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A q-UMBRAL APPROACH TO q-APPELL POLYNOMIALS

MARZIEH EINI KELESHTERI AND NAZIM I. MAHMUDOV

Abstract. In this paper we aim to specify some characteristics of the so called family of q-Appell
Polynomials by using q-Umbral calculus. Next in our study, we focus on q-Genocchi numbers and
polynomials as a famous member of this family. To do this, firstly we show that any arbitrary
polynomial can be written based on a linear combination of q-Genocchi polynomials. Finally, we
approach to the point that similar properties can be found for the other members of the class of
q-Appell polynomials.

1. Introduction and preliminaries

1.1. q-Calculus. Throughout this work we consider the notation N as the set of natural numbers,
N0 as the set of positive integers and C as the set of complex numbers. We refer the readers to [1]
for all the following q-standard notations. The q-shifted factorial is defined as

(a; q)0 = 1, (a; q)n =

n−1
∏

j=0

(1− qja), n ∈ N, (a; q)∞ =

∞
∏

j=0

(1− qja), |q| < 1, a ∈ C.

The q-numbers and q-factorial are defined by

[a]q =
1− qa

1− q
(q 6= 1); [0]! = 1; [n]q! = [1]q[2]q . . . [n]q, [2n]q!! = [2n]q[2n−2]q...[2]q, n ∈ N, a ∈ C,

respectively. The q-polynomial coefficient is defined by
[

n

k

]

q

=
[n]q!

[k]q![n− k]q!
.

The q-analogue of the function (x+ y)n is defined by

(1) (x+ y)nq :=

n
∑

k=0

[

n

k

]

q

q1/2k(k−1)xn−kyk, n ∈ N0.

The q-binomial formula is known as

(2) (1− a)nq =

n−1
∏

j=0

(1− qja) =

n
∑

k=0

[

n

k

]

q

q1/2k(k−1)(−1)kak.

In the standard approach to the q-calculus, one of the q-analogues of the exponential function is
defined as

(3) eq (z) =

∞
∑

n=0

zn

[n]q!
=

∞
∏

k=0

1

(1− (1− q) qkz)
, 0 < |q| < 1, |z| <

1

|1− q|
, z ∈ C.

The q-derivative of a function f at point 0 6= z ∈ C, is defined as

(4) Dqf (z) :=
f (qz)− f (z)

qz − z
, 0 < |q| < 1.
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From this we easily see that

Dqeq (z) = eq (z) .

Moreover, Jackson definite integral of an arbitrary function f(x) is defined as [2]

(5)

∫ x

0

f(x)dqx = (1 − q)

∞
∑

n=0

xqjf(xqj), 0 < q < 1.

Noting to the definitions of q-derivative and q-integral of a function f(x) in (4) and (5), it is clear
that

(6) Dq

∫ x

0

f(x)dqx = f(x),

∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx−

∫ a

0

f(x)dqx.

According to Carlitz’s extension of the classical Bernoulli and Euler polynomials, [3], [4], [5],
q-Bernoulli and q-Euler polynomials are defined by means of the following generating functions

(7)
t

eq (t)− 1
eq (tx) =

∞
∑

n=0

Bn,q(x)
zn

[n]q!
,

(8)
2

eq (t) + 1
eq (tx) =

∞
∑

n=0

En,q(x)
zn

[n]q!
,

respectively. In a similar way, according to Kim, q-Genocchi polynomials can be defined by means
of the following generating function, [6]

(9)
2t

eq (t) + 1
eq (tx) =

∞
∑

n=0

Gn,q(x)
zn

[n]q!
.

For x = 0, Bn,q(0) = Bn,q, En,q(0) = En,q, and Gn,q(0) = Gn,q, are called the n-th q-Bernoulli,
q-Euler, and q-Genocchi numbers, respectively.
The research on the above mentioned polynomials is vast. The interested readers are referred to
[7]-[30] to see various extensions and relations regarding these numbers and polynomials.
The class of Appell polynomials for the first time attracted Appell’s note in 1880, [31]. In his
studies, Appell, characterized this family of polynomials completely. Later, the research done by
Throne [32], Sheffer [33], and Varma [34] from different points of views, developed the aforemen-
tioned class of polynomials. Sheffer, also, showed that how the properties of Appell polynomials
hold well for his generalization. In 1954, Sharma and Chak, for the first time, introduced a
q-analogue for the family of q-Appell polynomials and called this sequence of polynomials as q-
Harmonic, [35]. In the light of their works, Al-Salam, in 1967, reintroduced the family of q-Appell
polynomials {An,q(x)}

∞

n=0, and studied some of its properties, [36]. According to his definition, the
n-degree polynomials An,q(x), are called q-Appell provided that any An,q(x) holds the following
q-differential equation

(10) Dq,x(An,q(x)) = [n]qAn−1,q(x), for n = 0, 1, 2, ... .

This is equivalent to define this family of polynomials by means of the following generating function
Aq(t), as follows

(11) Aq(x, t) := Aq(t)eq(tx) =

∞
∑

n=0

An,q(x)
tn

[n]q!
, 0 < q < 1,
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where

(12) Aq(t) :=

∞
∑

n=0

An,q
tn

[n]q!
, Aq(t) 6= 0,

is an analytic function at t = 0, and An,q(x) := An,q(0). The formal power series Aq(t), in the
above definition, is called the determining function of the class of q-Appell polynomials {An,q(x)}.
In his researches, algebraically, Al-Salam showed that the class of all q-Appell polynomials is a
maximal commutative subgroup of the group of all polynomial sets. Later, in 1982, Srivastava’s
studies on the family of q-Appell polynomials led to more characterization and clarification of
these type of polynomials, [37]. During the past few decades, the class of q-Appell polynomials has
been studied from different aspects, [39], [40], and using different thechniques, [38]. Recently, the
q-difference equations as well as recurrence relations satisfied by sequence of q-Appell polynomials
are derived by Mahmudov, [41].

1.2. q-Umbral Calculus. In 1978, Roman and Rota viewed the classical umbral calculus from a
new perspective and proposed an interesting approach based on a simple but innovative indication
for the effect of linear functionals on polynomials, which Roman later called it the modern classical
umbral calculus, [46], [47]. Using this new umbral calculus, they defined the sequence of Sheffer
polynomials whose their characteristics proved that this new proposed family of polynomials is
equivalent to the family of polynomials of type zero which was previously introduced by Sheffer,
[50]. Roman, also, proposed a similar umbral approach under the area of nonclassical umbral
calculus which is called q-umbral calculus, [47], [48], [49]. Inspired by his work, in the following,
we recast the results of q-umbral calculus for q-Appell polynomials.
Let C be the field of complex numbers and F set of all formal power q-series in the variable t over
C. In other words, f(t) is an element of F if

(13) f(t) =

∞
∑

k=0

ak

[k]q!
tk,

where ak is in C.
Let P be the algebra of all polynomials in variable x over C. Let P∗ be the vector space of all linear
functionals on P . The action of a linear functional L on an arbitrary polynomial p(x) is denoted
by 〈L|p(x)〉. We remind that the vector space addition and scalar multiplication operations on P∗

are defined by 〈L +M |p(x)〉 = 〈L|p(x)〉 + 〈M |p(x)〉, and 〈cL|p(x)〉 = c〈L|p(x)〉, for any constant
c ∈ C.

The formal power q-series in (13) defines the following functional on P

(14) 〈f(x)|xn〉 = an,

for all n ≥ 0.
Particularly, according to (13) and (14) we have

(15) 〈tk|xn〉 = [n]q!δn,k n, k ≥ 0,

where δn,k is the Kronecker’s symbol.

Assume that fL(t) =
∞
∑

k=0

〈L|xk〉

[k]q!
tk. Since 〈fL(t)|x

n〉 = 〈L|xk〉, so fL(t) = L. Hence, it is clear that

the map L 7→ fL(t) is a vector space isomorphism from P∗ onto F . Therefore, F not only can be
considered as the algebra of all formal power q-series in variable t, but also it is the vector space of
all linear functionals on P . This follows the fact that each member of F can be assumed as both
a formal power qseries and a linear functional. F is called the q-umbral algebra and studying its
properties is called q-umbral calculus.
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Remark 1. For the q-exponential function eq (t), defined in (3), it can be easily observed that
〈eq (yt) |x

n〉 = yn and consequently

〈eq (yt) |p(x)〉 = p(y),

and
〈eq (yt)± 1|p(x)〉 = p(y)± p(0).

Remark 2. For f(t) in F we have

(16) f(t) =

∞
∑

k=0

〈f(t)|xk〉

[k]q!
tk,

and for all polynomials p(x) in P we have

(17) p(x) =

∞
∑

k=0

〈tk|p(x)〉

[k]q!
xk.

Proposition 3. For f(t) and g(t) ∈ F we have

〈f(t)g(t)|p(x)〉 = 〈f(t)|g(t)p(x)〉.

Proposition 4. For f(t) and g(t) ∈ F we have

〈f(t)g(t)|xn〉 =

∞
∑

k=0

[

n

k

]

q

〈f(t)|xk〉〈g(t)|xn−k〉.

Proposition 5. For f1(t), f2(t), . . . , fn(t) ∈ F we have

〈f(t)1f2(t) . . . fk(t)|x
n〉 =(18)

∑

i1+i2+...+ik=n

[

n

i1, i2, . . . , ik

]

q

〈f1(t)|x
i
1〉〈f2(t)|x

i
2〉 . . . 〈fk(t)|x

i
k〉,

where

[

n

i1, i2, . . . , ik

]

q

=
[n]q !

[i1]q![i2]q !...[ik]q !
.

We use the notation tk for the k-th q-derivative operator, Dk
q , on P as follows

(19) tkxn =

{

[n]q!
[k]q !

xn−k, k ≤ n,

0, k > n.

Consequently, using the notation above, each arbitrary function in the form of (13) can be consid-
ered as a linear operator on P defined by

(20) f(t)xn =
∞
∑

k=0

[

n

k

]

q

akx
n−k.

Now, consider an arbitrary polynomials p(x) ∈ P . Then, according to the relation (17) for its k-th
q-derivative we have

(21) Dk
q p(x) = p(k)(x) =

∞
∑

j=k

〈tj |p(x)〉

[j]q!
[j]q[j − 1]q . . . [j − k + 1]qx

j−k.

As the result of the fact above we obtain

(22) tkp(x) = Dk
q p(x) = p(k)(x),

and, also,

(23) p(k)(0) = 〈tk|p(x)〉 = 〈1|p(k)(x)〉.
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The immediate conclusion of the relations (13), (14) and (20) is that each member of F plays
three roles in the q-umbral calculus; a formal power q-series, a linear functional and a linear
operator.
The order of a non-zero power q-series f(t) in (13) is denoted by O(f(t)) and is defined as the
smallest integer k for which the coefficient of tk is non-zero, that is ak 6= 0. A q-series f(t) with
O(f(t)) = 0 is called invertible and in case that O(f(t)) = 1 it is called a delta q-series.

Theorem 6. Let f(t) be a delta q-series and g(t) be an invertible series. Then there exists a
unique sequence Sn,q(x) of q-polynomials satisfying the following conditions

〈g(t)f(t)k|Sn,q(x)〉 = [n]q!δn,k,

for all n, k ≥ 0.

Definition 7. In Theorem (6), {Sn,q(x)}
∞

n=0 is called the q-Sheffer sequence for the pair (g(t), f(t)).
Moreover, the q-Sheffer sequences for (g(t), t) is the q-Appell sequence for g(t).

Theorem 8. Let An,q(x) be q-Appell for g(t). Then

a) (The Expansion Theorem) for any h(t) in F

h(t) =
∞
∑

k=0

〈h(t)|Ak,q(x)〉

[k]q!
g(t)tk,

b) (The Polynomial Expansion Theorem) for any p(x) in P we have

p(x) =
∞
∑

k=0

〈g(t)tk|p(x)〉

[k]q!
Ak,q(x).

Theorem 9. The following facts are equivalent

a) An,q(x) is q-Appell for g(t).

b) tAn,q(x) = [n]qAn−1,q(x), where tAn,q(x) = Dq(An,q(x)).

c) For all y ∈ C
1

g(t)eq(tx) =
∞
∑

k=0

Ak,q(x)
[k]q !

tk.

d) An,q(x) =
∞
∑

k=0

[

n

k

]

q

〈g−1(t)|xn−k〉xk.

e) An,q(x) = g−1(t)xn.

Remark 10. Based on different selections for g(t) in part (c) of Theorem (9), we obtain various
families of q-Appell polynomials. For instance, it is clear from relations (7), (8) and (9) that

taking g(t) as
eq(t)−1

t ,
eq(t)+1

2 or
eq(t)+1

2t , leads to construct the families of q-Bernoulli, q-Euler or
q-Genocchi polynomials, respectively.

Theorem 11. (The Recurrence Formula for q-Appell Sequences) Suppose that An,q(x) is q-Appell
for g(t). Then we have

An+1,q(qx) =
[

qx− qn
Dq,tg(t)

g(qt)

]

An,q(x).
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Proof. We prove this theorem in the light of the technique which is applied in the proof of Theorem
2 in [41]. Since An,q(x) is q-Appell for g(t) we can write

(24)
1

g(t)
eq(tqx) =

∞
∑

n=0

An,q(qx)
tn

[n]q!
.

Take 1
g(t) = Aq(t). According to (12), Aq(t) is analytic. So, differentiating equation (24) and

multiplying both sides of the obtained equality by t, we get

(25)

∞
∑

n=0

[n]qAn,q(qx)
tn

[n]q!
= Aq(qt)eq(tqx)

[

t
DqAq(t)

Aq(qt)
+ tqx

]

,

so it follows that

(26)

∞
∑

n=0

[n]qAn,q(qx)
tn

[n]q!
=

∞
∑

n=0

qnAn,q(x)
tn

[n]q!

[

t
DqAq(t)

Aq(qt)
+ tqx

]

.

This means that

(27)

∞
∑

n=0

[n]qAn,q(qx)
tn

[n]q!
=

∞
∑

n=1

[

qn−1An−1,q(x)
DqAq(t)

Aq(qt)
+ qxAn−1,q(x)

]

tn

[n]q!
,

which is equivalent to write

(28)

∞
∑

n=0

[n]qAn,q(qx)
tn

[n]q!
=

∞
∑

n=1

[

qn−1DqAq(t)

Aq(qt)
+ qx

]

An−1,q(x)
tn

[n]q!
.

Comparing both sides of identity(28), we have

(29) An,q(qx) =

[

qn−1DqAq(t)

Aq(qt)
+ qx

]

An−1,q(x),

whence the result. �

2. q-Umbral perspective of q-Genocchi numbers and polynomials, an example of

q-Appell sequences

Over the pas decades, many results have been derived using Umbral as well as q-Umbral methods
for different members of the family of Appell and q-Appell polynomials. In this section, we look at
the characteristics and properties of q-Genocchi numbers and polynomials, as an example of the
family of q-Appell polynomials, from q-umbral point of view. Indeed, it is possible to derive similar
results to the obtained results here for the q-Bernoulli and q-Euler polynomials. The interested
readers may see, for instance [42]-[45].

2.1. Various results regarding q-Genocchi polynomials. According to relation(9), the se-

quence of q-Genocchi polynomials {Gn,q(x)}
∞

n=0 is q-Appell for g(t) =
eq(t)+1

2t . Therefore, relation
(6) for the sequence of q-Genocchi polynomials, {Gn,q(x)}, can be expressed as follows

(30)
〈eq(t) + 1

2t
tk|Gn,q(x)

〉

= [n]q!δn,k, n, k ≥ 0.

Remark 12. As direct corollaries of Theorems (9) and (11) we have

a) tGn,q(x) = DqGn,q(x) = [n]qGn−1,q(x),

b) Gn,q(x) =
∞
∑

k=0

[

n

k

]

q

〈

2t
eq(t)+1

∣

∣

∣

∣

xn−k

〉

xk,
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c) Gn,q(x) =
2t

eq(t)+1x
n,

d) Gn+1,q(qx) =

[

qx− qn−1

(

eq(t)(t−1)+1
2t2

)

]

Gn,q(x).

Proposition 13. For n ∈ N we have

G0,q = 1,

n
∑

k=1

[

n+ 1
k + 1

]

q

Gn−k,q = −[n+ 1]q(1 +Gn,q).

Proof. According to the relations (4), (15) and (30) we can write
〈

eq(t) + 1

2t

∣

∣

∣

∣

xn

〉

=
1

2[n+ 1]q

〈

eq(t) + 1

t

∣

∣

∣

∣

txn+1

〉

=
1

2[n+ 1]q
=

1

2

∫ 1

0

xndqx.

Therefore, for an arbitrary polynomial p(x) ∈ P we can conclude

(31)

〈

eq(t) + 1

2t

∣

∣

∣

∣

p(x)

〉

=
1

2

(
∫ 1

0

p(x)dqx+ p(0)

)

.

Now, from one hand if we take p(x) = Gn,q(x), then we have

1

2

(
∫ 1

0

Gn,q(x)dqx+Gn,q(0)

)

=

〈

eq(t) + 1

2t

∣

∣

∣

∣

Gn,q(x)

〉

=

〈

1

∣

∣

∣

∣

eq(t) + 1

2t
Gn,q(x)

〉

=

〈

t0
∣

∣xn

〉

= [n]q!δn,0.(32)

From another hand, considering the fact that

(33) Gn,q(x) =

n
∑

k=0

[

n

k

]

q

Gn−k,qx
k,

we can conclude that

(34)

∫ 1

0

Gn,q(x)dqx =

n
∑

k=0

[

n

k

]

q

Gn−k,q

∫ 1

0

xkdqx =

n
∑

k=0

[

n

k

]

q

Gn−k,q(x)

[k + 1]q
.

Comparing identity (32) with (34), we obtain

(35)

∫ 1

0

Gn,q(x)dqx =
n
∑

k=0

[

n

k

]

q

Gn−k,q(x)

[k + 1]q
=
{

2−G0,q(0) n = 0
−G0,q(0) n 6= 0

,

whence the result. �

Remark 14. According to part(b) of Theorem (8), for an arbitrary polynomial p(x) ∈ P we can
write

p(x) =
∞
∑

k=0

〈
eq(t) + 1

2t
tk|p(x)〉

Gk,q(x)

[k]q!

=
1

2

∞
∑

k=0

〈
eq(t) + 1

t
|tkp(x)〉

Gk,q(x)

[k]q!
=

1

2

∞
∑

k=0

Gk,q(x)

[k]q!

(

∫ 1

0

tkp(x)dqx+ tkp(0)
)

.
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Remark 15. We know that
〈eq(t)t

k|(x − 1)nq 〉 = [n]q!δn,k.

Therefore, according to part(b) of Theorem (8), for Gn,q(x) as a polynomial chosen from P we can
obtain

Gn,q(x) =

n
∑

k=0

〈eq(t)|t
kGn,q(x)〉

(x − 1)nq
[k]q!

=
n
∑

k=0

[

n

k

]

q

Gn−k,q(1)(x − 1)nq .

Proposition 16. For n ∈ N we have

(x− 1)nq =

1

2

(

n
∑

k=0

n−k
∑

l=0

[

n

k

]

q

[

n− k

l

]

q

1

[m+ 1]q
Gk,q(x)(−1)n−k−lq

l(l−1)
2 +

n
∑

k=0

[

n

k

]

q

Gk,q(x)

)

.

Proof. From the binomial relation(2), we obtain

(36) (x− 1)nq =
n
∑

l=0

(−1)n−lq
l(l−1)

2 xl.

Now, taking k-th q-derivative from both sides of identity(36), we have

(37) tk(x− 1)nq =
∑

l = kn
[

n

k

]

q

=
[n]q!

[n− k]q!
(x − 1)n−k

q

According to part(b) of Theorem (8), we can write

(x− 1)nq =

n
∑

k=0

1

[k]!

〈eq(t) + 1

2t
tk|(x − 1)nq

〉

Gn,q(x)(38)

=

n
∑

k=0

[

n

k

]

q

Gn,q(x)
〈eq(t) + 1

2t
|(x− 1)n−k

q

〉

=

n
∑

k=0

Gn,q(x)
(

∫ 1

0

(x − 1)n−k
q dqx+ 1

)

=
1

2

(

n
∑

k=0

n−k
∑

l=0

[

n

k

]

q

[

n− k

l

]

q

1

[m+ 1]q
Gk,q(x)(−1)n−k−lq

l(l−1)
2 +

n
∑

k=0

[

n

k

]

q

Gk,q(x)

)

.

�

Theorem 17. Let Pn = {p(x) ∈ P|deg(p(x)) ≤ n}. Then for an arbitrary p(x) ∈ Pn and a
constant cn,q, we may assume that p(x) =

∑n
i=0 ci,qGi,q(x). Then for any constant k, the coefficient

ck,q is equal to 1
[k]q !

〈 eq(t)+1
2t |p(k)(x)

〉

, and it can be obtained from the following relation

ck,q =
1

2[k]q!

(

∫ 1

0

p(k)(x)dqx+ p(k)(0)
)

,

where p(k)(x) = Dk
q p(x).

Proof. For any polynomial p(x) =
∑n

i=0 ci,qGi,q(x) in Pn, we may write

(39)
〈eq(t) + 1

2t
tk|p(x)

〉

=

n
∑

i=0

ci,q
〈eq(t) + 1

2t
tk|Gi,q(x)

〉

.
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So, according to the relation (30), we obtain

(40) =
n
∑

i=0

ci,q[i]q!δi,k = [k]q!ck,q,

which means that

(41) ck,q =
1

[k]q!

〈eq(t) + 1

2t
tk|p(x)

〉

.

According to the relation (22), this is equivalent to write

(42) ck,q =
1

[k]q!

〈eq(t) + 1

2t
|tkp(x)

〉

=
1

[k]q!

〈eq(t) + 1

2t
|p(k)(x)

〉

.

finally, using the relation (31), we obtain

(43) ck,q =
1

2[k]q!

(

∫ 1

0

p(k)(x)dqx+ p(k)(0)
)

.

�

2.2. Some results regarding q-Genocchi polynomials of higher order. Let q ∈ C,m ∈ N

and 0 < |q| < 1. The q-Genocchi polynomials G
[m]
n,q(x) in x, of order m, in a suitable neighborhood

of t = 0, are defined by means of the following generating function, [11]

(44)
( 2t

eq(t) + 1

)m

eq(tx) =

∞
∑

n=0

G[m]
n,q(x)

tn

[n]q!
.

In case that x = 0, G
[m]
n,q(0) = G

[m]
n,q is called the n-th q-Genocchi number of order m.

From the above definition, it is clear that the class of q-Genocchi polynomials, {G
[m]
n,q(x)}∞n=0, of

order m is q-Appell for g(t) =
(

eq(t)+1
2t

)m

. Thus, according to the relation (6), for the sequence of

q-Genocchi polynomials, G
[m]
n,q(x), of order m, we can write

(45)
〈(eq(t) + 1

2t

)m

tk|G[m]
n,q(x)

〉

= [n]q!δn,k, n, k ≥ 0.

Lemma 18. For any n ∈ N0, the following identity holds for the n-th q-Genocchi number of order
m

G[m]
n,q =

∑

i1+i2+...+im=n

[

n

i1, i2, . . . , im

]

q

Gi1,qGi2,q . . . Gim,q

Proof. From one hand, according to the relation (44), it is obvious that

(46)
〈( 2t

eq(t) + 1

)m

tk|xn
〉

=

∞
∑

k=0

G
[m]
n,q

[k]q!
〈tk|xn〉 = G[m]

n,q .

From another hand, according to the Proposition (5), we have

(47) G[m]
n,q =

∑

i1+i2+...+im=n

[

n

i1, i2, . . . , im

]

q

〈
2t

eq(t) + 1
|xi1〉〈

2t

eq(t) + 1
|xi2〉 . . . 〈

2t

eq(t) + 1
|xim 〉.

Based on the relations (9) and (15) for each 〈 2t
eq(t)+1 |x

il〉, l ∈ {1, 2, . . . ,m} we can write

(48)
〈 2t

eq(t) + 1
|xil
〉

=

∞
∑

k=0

Gil,q

[k]!
〈tk|xil 〉 = Gil,q,

whence the result. �
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Theorem 19. For any n ∈ N0, the following identity holds for the n-th q-Genocchi polynomial of
order m

G[m]
n,q(x) =

n
∑

k=0

[

n

k

]

q

〈eq(t) + 1

2t
|G

[m]
n−k,q(x)

〉

Gk,q(x) =
1

2m−1

n
∑

k=0

[

n

k

]

q

G
[m−1]
n−k,qGk,q(x).

Proof. According to the relation (44), it is clear that

(49) G[m]
n,q(x) =

n
∑

k=0

[

n

k

]

q

G
[m]
n−k,qx

k.

Therefore, we may assume that G
[m]
n,q(x) =

∑n
k=0 ck,qGk,q(x) is a polynomial with degree n in Pn.

Since G
[m]
n,q(x) is a q-Appell polynomial, according to part(b) of Theorem (9) for its k-th q-derivative

we can write

(50) Dk
qG

[m]
n,q(x) = [n]q[n− 1]q . . . [n− k + 1]qG

[m]
n−k,q(x) =

[n]q!

[n− k]q!
G

[m]
n−k,q(x).

Now, according to the relation (42), we may continue as

ck,q =
1

[k]q!

〈eq(t) + 1

2t
|tkG[m]

n,q(x)
〉

=
1

[k]q!

〈eq(t) + 1

2t
|Dk

qG
[m]
n,q(x)

〉

=

[

n

k

]

q

〈eq(t) + 1

2t
|G

[m]
n−k,q(x)

〉

.(51)

According to part(e) of Theorem (9), it is clear that the q-Appell polynomial G
[m]
n−k,q(x) is equal

to
(

eq(t)+1
2t

)m

xn−k. As the result of this fact and noting to the relation (23), we obtain from the

last identity in (51)

(52) ck,q =

[

n

k

]

q

〈

t0|
2t

eq(t) + 1

(eq(t) + 1

2t

)m

xn−k
〉

=
1

2m−1

[

n

k

]

q

G
[m−1]
n−k,q,

whence the result. �

Theorem 20. For any arbitrary polynomial p(x) ∈ Pn the following identity holds

p(x) =

n
∑

k=0

〈(eq(t) + 1

2t

)m

tk
∣

∣p(x)
〉G

[m]
k,q (x)

[k]q!
.

Proof. Assume that p(x) =
∑n

i=0 ci,qG
[m]
i,q (x). Therefore, noting to the relation (45) for the q-

Appell polynomial G
[m]
i,q (x), we may conclude that

(53)
〈(eq(t) + 1

2t

)m

tk
∣

∣p(x)
〉

=

n
∑

i=0

ci,q

〈(eq(t) + 1

2t

)m

tk
∣

∣G
[m]
i,q (x)

〉

=

n
∑

i=0

ci,q[i]q!δi,k = ck,q[k]q!.

Thus,

(54) ck,q =
1

[k]q!

〈(eq(t) + 1

2t

)m

tk
∣

∣p(x)
〉

.

Substituting ck,q in the summation assumed in the beginning of the proof, leads to obtain the
desired result. �
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Theorem 21. For any n ∈ N0 and any m ∈ N, the n-th q-Genocchi polynomial can be expressed
based on the following relation

Gn,q(x) =

m−1
∑

k=0

[

m

k

]

q

2m[m]q!

[

n+m− k

m− k

]

q

×

{

m
∑

i=0

[

m

i

]

q

n+m−k
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

Gn+m−k−l,q

}

G
[m]
k,q (x)

+

n
∑

k=m

[

n

k −m

]

q

2m[k]q!

[

k

m

]

q

×

{

m
∑

i=0

n−k+m
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

Gn−k+m−l,q

}

G
[m]
k,q (x)

Proof. In Theorem (20), take p(x) to be the n-th q-Genocchi polynomial Gn,q(x), that is

(55) Gn,q(x) =

n
∑

k=0

ck,qG
[m]
k,q (x),

where

(56) ck,q =
1

[k]q!

〈(eq(t) + 1

2t

)m

tk
∣

∣Gn,q(x)
〉

.

Then, for k < m, we have

ck,q =
1

2m[k]q!

〈 (eq(t) + 1)m

tm−k
|Gn,q(x)

〉

=
1

2m[k]q!
.

1

[n+m− k]q! . . . [n+ 1]q!

〈

(eq(t) + 1)
m
(1

t

)m−k

|tm−kGn+m−k,q(x)
〉

=
[m]q!

2m[k]q![m− k]q!
.

[m− k]q!

[n+m− k]q! . . . [n+ 1]q!

〈

(eq(t) + 1)
m
|Gn+m−k,q(x)

〉

=

[

m

k

]

q

2m
.

[m− k]q!

[m]q![n+m− k]q! . . . [n+ 1]q!

〈

m
∑

i=0

[

m

i

]

q

(eq(t))
m
|Gn+m−k,q(x)

〉

=

[

m

k

]

q

2m[m]q!

[

n+m− k

m− k

]

q

〈

m
∑

i=0

[

m

i

]

q

(eq(t))
m
|Gn+m−k,q(x)

〉

.

Applying relation (33) to Gn+m−k,q(x), we may continue as

ck,q =

[

m

k

]

q

2m[m]q!

[

n+m− k

m− k

]

q

〈

m
∑

i=0

[

m

i

]

q

(eq(t))
m|

n+m−k
∑

l=0

[

n+m− k

l

]

q

Gn+m−k−l,qx
l
〉

.
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Using Proposition (5) and considering Remark (1), we obtain
(57)

ck,q =

[

m

k

]

q

2m[m]q!

[

n+m− k

m− k

]

q

m
∑

i=0

[

m

i

]

q

n+m−k
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

Gn+m−k−l,q.

Now, assume that k ≥ m. Then starting from the relation (56), we have

ck,q =
1

[k]q!
〈(
eq(t) + 1

2t
)mtk|Gn,q(x)〉

=
1

2m[k]q!
〈(eq(t) + 1)mtk−m|Gn,q(x)〉 =

1

2m[k]q!
〈(eq(t) + 1)m|tk−mGn,q(x)〉

=
1

2m[k]q!
.

1

[n+m− k]q! . . . [n+ 1]q!

〈

(eq(t) + 1)m
∣

∣Gn−k+m,q(x)
〉

=
1

2m[k]q!
.

[n]q![k −m]q!

[n− k −m]q![k −m]q!

〈

(eq(t) + 1)m
∣

∣Gn−k+m,q(x)
〉

=
[k −m]q!

2m[k]q!

[

n

k −m

]

q

m
∑

i=0

〈

(eq(t) + 1)i
∣

∣Gn−k+m,q(x)
〉

.

Finally, we obtain
(58)

ck,q =

[

n

k −m

]

q

2m[k]q!

[

k

m

]

q

m
∑

i=0

n−k+m
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

Gn−k+m−l,q .

Replacing identities (57) and (58) in the assumed sum in (55), completes the proof. �

Remark 22. According to the proof of Theorem (21), for any n ∈ N0 and any m ∈ N, the n-th
q-Appell polynomial, An,q(x), can be expressed based on the following relation

An,q(x) =

m−1
∑

k=0

[

m

k

]

q

2m[m]q!

[

n+m− k

m− k

]

q

×

{

m
∑

i=0

[

m

i

]

q

n+m−k
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

An+m−k−l,q

}

G
[m]
k,q (x)

+
n
∑

k=m

[

n

k −m

]

q

2m[k]q!

[

k

m

]

q

×

{

m
∑

i=0

n−k+m
∑

l=0

∑

l1+l2+...+li=l

[

l

l1, l2, . . . , li

]

q

[

n+m− k

l

]

q

An−k+m−l,q

}

G
[m]
k,q (x)
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