The m-th power

of an invertible series is denoted by (g(t))m, while the compositional power

of a delta series f(t) is denoted by fm(t) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
m−times

(t). Let pn(x) and

qn(x) =
∑n

k=0 qn,kx
k be sequences of polynomials. Then the umbral composi-

tion of qn(x) with pn(x) is defined by

(qn ◦ p) (x) =
n∑

k=0

qn,kpk(x), (see [2, 4]). (11)
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Suppose that sn(x) ∼ (g(t), f(t)) and rn(x) ∼ (h(t), l(t))

Then we note that

(rn ◦ s)(x) = rn(s(x)) ∼ (g(t)h(f(t)), l(f(t))). (12)

The identity under umbral composition is the sequence xn and the inverse of

sequence sn(x) is the Sheffer sequence for
(
g(f̄(t))−1, f̄(t)

)
(see [2, 4]).

By (12), we easily see that the m-th power under umbral composition of

sn(x) ∼ (g(t), f(t)) is given by

s(m)
n (x) ∼

(
m−1∏
i=0

g(f i(t)), fm(t)

)
, where m ∈ N. (13)

For n ≥ 0, let us assume that

sn(x) =

n∑
k=0

sn,kx
k =

∞∑
k=0

sn,kx
k, (14)

where we agree that si,j = 0 if i < j.

If we define s
(m)
n (x) by

s(m)
n (x) =

n∑
k=0

s
(m)
n,k xk =

∞∑
k=0

s
(m)
n,k xk, (15)

then, by (11),(14) and (15), we easily get

s
(m)
n,k =

n∑
l1,··· ,lm−1=0

sn,l1sl1,l2 · · · slm−2,lm−1slm−1,k, (see [2]). (16)

From (9) and (13), we can derive the generating function of s
(m)
n (x) as follows:

∞∑
k=0

s
(m)
k (x)

k!
tk =

(
1∏m−1

i=0 g(f i(f̄m(t)))

)
exf̄m(t) (17)

=

(
m−1∏
i=0

g(f̄ (m−i)(t))

)−1

exf̄m(t) .

In this paper, we study some properties of Sheffer sequences for the powers of

Sheffer pairs under umbral composition. From our properties, we derive new

and interesting identities of Sheffer sequences of special polynomials for the

powers of Sheffer pairs under umbral composition.
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2 Some identities of special polynomials.

Let us take the sequence sn(x) of special polynomial as follows:

sn(x) = x(n) =

n∑
k=0

|S1(n, k)|xk ∼ (1, f(t) = 1 − e−t). (18)

For m ∈ N, let us assume that the m-th power under umbral composition of

sn(x) is given by

s(m)
n (x) =

n∑
k=0

s
(m)
n,k xk. (19)

By (16), (18) and (19), we get

s
(m)
n,k =

n∑
l1,··· ,lm−1=0

|S1(n, l1)||S1(l1, l2)| · · · |S1(lm−1, k)| (20)

=
n∑

l1,··· ,lm−1=0

|S1(n, l1)S1(l1, l2) · · ·S1(lm−1, k)| .

It is known that

xn ∼ (1, t), sn(x) = x(n) ∼ (1, f(t) = 1 − e−t). (21)

By (10) and (21), we get

sn(x) = x

(
t

f(t)

)n

x−1xn = x

(
t

f(t)

)n

xn−1. (22)

From (22), we note that

f(t)mx−1sn(x) = f(t)m

(
t

f(t)

)n

xn−1 =

(
t

f(t)

)n−m

tmxn−1 (23)

=

(
t

1 − e−t

)n−m

tmxn−1 =

∞∑
l=0

(−1)lB
(n−m)
l

l!
tl+mxn−1

=

n−1−m∑
l=0

(−1)lB
(n−m)
l

l!
(n − 1)l+m xn−1−l−m ,

where n ≥ 1, 0 ≤ m ≤ n − 1.

For n ≥ 1, by (13), (18), we get

s(2)
n (x) = x

(
f(t)

f 2(t)

)n

x−1sn(x) = x

(
f(t)

1 − e−f(t)

)n

x−1sn(x) (24)

= x

n−1∑
k2=0

B
(n)
k2

k2!
(−1)k2f(t)k2x−1sn(x).
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From (23) and (24), we can derive the following equation (25):

s(2)
n (x) = x

n−1∑
k2=0

B
(n)
k2

k2!
(−1)k2

n−1−k2∑
k1=0

(−1)k1B
(n−k2)
k1

k1!
(n − 1)k1+k2x

n−1−k1−k2 (25)

=
n−1∑
k2=0

n−1−k2∑
k1=0

(n − 1)!(−1)k1+k2

k1!k2!(n − k1 − k2 − 1)!
B

(n)
k2

B
(n−k2)
k1

xn−k1−k2

=
∑

k1+k2+l=n−1

(
n − 1

k1, k2, l

)
(−1)k1+k2B

(n)
k2

B
(n−k2)
k1

xl+1

=

n∑
k=1

{ ∑
k1+k2=n−k

(
n − 1

k1, k2, k − 1

)
(−1)k1+k2B

(n)
k2

B
(n−k2)
k1

}
xk.

From s
(3)
n (x) ∼ (1, f 3(t)) and s(2)(x) ∼ (1, f 2(t)), we get

s(3)
n (x) = x

(
f 2(t)

f 3(t)

)n

x−1s(2)
n (x) = x

(
f 2(t)

1 − e−f2(t)

)n

x−1s(2)
n (x) (26)

= x

n−1∑
k3=0

B
(n)
k3

k3!
(−1)k3

(
f(t)

f 2(t)

)n−k3

(f(t))k3 x−1sn(x)

= x

n−1∑
k3=0

B
(n)
k3

k3!
(−1)k3

(
f(t)

1 − e−f(t)

)n−k3

(f(t))k3 x−1sn(x).

From (48), (23) and (26), we have

s(3)
n (x) = x

n−1∑
k3=0

n−1−k3∑
k2=0

(−1)k2+k3
B

(n)
k3

B
(n−k3)
k2

k3!k2!
(27)

×
n−1−k3−k2∑

k1=0

(−1)k1B
(n−k2−k3)
k1

k1!
(n − 1)k1+k2+k3x

n−1−k1−k2−k3

=
∑

k1+k2+k3+l=n−1

(−1)k1+k2+k3

(
n − 1

k1, k2, k3, l

)
B

(n)
k3

B
(n−k3)
k2

B
(n−k3−k2)
k1

xl+1

=

n∑
k=1

{ ∑
k1+k2+k3=n−k

(−1)k1+k2+k3

(
n − 1

k1, k2, k3, k − 1

)

× B
(n)
k3

B
(n−k3)
k2

B
(n−k3−k2)
k1

}
xk.
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Continuing this process, we get

s(m)
n (x) =

n∑
k=1

{ ∑
k1+···+km=n−k

(−1)k1+···+km

(
n − 1

k1, · · · , km, k − 1

)
B

(n)
km

(28)

× B
(n−km)
km−1

· · ·B(n−km−···−k2)
k1

}
xk.

Therefore, by (19), (20) and (28), we obtain the following theorem.

Theorem 1. For m,n ≥ 1, we have
n∑

l1,··· ,lm−1=0

|S1(n, l1)S1(l1, l2) · · ·S1(lm−1, k)|

=
∑

k1+···+km=n−k

(−1)k1+···+km

(
n − 1

k1, · · · , km, k − 1

)

× B
(n)
km

B
(n−km)
km−1

· · ·B(n−km−km−1−···−k2)
k1

.

Let us consider the following Sheffer sequence:

sn(x) = Ln(x) =

n∑
k=0

L(n, k)(−x)k ∼
(

1, f(t) =
t

t − 1

)
, (29)

where L(n, k) are the Lah numbers with

L(n, k) =

(
n − 1

k − 1

)
n!

k!
, for 1 ≤ k ≤ n, (30)

L(n, k) = 0, for k > n ≥ 1,

L(n, 0) = 0, for n ≥ 1,

Ln(0, 0) = 1.

For n ≥ 1, 0 ≤ m ≤ n − 1, we have

f(t)mx−1sn(x) = f(t)m

(
t

f(t)

)n

xn−1 =

(
t

f(t)

)n−m

tmxn−1 (31)

= (t − 1)n−mtmxn−1

=
n−m−1∑

l=0

(
n − m

l

)
(−1)n−m−l(n − 1)mtlxn−1−m

=
n−m−1∑

l=0

(
n − m

l

)
(−1)n−m−l(n − 1)m(n − 1 − m)lx

n−1−m−l

=
n−m−1∑

l=0

(
n − m

l

)
(−1)n−m−l(n − 1)l+mxn−1−m−l.
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For n ≥ 1, from s
(2)
n (x) ∼ (1, f 2(t)) and sn(x) ∼ (1, f(t) = t

t−1

)
, we get

s(2)
n (x) = x

(
f(t)

f 2(t)

)n

x−1sn(x) = x (f(t) − 1)n x−1sn(x) (32)

= x

n−1∑
k2=0

(
n

k2

)
(−1)n−k2f(t)k2x−1sn(x).

From (31) and (32), we can derive the following equation:

s(2)
n (x) = x

n−1∑
k2=0

(
n

k2

)
(−1)n−k2

n−1−k2∑
k1=0

(
n − k2

k1

)
(−1)n−k2−k1 (33)

× (n − 1)k1+k2x
n−1−k1−k2

=
n−1∑
k2=0

n−1−k2∑
k1=0

(−1)n−k2+(n−k1−k2)
n!

(n − k1 − k2)!

×
(

n − 1

k1, k2, n − 1 − k1 − k2

)
xn−k1−k2

=
∑

k1+k2+l=n−1

(−1)n−k2+l+1 n!

(l + 1)!

(
n − 1

k1, k2, l

)
xl+1

=

n∑
k=1

{ ∑
k1+k2=n−k

(−1)(n−k2)+k n!

k!

(
n − 1

k1, k2, k − 1

)}
xk

From s
(3)
n (x) ∼ (1, f 3(t)) and s

(2)
n (x) ∼ (1, f 2(t)), we get

s(3)
n (x) = x

(
f 2(t)

f 3(t)

)n

x−1s(2)
n (x) = x

(
f 2(t)
f2(t)

f2(t)−1

)n

x−1s(2)
n (x) (34)

= x
(
f 2(t) − 1

)n
x−1s(2)

n (x) = x

n−1∑
k3=0

(
n

k3

)
(−1)n−k3

(
f 2(t)

)k3
x−1s(2)

n (x)

= x

n−1∑
k3=0

(−1)n−k3

(
n

k3

)(
f(t)

f 2(t)

)n−k3

f(t)k3x−1sn(x)

= x

n−1∑
k3=0

(
n

k3

)
(−1)n−k3

n−1−k3∑
k2=0

(
n − k3

k2

)
(−1)n−k2−k3 (f(t))k2+k3 x−1sn(x).
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From (31) and (34), we have

s(3)
n (x) =

∑
k1+k2+k3+l=n−1

(−1)(n−k3)+(n−k2−k3)+(l+1) n!

(l + 1)!

(
n − 1

k1, k2, k3, l

)
xl+1

(35)

=
n∑

k=1

{ ∑
k1+k2+k3=n−k

(−1)(n−k3)+(n−k2−k3)+k n!

k!

(
n − 1

k1, k2, k3, k − 1

)}
xk.

Continuing this process, we get

s(m)
n (x) =

n∑
k=1

{ ∑
k1+···+km=n−k

(−1)(n−km)+···+(n−km−km−1−···−k2)+k n!

k!

×
(

n − 1

k1, k2, · · · , km, k − 1

)}
xk (36)

=
n∑

k=1

s
(m)
n,k xk, where m ≥ 1.

By (14), (15), (16), (29) and (36), we easily get

s
(m)
n,k =

n∑
l1,··· ,lm−1=0

sn,l1sl1,l2 · · · slm−1,k (37)

=
n∑

l1,··· ,lm−1=0

(−1)l1+l2+···+lm−1+k L(n, l1)L(l1, l2) · · ·L(lm−1, k).

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 2. For m,n ≥ 1, 1 ≤ k ≤ n, we have

n∑
l1,l2··· ,lm−1=0

(−1)l1+l2+···+lm−1+k L(n, l1)L(l1, l2) · · ·L(lm−1, k)

=
∑

k1+··· ,km=n−k

(−1)(n−km)+(n−km−km−1)+···+(n−km−···−k2)+k n!

k!

(
n − 1

k1, k2, · · · , km, k − 1

)

Let us take Abel sequence as follows:

sn(x) = An(x : a) = x(x − an)n−1 =

n∑
k=1

(
n − 1

k − 1

)
(−an)n−kxk (38)

∼ (1, f(t) = teat
)
, where a �= 0.
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Thus by (38), we get

sn,k =

(
n − 1

k − 1

)
(−an)n−k , (n, k ≥ 0) (39)

From (16) and (39), we note that

s
(m)
n,k =

n∑
l1,··· ,lm−1=0

sn,l1sl1,l2 · · · slm−2,lm−1slm−1,k (40)

=

n∑
l1,··· ,lm−1=0

(
n − 1

l1 − 1

)(
l1 − 1

l2 − 1

)
· · ·
(

lm−2 − 1

lm−1 − 1

)(
lm−1 − 1

k − 1

)

× (−a)n−knn−l1ll1−l2
1 · · · llm−2−lm−1

m−2 l
lm−1−k
m−1 .

From sn(x) = An (x : a) ∼ (1, f(t) = teat) and xn ∼ (1, t), we note that

f(t)mx−1sn(x) = f(t)m

(
t

f(t)

)n

xn−1 =

(
t

f(t)

)n−m

tmxn−1 (41)

=

(
t

teat

)n−m

tmxn−1 = e−a(n−m)ttmxn−1

=
n−1−m∑

l=0

(−a(n − m))l (n − 1)l+m

l!
xn−1−l−m.

For n ≥ 1, from s
(2)
n (x) ∼ (1, f 2(t)) and sn(x) ∼ (1, f(t) = teat), we get

s(2)
n (x) = x

(
f(t)

f 2(t)

)n

x−1sn(x) = x

(
f(t)

f(t)eaf(t)

)n

x−1sn(x) (42)

= xe−anf(t)x−1sn(x) = x

n−1∑
k2=0

(−an)k2

k2!
(f(t))k2 x−1sn(x).

From (41) and (42), we can derive the following equation (43):

s(2)
n (x) =

n−1∑
k2=0

n−1−k2∑
k1=0

(
n − 1

k1, k2, n − 1 − k1 − k2

)
(−an)k2 (−a(n − k2))

k1 xn−k1−k2

(43)

=
∑

k1+k2+l=n−1

(
n − 1

k1, k2, l

)
(−an)k2 (−a(n − k2))

k1 xl+1

=

n∑
k=1

{ ∑
k1+k2=n−k

(
n − 1

k1, k2, k − 1

)
(−an)k2 (−a(n − k2))

k1

}
xk.
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From s
(3)
n (x) ∼ (1, f 3(t)) and s

(2)
n (x) ∼ (1, f 2(t)), we get

s(3)
n (x) = x

(
f 2(t)

f 3(t)

)
x−1s(2)

n (x) = xe−anf2(t)x−1s(2)
n (x) (44)

= x
n−1∑
k3=0

(−an)k3

k3!

(
f 2(t)

)k3 x−1s(2)
n (x)

= x
n−1∑
k3=0

(−an)k3

k3!

(
f(t)

f 2(t)

)n−k3

f(t)k3x−1sn(x)

= x

n−1∑
k3=0

(−an)k3

k3!
e−a(n−k3)f(t) (f(t))k3 x−1sn(x)

= x
n−1∑
k3=0

(−an)k3

k3!

n−1−k3∑
k2=0

(−a(n − k3))
k2

k2!
(f(t))k2+k3 x−1sn(x).

From (41) and (44), we can derive the following equation (45):

s(3)
n (x) =

∑
k1+k2+k3+l=n−1

(
n − 1

k1, k2, k3, l

)
(−an)k3 (−a(n − k3))

k2 (−a(n − k2 − k3))
k1 xl+1

(45)

=

n∑
k=1

{ ∑
k1+k2+k3=n−k

(
n − 1

k1, k2, k3, k − 1

)
(−an)k3 (−a (n − k3))

k2

× (−a (n − k2 − k3))
k1

}
xk.

Continuing this process, we get

s(m)
n (x) =

n∑
k=1

{ ∑
k1+···+km=n−k

(
n − 1

k1, k2, · · · , km, k − 1

)

×
(

m∏
i=1

(−a (n − km − · · · − ki+1))
ki

)}
xk. (46)

Therefore, by (40) and (46), we obtain the following theorem.

Theorem 3. For n, m ≥ 1, 1 ≤ k ≤ n, we have
n∑

l1,··· ,lm−1=0

(
n − 1

l1 − 1

)(
l1 − 1

l2 − 1

)
· · ·
(

lm−2 − 1

lm−1 − 1

)(
lm−1 − 1

k − 1

)
(−an)n−l1

× (−al1)
l1−l2 · · · (−alm−2)

lm−2−lm−1(−alm−1)
lm−1−k

=
∑

k1+k2+···+km=n−k

(
n − 1

k1, k2, · · · , km, k − 1

)( m∏
i=1

(−a (n − km − · · · − ki+1))
ki

)
.
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Remark. Let us consider the Mittag-Leffler sequences as follows:

sn(x) = Mn(x) =
n∑

r=0

(
n

r

)
(n − 1)!

(r − 1)!
2r(x)r (47)

=
n∑

k=0

{
n∑

r=k

(
n

r

)
(n − 1)!

(r − 1)!
2rS1(r, k)

}
xk

∼
(

1,
et − 1

et + 1
= f(t)

)
.

By the same method, we get, for m,n ≥ 1, 1 ≤ k ≤ n,

n∑
l1,··· ,lm−1=0

n∑
r1=l1

· · ·
lm−2∑

rm−1=lm−1

lm−1∑
rm=k

(
n

r1

)(
l1
r2

)
· · ·
(

lm−2

rm−1

)(
lm−1

rm

)

× (n − 1)!(l1 − 1)! · · · (lm−2 − 1)!(lm−1 − 1)!

(r1 − 1)!(r2 − 1)! · · · (rm−1 − 1)!(rm − 1)!
× 2r1+r2+···+rm

× S1(r1, l1)S1(r2, l2) · · ·S1(rm−1, lm−1)S1(rm, k)

=
∑

k1+···+k2m=n−k

(
n − 1

k1, · · · , k2m, k − 1

)(m−1∏
i=0

E
(k1+···+k2i−n)
2i+1 B

(n−k1−···−k2i)
2i+2

)

×
(

m−1∏
i=0

2n−(k1+k2+···+k2i)

)
.

Here, for α ∈ R, the Euler polynomials of order α are defined by the generating

function to be (
2

et + 1

)α

ext =
∞∑

n=0

E(α)
n (x)

tn

n!
, (see [1, 3, 5]) . (48)

In the special case, x = 0, E
(α)
n (0) = E

(α)
n are called the n-th Euler numbers

of order α.
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