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Abstract

We present a variety af-formulas linked together by the¢-umbral calculus
introduced here, equivalent to the approach-toypergeometric functions angd
Appell functions given earlier, influenced by Rota and Cigler. Thisnbral cal-
culus is connected to formal power series; thyegaylor formulas occur; one of
these forms the basis of an umbral formula influenced bglid, which enables
g-Euler-Maclaurin- ang-Euler-Boole formulasg-Appell polynomials in the spirit
of Milne-Thomson are also treated before specializatianBernoulli andg-Euler
polynomials. A brief survey of the theory and history of finite differences and um-
bral calculus is given.
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1. Introduction

The aim of this paper is to describe how differgrdifference operators combine with
g-Bernoulli andg-Euler numbers and polynomials to form variguormulas.

The Bernoulli numbers were first used by Jacob Bernoulli (1654—-1705) [9], who
calculated the sum
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In 1738 Euler used the generating functions to study the Bernoulli polynomials. The
Bernoulli polynomials were also studied by J.-L. Raabe (1801-1859) [69] and-Schl
milch. Raabe found two important formulas for these polynomials.

It was Raabe who in 1851 first used the name Euler numbers for a multiple of the
secant numbers. It was then used by Sylvester, Catalan, Glaisher, Lucas, and from
1877 the name was used in Germany. The Bernoulli and Euler polynomials were later
systematically studied by &lund [66].

Gould [38] remarks that many sums involving binomial coefficients greatly benefit
from the use of Bernoulli numbers. Bernoulli and Stirling numbers have wideranging
applications in computer technology [41] and in numerical analysis [31]. One reason is
that computers use difference operators rather than derivatives, and these numbers are
used in the transformation process.

We will now describe the-umbral method invented by the author [21-24, 26],
which also involves the Nalli-Ward—Alsalagraddition and the Jackson—Hahn-Cigler
g-addition. This method is a mixture of Heine 1846 [44] and Gasper—Rahman [32]. The
advantages of this method have been summarized in [24, p. 495].

Definition 1.1. The power function is defined by* = ¢*'°5@. We always use the
principal branch of the logarithm. The variables

a,b,c,al,QQ,...,bl,bQ,... eC

denote certain parameters. The variablgsk, [, m, n, p, r will denote natural numbers
except for certain cases where it will be clear from the contextihétl denote the
imaginary unit.

Theg-analogues of a complex numbeand of the factorial function are defined by:

a

_1—gq
{a}q: 1_q

, ¢ € C\{1},

(lt = [t O} = 1 geC

Definition 1.2. Let theg-shifted factorial (compare [33, p. 38]) be defined by

1, n = 0;
n—1
1q)n = 1.2
<CL, Q> H (1 - qa+m)’ ne N ( )
m=0

The Watson notation [32] will also be used

(@;9)n =< (1.3)
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Since products of-shifted factorials occur so often, to simplify them, we shall fre-
guently use the following more compact notation:

(@,b;9)n = (a; @)n(b; @)n- (1.4)
Furthermore,
(a;@)oe = [ [ (1 = ag™), 0 < gl < 1, (1.5)
m=0
(a; Q)a = Mj a ?é q—m—a7 m € NO. (16)
(ag™; @)oo
Let the Gausg-binomial coefficient be defined by
n (L, q)n
= , 1.7
<k>q (Ll @ns (3.7)

fork=0,1,...,n,and by

Cﬁ _{(B+La-8+1q)«
8), - (La+ Lo

for complexa and when0 < |g| < 1.
Theg-multinomial coefficient, &-analogue of [81, p. 10], is defined by

n _ (Lgh
(k‘l, e kl)q N H§=1<15 Or, (1.9)

l
for {k;}i_, = 0,1,...,nand> "k =n.

, (1.8)

=1
If the number ofk; is unspecified, we denote thhgmultinomial coefficient by
n o
q =1
We give some examples gfmultinomial coefficients.

Example 1.3.

3
=14+2q¢+2¢> +¢°
(LLJQ s

4
<1111> =1+ 3q+5¢° +6¢° + 5¢" + 3¢° + ¢°,
Y ) Y q

4
(211)::L+m+3f+3f+2¢+qi
el q
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4
(2 2) =14+q+2¢+¢F+ ¢
’ q

Definition 1.4. If 0 < |q| < 1 and|z| < |1 — ¢|™', the g-exponential function?,(z)
was defined by Jackson [49] in 1904, and by Exton [30].

o

E,(2) = Z {kl} 'zk. (1.10)
k=0 €

Let theg-Pochhammer symbdk},, , be defined by

{a}og = [[{a+m}

The following notation will be convenient:

wheref is a vector of length.

Definition 1.5. The Nalli-Ward—Alsalang-addition (NWA), compare [2, p. 240], [61,
p. 345], [92, p. 256] is given by

(@@ b)" = (Z) ak " n e Ny, (1.11)
k=0 q
Furthermore,we put
(a0, b)" = (Z) a®(—=b)"* n € Ny. (1.12)
k=0 q

There is ag-addition dual to the NWA, which will be presented here for reasons to
be given shortly. The following polynomial in 3 variablesy, ¢ originates from Gauss.

Definition 1.6. The Jackson—Hahn—Cigleraddition (JHC), compare [13, p. 91], [43,
p. 362], [51, p. 78] is the function

By =t =S @ HOp

k=0

(1.13)
= ( x,q)ﬂ = P, 4(x,y), n € N,

(xB,9)" = Poy(z, —y), n € Np. (1.14)
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Remark 1.7. The notation[x + y|; is due to Hahn [43, p. 362], and the notation

P, ,(x,y) is due to Cigler [13, p. 91]. We will only usér B, y)" as it resembles
the notation for NWA.

For symbolic purposes, we will define a generaddition.

Definition 1.8. Let f(k, n) be a given function. The generghddition is defined by

u n
O S A
k=0 q

and similar for(a ©,,, b).

We will discuss how the NW4y-addition enableg-analogues of many results from
Norlund’s investigations of difference analysis [65, 66]. We will use Milne-Thomson
[60] as a basis for the notation of the various polynomials. The generating functions
will play a major role here.

The main topic is the set of almost parallel formulas, anticipated by Ward [92],
for the NWA ¢-Bernoulli, g-Euler, g-Lucas and;-G numbers and polynomials. These
numbers will belong tc(g). In number theory there is also a Lucas number, which is
not to be confused with this one. The reason for the némumber is that E.T. Bell,
and after him his graduate student Ward, for some reason called these numbers Genocchi
numbers.

The reason for introducing the second or JHC polynomials is that they are needed
in the g-analogues of complementary argument formulas. The notation second or JHC
polynomials will be used throughout.

These equations are more systematically presented here thanimdll[66], which
makes this paper an amplification and a complement to [66] even for the; case
Despite the “telegraphic style” of the proofs, which assume that the reader knows the
basic technical tools and varioggdentities, it is likely that readers with a taste fpr
analogues will find much to enjoy. For example, th@nalogues of the Euler—Maclaurin
summation formula might even be of some general interest.

We have addeg-analogues of some formulas from Sa&gyeview [87] of [65]. The
operational-additions makes the formulas remarkably pretty.

It is well known that there are at least two types;eBernoulli numbers, now let us
consider the first one, i.e., NWA. Its complement is JHC. The different Carlitz’ 1948
g-Bernoulli numbers are not considered here.

In the spirit of Milne-Thomson [60] and Rainville [71], we replace théoy = to
indicate the symbolic nature. Lucas [56] used a different symbol.

Example 1.9. [92, p. 265], [2, p. 245, 4.3]

Bnwaog =1, (Bnwag B 1k~ Bnwa k,g=01.k, (1.15)

whereBgya , Is replaced byBywa ., On expansion.
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Another improvement in the present paper is that the operational umbral formu-
las for ¢g-Bernoulli andg-Euler polynomials are extended from polynomials to formal
power series. The formulas are adaptable to formal power series with corresponding
g-Taylor formulas whereas the formulas in another paper ap@&iirling numbers [27]

are adaptable to functions qf or equivalently<z) , with corresponding;-Taylor

q
formulas.

In the year 1706 Johann Bernoulli (1667-1748) invented the difference syimbol
Fifty years latter, 1755, Leonhard Euler used its inverseEeoperator [29, Chapter
1]. Euler was Johann Bernoulli’s student together with Bernoulli’s two sons, Nicolaus
Il and Daniel. Even though Johann Bernoulli used the synbdallready in 1706, he
did not imply finite differences thereby but differential quotients. Euler stands out as the
one who devised the designation that has remained in use. Euler’s proofs were however
from a modern point of view not entirely satisfactory according to J. Herschel [46, p.
87].

As Sharma and Chak [80, p. 326] remarked, the operaodefined by

(—90(‘2’1) - ;0)(5"”), if g € C\{1}, = £ 0;

(Dgp) () = Z—i(x) if g=1; (1.16)
dy .
\%(0) if v = 0

plays the same role for polynomials:iras the difference operator
Ngf(x) = fx+1) = fz), Ay f(2) = Ay fla+1) — ¢"A f (=)

does for polynomials ig®.

If we want to indicate the variable which thedifference operator is applied to, we
write (D, ) (z,y) for the operator. The same notation will also be used for a general
operator.

We will find g-analogues of Leibniz-type formulas from Jordan [54] for thgand
Voperators.

All the next three equations were found by Euler. They have the following form,
whereF is the forward shift operatoranl = £ — I.

Theorem 1.10. [28, p. 200], [15, p. 26], [82, p. 9]

n

8710 = Y () B o) (1.17)

k=0

This formula can be inverted.
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Theorem 1.11. [79, p. 15, 3.1]

E"f(z) = 'n ( )Aif(x). (1.18)

The Leibniz rule is as follows.

Theorem 1.12. [54, p. 97, 10], [15, p. 27, 2.13], [60, p. 35, 2], [67, p. 19]

n

A (fg) =3 (”) Nif (A (1.19)

=0

Curiously, in this paper we keep the binomial coefficients in the corresponeing
formulas, whereas in the Stirling paper [27], the-binomial coefficients are used for
the corresponding formulas.

We now give a short review of the history of umbral calculus and finite differences.
Interpolation theory, often used by nineteenth century astronomers (Gauss, Bessel, W.
Herschel [1738-1822], J. Herschel), is essentially equivalent to theory of finite differ-
ences. Gudermann (1786-1852), the teacher of Weierstrass, was one of the first to
use this technique. Calculations on elliptic functions by finite differences were made
by Jacobi, Weierstrass and Milne-Thomson (1891-1974). The mathematician and as-
tronomer Johann August Gmert (1797-1872), editor of the journaichiv der Mathe-
matik und Physikwhich started in 1841, used this technique to publish some of the first
tables of Stirling numbers. The umbral calculus was initiated by Euler [29], who used
operator equations like (3.43), and Lagrange (1736—-1813). Later Arbogast (1759-1803)
suggested to substitute a capifalfor the little d of Leibniz to simplify the computa-
tions. Textbooks on the subject were written by Ettingshausen (1796-1878), J. Herschel
(1792-1871), Pearson 1850 and De Morgan (1806—1871). Robert Murphy (1806-1843)
was a forerunner to Boole and Heaviside, who among other things found beautiful op-
erator formulas for derivatives in the spirit of Carlitz. J.J. Sylvester (1814-1897) edited
Quarterly Journal of Mathematidsom 1855 to 1878, where attempts at umbral calcu-
lus were made by Horner 1861, Blissard (1803-1875) 1861-68, and Glaisher (1848—
1928). It was Sylvester who coined the name umbral calculus. By 1860 two textbooks
on finite differences were in print in England, one of them by Boole (1815-1864), which
covered almost all the theorems that we know now. Oliver Heaviside (1850-1925) was
able to greatly simplify Maxwell's 20 equations in 20 variables to four equations in two
variables. This and other articles about electrical problems, which appeared in 1892-98,
were severely criticized for their lack of rigour by the contemporary mathematicians. It
seems that Heaviside’s contribution to mathematics was underestimated by his contem-
poraries, since he both discussed formal power series and the rudiments of the umbral
calculus that we give in this paper. Genocchi (1817-1889) and Pincherle (1853—-1936)
contributed to the early Italian development of the subject. Clebsch (1833-1872) and
Gordan (1837-1912) continued the theory of invariants that had started with Sylvester
and Cayley.
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In the same way as the function plays a basic role in complex analysis, the
function is fundamental fog-calculus. Thd’, function is defined in the unit disk <
gl <1by

Definition 1.13.

1—q) . 1.20
(z; Q>oo( ) (1.20)
Heine, P. Appell 1879, and Daum [19] used another function without the factor
(1 —¢)'~*, which they called the Hein@-function. Ashton [7] in his thesis supervised
by Lindemann, showed its connection to the Jacobi—Neville elliptic functions. The main
difference between the two functions is tliahas zeros, in contrast to tiig function

: 1 . : .
which has no zeros, and theref0fe is entire. Sonine [84] wrote a book about the
q

Heine()-function in Russian.

The Heineg-umbral calculus reached its peak in the thesis by Smith [83] 1911,
supervised by Pringsheim. The Austrian schoaj-ahalysis started in the sixties when
Wolfgang Hahn (1911-1998) moved to Graz in 1964 after visits to India 1959-1961
and America 1962. Cigler (1937-) [15] wrote an excellent book on finite differences
with a view to umbral calculus.

In 1880 Appell (1855—-1930) [5] characterized certain polynomial sequefiges
including Bernoulli and Euler by the property

DF,(x) =vF, 4(x).

This was equivalent to Euler’'s generating function. Chapter 3 is devotgdtalogues

of these so-called Appell polynomials. Another French contribution was made by E.
Lucas (1842-1891), who invented a modern notation for umbral calculus, which we
will follow closely. F.H. Jackson (1870-1960) followed this path in the early twentieth
century, and fully understood the symbolic nature of the subject in his first investiga-
tions of g-functions. Like Blissard, Jackson worked as a priest his whole life; both of
them had studied in Cambridge. To commemorate Jackson, we will use his notation for
E,(z).

Pia Nalli (1886—1964) was the first to use the Waraddition in her only paper on
g-calculus. Letterio Toscano published interesting papers involving Bernoulli, Euler and
Stirling numbers in connection with the operatap. Geronimus (1898—-1984) wrote
about certain Appell polynomials. E.T. Bell (1883—-1960) tried to write about umbral
calculus, but he is best remembered for his books about the history of mathematics.
Morgan Ward (1901-1963), became doctor at Caltech 1928 supervised by E. T. Bell.

Thorvald N. Thiele (1838-1910) was a prolific Danish actuary, astronomer, and
mathematician. Thiele’s book “Interpolationsrechnung”, which contains a table of Stir-
ling numbers, was published 1909.

Niels Erik Norlund (1885—-1981) was a Danish/Swedish mathematician, astronomer,
and geodeticist. The remarkable work [66] presented the first rigorous treatment of
finite differences, written from the point of view of the mathematician. According to
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Grigoriew [42, p. 147], the generalized Bernoulli numbers thatlbhd uses in [66]
had previously also been used by Blissard [10] and Imchenetsky [48]. Steffensen [86],
Jordan [54], and Milne-Thomson [60] wrote books about finite differences intended
both for mathematicians and statisticians.

Other famous people are L. Carlitz (1907-1999), J. Riordan, and Rota (1932-1999).

2. The Ward-Alsalam—Rota—Ciglerg-umbral Calculus

Cigler [14] used a special case of the followipgimbral calculus, the cage= 1 was
treated in [15].

Definition 2.1. A g-analogue of [76, p. 696]. A-umbral calculus contains a sdt
called the alphabet, with elements called letters or umbrae.

Assume thaty, 3, are distinct umbrae. Then a new umbra is obtainedvbys,
wherex is ©,, H,, ©,, By, or any generag-addition.

There is a certain linear functionalbal, C[[z]] x A — C , called the evaluation,
such thatwval(1, o) = 1, € A. In the following, an arbitrary’ € C[[z]] will be used.

If «, 3, ..., v aredistinct umbrae, andy, ..., k positive integers,

eval(f,a'3 ... A% = eval(f,a")eval(f, 37) ... eval(f, ).

Two umbraex and are called equivalent, denoted~ [ if eval(f, a) = eval(f, ).
The set of equivalent umbrae form an equivalence class.
There is a distinguished elemendf the alphabet called the zero, such that

eval(f,e€") = 6,0 and x B, x ~ €.

Elementsy and € A are said to be inverse to each othen i, 5 ~ e.
There is a Ward numbet,

Ty~ 1@y 1@, ... &, 1,

where the number df in the RHS isn.
There is a Jackson numbey

Ay~ 18, 18,.. 8,1,

where the number aof in the RHS isn.
There is a multiplication with Ward and Jackson numbers in the following sense:
Assume that, € C ora € C[D,|. Then we define

ang ~a®ga D, ... Dy a,
where the number af in the RHS isn. In the same way,

ang ~aB,al, ... B, a,
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where the number af in the RHS isn.
Ifoq,...,0, €A, a~q, i =1,...,n,thena; @, ... B, a, ~ Nya. The last
condition is ag-analogue of [65, p. 125, (13)], [66, p. 132, (49)]:

o0

F(x @y Bawag(y))= Z

n=0

BNWA,n,q(?J)
{n}q!

Here B can be changed to agypolynomial sequence.

DI'F(x). (2.1)

Three examples afval are the NWA, JHC and the generaaddition.

Theorem 2.2. [61, p. 345]The g-addition (1.11) has the following properties, where
a,be A; ce C:

(@ @gb) By c~ady (bBgc), adyb~bdga,

(2.2)
a@®,0~0@,a~a, caByeh~ cladyb).

The first three conditions mean that the umbrae of Nalli-Ward—Alsataddition form
a commutative monoid.
Definition 2.3. Fora € C, NWA is extended to

= $(0) ()

k=0

b

a

< 1.

Remark 2.4. The associative law does not hold here.

Definition 2.5. Fora € C, JHC is extended to

(a B, b)* = aai (Z‘)q (g)kq@, \gy <1

k=0

We will give three examples of other scientists who have used tesklitions in
other contexts.

In 1954 Sharma A. & Chak A. M. [80] constructedAppell sequences for the JHC.
The JHC has also been used by Goulden & D.M. Jackson [40], who used the notation

Qn(_y, .7}) = qu(ﬂj, y)

In 1994 [16] Chung K. S. & Chung W. S. & Nam S. T. & Kang H. J. rediscovered the
NWA together with a new form of the-derivative.

Definition 2.6. A generalization of [16]. Let be®, or H,. Then

Do f(o) — tim £E*00) = (@)

dx—0 ox

(2.3)
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Theorem 2.7. A generalization of [24]. Let be ¢, or H,. Then the two opera-
tors D, and D, are identical when operating on functions which can be expressed as

x® E arz®, a € C.
k=0

Unlike the NWA, the JHC is neither commutative nor associative, but on the other
hand, it can be written as a finite product.

Jackson and Exton have presented several addition theoremeiponential and
g-trigonometric functions. These are presented in a more lucid style using the JHC
g-addition in [23].

Ward explained how the NWA can be used as the function argument in a formal
power series. The theory of formal power series is outlined in Niven [64], see also
Hofbauer [47].

The formal power series form a vector space with respect to term-wise addition and
multiplication by complex scalars. In the rest of this chapter, as in [92, p. 258], unless
otherwise stated, we assume that functiéns), g(z), F(z), G(z) € C[[z]].

Definition 2.8. If .
= Z aka:k,
k=0
then [92, p. 258]
Fxo,y) =) an < ) aFynh, (2.4)
k=0 q

[51, p. 78]

FlxB,y)=Flz+y], = Zan ( ) (5) yFa Tk (2.5)
=0 q

In 1936 Ward [92, p. 256] proved the following equations §esubtraction (the
original paper seems to contain a misprint of (2.6)):

n

n 2n+1 et l— et l—
(w ot = S0 () e )
q

k
k=0

n—1
2n 2n _ -
o =0 () a0t () e e, @)
n q k=0 q
We could also use norms fgradditions. To this aim we put

Definition 2.9. The norm for NWA is defined by

1
la @y bl,, = |(a®y b)"|n.
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Assume that we would like to use thebinomial theorem for

-
((a®qb);q)a’

where(a &, b)" is defined by (1.11) and,b € A. To use the;-binomial theorem we
should requiréa &, b, < 1, forn > 0.

Before we embark om-Taylor theorems, the following remark of Pearson [67]
might be of interest. The differential calculus is a particular case of the direct method
of finite differences, and the integral calculus is a particular case of the inverse method
of finite differences. In fact Taylor published his formula in terms of finite differences.

There are at least threeanalogues of the Taylor formula for formal power series
known from the literature, which we will list here. Compare [64, p. 877] for reference
on formal power series.

Theorem 2.10. The Nalli-Wardg-Taylor formula [61, p. 345], [92, p. 259]:

[e.o]

z @y y) Z (2.8)
0
Theorem 2.11. The first Jacksop-Taylor formula [50, p. 63]:
= (x H,y)"
———D"F(y). (2.9)
nz {n}q ! )
Theorem 2.12. The second JacksaenTaylor formula [51, (51, p. 77)]
F(xH,y) = nz:% {n}q!q(2)D;‘F(x). (2.10)

Remark 2.13. Wallisser [91] has found a criterion for an entire function to be expanded
in the g-Taylor series (2.9) for the special cage= 1 andq < 1. PutMg (r) =
1|n|ax ]El( ).

If the maximum of the absolute value of an entire functioon |z| = r satisfies the
inequality

1 —1
Mp(r) < CMe, (r7), g €R, g <1, 7 < (__1) |
‘ q

then F'(z) can be expanded in theTaylor series (2.9) for the special cage- 1.
Remark 2.14. Schendel [78] first proved (2.9), possibly influenced by Gauss.

The following general inversion formula will prove useful in the sequel.
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Theorem 2.15. Gauss inversion [1, p. 96], a corrected version of [36, p. 244);- A
analogue of [72, p. 4]. The following two equations for arbitrary sequeages, are

equivalent:
IS 1y ("
an = S ”‘“(z - (2.11)
=0 q
by=S (") a. 2.12
>0 (7) o 212

Proof. It will suffice to prove that
_ n N =
=0 q =0 q
The first sum is zero except for= n and/ = 0. |

Definition 2.16. The Ward—Alsalamy-shift operator [2, p. 242, 3.1], @analogue of
[11, p. 16], [15, p. 18], [66, p. 3], is given by

B(@,)°(2") = (v &y w)"

We denote the corresponding operator for the JHEH, ), i.e.,
E(B,)* (") = (z B, w)".

Whenw = 1, we denote these operatdi§®,) and E(H,).

To save space in the following, except for certain special cases, we only write formu-
las for NWA (Ward) according to the following two lists. The corresponding formulas
for JHC (Jackson) follow from the next conversion table.

NWA | E, |®, | g |0 |8 first | Seng JB.Ng
JHC | E. B, |7, |0 |~ |second Sgi, | Jeay,

(2.13)

The functionE, (zt) in formulas is not changed because of the generating function.

The following equations for NWA have JHC equivalents according to (2.13). (2.14)
to (2.16), (2.21) to (2.22), (2.25) to (2.26), (2.29) to (2.37), (3.7) to (3.8), (3.9) to (3.18),
(3.19) to (3.26), (3.29) to (3.30), (3.33) to (3.42), (3.44) to (3.48), (3.51) to (3.61), (3.69)
to (3.74), (3.77) to (3.80).

In formulas (3.62) to (3.68), (3.75) to (3.76), and (3.82), just replace NWA by JHC
and keepd,. Observe thatp, is only changed taH, in an operator expression to
the right preceding &,. In a pure expression for @Appell polynomial,&, remains
unchanged.
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Definition 2.17. The invertible linear difference operator for the NWAg@analogue
of [66, p. 3], is defined by

E w71
Srwng _ B@)" =1 e (2.14)
w w
where! is the identity operator. When = 1, we denote this operatatywa 4 [2, P.
243, 3.5], compare [92, p. 264, 15.1].

Remark 2.18. In contrast to [60] lim ANQ‘:VA"I does not correspond togadifference
operator.

Definition 2.19. If w is a Ward number,, the difference operator for the NWA is
defined by -
Anwag _ E(®g)" —1

TLq n

Remark 2.20. The formulas (2.21) and (2.32) show that the minus betwefeh,) and
I is not ag-subtraction.

We are now going to present an operational equation, which was first found by
Lagrange 1772 foy = 1. It played a major role in the theory of finite differences,
for example in Lacroix’s treatise on differences from 1800, [6], [11, p. 18], [45, p.
26], [46, p. 66]; and later in the first umbral calculus by Blissard [10]. The following
dualg-analogues of [15, p. 28], see [2, p. 242, 3.3, p. 243, 3.9], [92, p. 264] hold:

E(®,)* = E,(wD,). (2.15)

The difference operatof\ was used by Boole [11, p. 16], who showed thais dis-
tributive, commutative with respect to any constant coefficients in the terms of the object
to which it is applied, and obeys the index law for exponents. The same laws hold for
ANWA,q-

Definition 2.21. A g-analogue of the mean value operator of Jordan [54, pv 6} (1),
Norlund [66, p. 3], and [60, p. 30]:

Viag _ E(®y)* +1
e (2.16)

Whenw = 1, we denote this operatdfnwa -
The following definition is reminiscent of [66, p. 6, (12)].
Definition 2.22.

Anwazg = 200 Viwa g = E(®,)% — 1, (2.17)
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E(®y)% + 1

VNWA,Q,q = 5

This can be generalized to

Definition 2.23. B
ANwA 2,9 E(@q)qu -1

w = T, w E C7
VNWA’ZQ = w w €& C (2 18)
w - 2 ’ ' .

In the following definition, the-additions are written first in additive, then in multi-
plicative form. In the first case, we assume that the function argument operate from left
to right when using the twg-additions. In the second case, we assume that the function
argument operate from right to left in accordance with (2.15). So do not forget that the
following two equations are not associative.

Definition 2.24. If

k=0
then
0o k IC 1 l N
CEATEDEINDS (z) DI <m) g)zmatom (2.19)
k=0 =0 q m=0 q

FEE)E@)n) =3 aki (l;)qyk_l i(—l)m ( 7; )q (3 mgiom (2,20

We will now give a number of theorems for arbitrary letters which illustrate certain
symmetry properties of this umbral calculus.

Theorem 2.25. The NWA and the JHC are dual operators:
[z ®qaBga) = f(EB)"E(®,)x) = ().
Proof. Use (2.15). |
By Goulden & D.M. Jackson [40] we obtain two further formulas of this type.
Theorem 2.26. [40, p. 228]

(Oé Eﬂqﬁ) 69(1 (’VHHq 5) ~ (Oé EE(] 5) 69(] (’YEEIQ ﬁ)? 04757775 € A
Theorem 2.27. Goulden & D.M. Jackson [40, p. 228]:

(B 7) ~ (B, B) &y (B8, 7), o, 8,7 € A.
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The two Leibniz theorems go as follows. Notice the binomial coefficient on the
right. Remember that we only write one equation to save space.

Theorem 2.28. A g-analogue of [15, p. 27, 2.13], [54, p. 97, 10], [60, p. 35, 2]. Let
f(z) andg(z) be formal power series. Then

n

ATI\ZIWA,q(fg) = Z (7;) AﬁlWA,qf(ATl\ll;\/Z‘A,qE(@q)i)g' (2.21)

=0

Proof. Same as [54, p. 96 f]. [ |
The difference of a quotient of functions can be computed as

Theorem 2.29. A g-analogue of [67, p. 2], [11, p. 29]:

Anva f(x) _ g(x>ANWA,qf(I) - f(I)ANWA,qg<x)
Tg(x) g9(x)g(x Bg 1)
The following theorem reminding of [92, p. 258] shows how Ward numbers usually

appear in applications. Compare with [2, p. 244, 3.16], where the not&lien was
used.

(2.22)

Theorem 2.30.

(my)* = Z <m1 k m ) ’ (2.23)

mi+..+mnp==k
where each partition of is multiplied with its number of permutations. We have the
following special cases:
(Gq)k = Ok.0; (ﬁq)o =1 (ﬁq)l =n.
The following theorem shows how Jackson numbers usually appear in applications.

Theorem 2.31.

@)= > (m1 k . ) ¢ () m= (ma, ..., mn), (2.24)

mi+...+mp==k

where for each partition of, all permutations are counted. We have the following
special cases: )
(Oq)k = Ok.0; (ﬁq)o =1 (ﬁq)l =n.
The following table lists some of the firgt,)*. Compare [17, p. 309], where a long
list of multinomial coefficients is given. The reader can check that the results agree with
the definition (2.23) for the case= 1.

k=2 =3 k=4

n=1| 1 1 1

n=2|3+gq 44 2q + 2¢* 5+ 3¢+ 4¢° + 3¢° + ¢*
n=3|6+3q|10+8¢+8¢"+ ¢ |3(5+5q+7¢° +6¢°+3¢" + ¢°)
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and forn =4

10+ 6¢ | 4 (5+5¢ +5¢° + ¢°) | 5 (7 + 9¢ + 13¢° + 12¢° + 7¢" + 3¢°) + ¢°

The following table lists some of the firég, )".

k=2 k=3 k=4
n=1] 1 1 1
n=22+2¢|20+q+@P+¢*) | 2+204+2¢* + 3¢ +2¢* +2¢° + ¢°
n=34+5q¢|4+8g+8¢+7¢ (242 + 2¢* + 3¢°)°
and forn =4
k=2 k=3 k=4

7+9q|4(2+5q+5¢>+4¢") | 8+ 24¢q + 41¢°> + 63¢° + 56¢" + 39¢° + 25¢°

According to Netto [62], the so-called multinomial expansion theorem was first
mentioned in a letter 1695 from Leibniz to Johann Bernoulli, who proved it. In 1698 De
Moivre first published a paper about multinomial coefficients in England [20, p. 114].

Two naturalg-analogues are given by

Definition 2.32. If f(z) is the formal power serieg ax', it's k'th NWA-power is
=0

given by

(@g?z:oal%l)k = (ap Dg 01 Dy - . P = Z H ala: ( > )

q

Definition 2.33. If f(z) is the formal power serieg aix', it's k'th JHC-power is

=0
given by

(Hﬂzﬁ:oalggl)k = (CLO EH axr EB E Z H alx ( ) q (Z)’
|=k 1=0 q

whereri = (ma, ..., m,

~—

Definition 2.34. If f(z) is the formal power serieg: aiz®, the (Ward)g-sum is de-
k=0

fined by
> FEk) =D ak,)', nomeN, n<m, (2.25)
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where for eaclt the function value for the corresponding Ward number is computed. If
n > m, the sum= 0. Similarly, we define

(1) = (~1)" (2.26)

Definition 2.35. Let theg-extended real numbeR, be the set generated Rytogether
with the operationp,, where0 < ¢ < 1.

Definition 2.36. The realg-integral is defined by
/ ftq)dy(t) =a(l—q) > flag",q)q", 0 < ¢ <1, a € R, (2.27)
0 n=0

Definition 2.37. Leta = a(q) € R, andlirr% a(q) > 0. Then we can define@analogue
q—)
of a closed interval as usual as [0,a].

Definition 2.38. Leta € R, and let/ be the product interval, a] x (0,1). Then L} (1)
is the space of all function(z, ¢) € R[[z]] onI such that

/a f(t, q) d,(t) converges. (2.28)
0

Theorem 2.39. L}I(I) IS a vector space with respect to term-wise addition and multipli-
cation by complex scalars.

We will now find severalj-analogues of formulas bydilund et al. for difference
operators. Some of them have been published before.

Theorem 2.40. A g-analogue of the Newton—Gregory series [15, p. 21, 2.7], [54, p.
26], [60, 2.5.1], [56, p. 243]:

) =3 (Z) Nwn o (0). (2.29)

k=0
This can be generalized to

Theorem 2.41. A g-analogue of [66, p. 4, (7)]:

Flom) = () (( Promes )kf(0)~ (2:30)

k=0

Theorem 2.42. A g-analogue of [66, p. 4, (8)]:

Flamy) = 3 (-1 ()2 (Vo ) 7(0). (2.31)

w
k=0
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The formula (2.29) can be inverted as follows.

Theorem 2.43. A corrected form of [92, p. 264, (iii)], and @analogue of [41, p. 188,
(5.50)], [56, p. 136, (3)], [60, 2.5.2]:

Bt @) = S (-17+(} ) fla 0, . 232

k=0

We will use the following abbreviationg; € N:

0= (k‘lw1 @q /{2(.4)2 G911 cee @q knw”>’ k= Zkl’
=1

o = (klmlq @q lfgmgq @q e @q k:nmnq).
The notation ~ denotes a multiple summation with each of the indikes . ., k,
E
running between, 1. The formula (2.32) can be generalized to

Definition 2.44. Two g-analogues of [66, p. 4]:

wfﬁWA’Z)n f(@) = (wr...wy)™" Z(—l)”*kf(g; D, V), (2.33)
X
mfﬁwé%l—nq f(@)=(my...my)"" Z(_Dn—kﬂx o, @) (2.34)

k
There is a similar formula fo¥/ ywa 4

n

nwa oS (2) =277 Z <Z) flx®g k). (2.35)

k=0
In a similar way, the formula (2.35) can be generalized to

Definition 2.45. A g-analogue of [66, p. 4]:

NWA g f@) =2 fa @, Q). (2.36)

Wiy .o ,Wn

Theorem 2.46. A g-analogue of [54, (12), p. 114]:

— - (_1)m m
VN\}VA,q = Z 2—mANWA,q' (2.37)

m=0



50 Thomas Ernst

3. ¢-Appell Polynomials

We will now describe thg-Appell polynomials, which already have been characterized
by Al-Salam [3], who described its algebraic structure. In the spirit of Milne-Thomson
[60, p. 125-147], which we will follow closely, we will call thesepolynomials®,
polynomials, and express them by a certain generating function. Some examgples of
Appell polynomials or®, polynomials areB,(\,’@Ayyvq(x), ES@AW(:U), Lf\,’;‘,)\,A’l,yq(x), and
G,(\,’{,{,Ayyvq(x). We will see that these polynomials have many similar properties. Now
back tog-Appell polynomials.

Definition 3.1. A g-analogue of [60, p. 124]. For every power serigs$t), the @,
polynomials of degree and ordem have the following generating function

v

=>. {j} 20 (). (3.1)
v=0 q

By puttingz = 0, we have

Z{ an B

whered!" is called ad, number of degree and ordern.
It will be convenient to fix the value fat = 0 andn = 1:

(I)uotg( ) - Z.l/’ (I)z/lg( ) = q)v,q(x)‘ (32)

The special cas@ ( ) independent of in (3.1) is called Eulerian generating function
in [34, p. 69], [58, p 116].
By (3.1) we obtain

Theorem 3.2. A g-analogue of [5], [60, p. 125 (4), (5)]:
D24 () = (v}, (). (3.3)

(n) (n)
g D, 4(7) = @iy 4(a)
n) _ v+1,q v+1,q
| oo P
By (2.8), (2.10) we obtain the twg Taylor formulas

Theorem 3.3. .
I/ n
CHEERIEDS (k) By (@), (3.4)
k=0 q
2w,y =3 (V) dal, )y (3.5)
v,q qy - k q v—k,q z)y . .
k=0 q

Note the slight difference to polynomials @binomial type in (3.4).
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The first formula (or [3, p. 33 2.5]) gives the symbolic equality
Theorem 3.4. A g-analogue of [60, p. 125 (3)]:
(IJ(V’L) (a:)i((I)((]”) B, )" (3.6)

Theorem 3.5. A g-analogue of [60, p. 125]:

(Bg(t) — 1) ful(?) Z{ T Dnwag ® (). (3.7)

Proof. Operate on (3.1) witd\nwa 4- [ |
Theorem 3.6. A g-analogue of [60, p. 125]:

w Z{ T Vi, @) (). (3.8)

Proof. Operate on (3.1) Wit/ ywa - [ |

The simplest example of &, polynomial is the Rogers—Sze&golynomials [73],
[88], [13, p. 90 (11)]
H,,(x,a) = (z ®,a)".

A special case of the, polynomials are thes, polynomials of degree and orderm,

which are obtained by putting, (¢) = % in (3.1).
Definition 3.7. .
trg(t) o) = N (@) 39
Em - = Z Wht ©9)

Theorem 3.8.[2, p. 255, 10.8], a-analogue of [60, (2), p. 126], [57, p. 21], [76, p.
704], [56, p. 240]:

Dwn g8 (@) = (V34870 (x) = Dyl D (a). (3.10)
Proof. Use (3.7). |
By (3.6) the following symbolic relations are obtained.

Theorem 3.9. A g-analogue of [60, p. 126]. The second equation implies (1.15):
(an) Dq x@qDV - (@Sn) Dyq l’)”':'{V}q(ﬁé"_l) Dq x)y_17 (3.11)

(ﬂén)@ql)y l/q { }qﬁz(xnllq



52 Thomas Ernst

Theorem 3.10. A ¢g-analogue of [65, (20), p. 163]:

Anwaof (B () = F(BI (2)@e1) — F(B(2)=D, f(BT V(2).  (3.12)

Theorem 3.11. Almost ag-analogue of [85, p. 378, (26)]:

Z <Z) ﬁl(’ kq( ) - {V}Qﬁu 1q( ) (313)
k=1 q
Proof. Use (3.4) and (3.11). n

A particular case of3, polynomials are the generalizegdBernoulli polynomials

B,E,T\L,&Ay’q(x) of degreev and ordem, which were defined fof = 1 in [60, p. 127], [65]
and for complex order in [2, p. 254, 10.3].

Definition 3.12.[2, p. 254, 10.3], [66, (36) p. 132], [85]. The generating function for
Bija.,(t) is ag-analogue of [76, p. 704], [68, p. 1225, ii]:

(Ey(1) -

This can be generalized to

L i By ( ) , Jt] < 2. (3.14)

Definition 3.13. The generating function foB,(\,@Am(ﬂwl, ...,wy) is the following
g-analogue of [66, (77) p. 143]:
n oy p(n)
nt Wy ...Wn Eq(l’t): t BNWA,V,q(x|C"Jla--'7Wn)’
Hk:l(EQ(wkt) - 1) v=0 {V}‘I' (315)
2m 27

|t| < min (

g e o0y

w1

Remark 3.14. The values fort above are for; = 1. For generat andq, the conver-
gence area can be different. The above definitions are mostly formal.

Definition 3.15. For theg-Lucas ponnomiaIsL,(j{,Z,AM(x\wl, ...,wy), the generating
function is

2 n OOtVL(n) T YN
n( )" wy - Wn E, (xt) = Z NWA,z/,q( |°jl w. )7
[To (Bg(wit2g) — 1) =0 ! (3.16)

< min )

™

Wn

w1

g e e ey
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Theorem 3.16. Obviously, B,(\,’@A7V7q(x|w1, ..., Wwp) IS symmetric inwy, . ..,w,, and in
particular
1 v T
Biiing(@l) = & By (=) (3.17)
And the same fOLl(\R/)\/A,y,q(Jf|w17 W)
AR (n) v
Wi, NWA)ZJ” BNWA,u,q(x|w1> cwn) = {vieT g

ARwa 2 (n) B
wl) . ;(:5”/ [JNW/A\’V’q(x.|(¢()]_7 N 7wn) = {]j}qml/ .

Theorem 3.17. The successive differences@Bernoulli polynomials can be expressed
asg-Bernoulli polynomials. Ag-analogue of [66, (46) p. 131]:

ARwa (n) {v}! (n—
q n _ _Wiq p(n-p)
Wi, Wy BNWA,y,q(x|w17 ey Wn) (v p}q!BNWA,V—p,q(x|wp+17 e W)
We will use the following notation:
B(n) _ B(”) v
NWA,V7q(‘T‘w17 te 7(")”) - ( NWA,v,w1,...,wn,q EBQ .T) .

The following special case is often used.

Definition 3.18. The Wardg-Bernoulli numbers [92, p. 265, 16.4], [2, p. 244, 4.1] are
given by

Bwa g = Biwang: (3.18)
The following table lists some of the first WageBernoulli numbers:
n=>0 n=1 n=2 n=3
1 -0+ {3} [0 - g’ ({2}) " ({4})
n=4

(01— —2¢ — ¢ + )23}, {5}) "

Theorem 3.19. We have the following operational representationg;-analogue of
[87]:

B (@1, -+ wn) (D0 01 Bawaq)"-

And the same for.-polynomial:
Besa (@i wa)=(@ i Bancig)"”-

Corollary 3.20. A g-analogue of [55, p. 639]:

EQ(tBNWA7q)£E (t) _ 17
q
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. t
EQ(tBJHQQ): E1 (t) . 1 )
. 2t
Eq(tLNWA,q)=m°
q

The following operator will be useful in connection WiBﬁ%Avyyq(:L‘).

Definition 3.21. Compare [15, p. 32]n = 1). The invertible operatosg y , € C(D,)
is given by
n — (Eq<Dq) _I)n
SeNg = Dr . (3.19)

This implies

Theorem 3.22.
AﬁWA,q = DZSE,N@

Theorem 3.23. A g-analogue of [68, p. 1225, i]. TheBernoulli polynomials of degree
v and ordem can be expressed as

Blwag(t) = Sghiat" (3.20)

Proof.

vk NWAkq kv Py(3.14)
LHS = Z() B gt Z T DE" =" RHS.

Theorem 3.24. A g-analogue of a generalization of [15, p. 43, 3.3]:

n

> (=t (Z) Bi\ag(t ®q kg) = {v —n+ 1}, 02" (3.21)

k=0

Proof.

A‘ﬁWA,qBIEIT\L/\)/A,V q( ) DnSB Nq Nr\ll\)/A uq( ) - DZSS,N,qSI;,ﬁ,qIV

o b (3.22)
=Dya" ={v—n+ 1}, 2" "

[
Theorem 3.25[2, p. 253, 9.5], g-analogue of [56, (1), p. 240], [76, p. 699]:
f(z ®y Bawa,g ©q 1) — f(x ®g Bawag)=Dq f(2),

where here and in the sequel, we have abbreviated the umbral symBalRy,.
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We will also state the corresponding equation Biﬁ,?,A’y,q written in two different
forms.

Theorem 3.26. A g-analogue of [65, (11) p. 124], [66, (36) p. 132]:

f(z Dq BIEIT\L/\)/A,q Dy 1) — f(z Dq BIW/A,q)iqu(x Dq Bl(\lr\l/;Al,zz)a (3.23)
F (Biiwn g (@) @4 1) = f (Bin o (2))=Dy f (Byia s (). (3.24)
Theorem 3.27. Compare [15, 3.15 p. 51], where the corresponding formula for Euler
polynomials was given:

{r} v—1 {v}

1 - v
X = x” :(ZIZ' D BNWA, ) .
Eq(Dq) -1 E<@q) -1 ! !

BNWA,V,q($ )

We now follow Cigler [15] and give somg-analogues of equations for Bernoulli
polynomials. The first two of these equations are well known in the literajuze).

Definition 3.28. A g-analogue of [46, p. 87], [15, p. 13], [90, p. 575]:

—_

SNWA’qu(n) = (Eq)m’ SNWA,O,q(l) =1.
0

Theorem 3.29.[2, p. 248, 5.13], [92, p. 265, 16.5],@analogue of [15, p. 13, p. 17:
1.11, p. 36], [56, p. 237]:

3

b
Il

BNWA,erl,q((”)q) - BNWA,m+1,q
q

B 1 m+1 m +1 L
“{m+1}, Z k (7iq)" Brwa m-+1-1.q (3.25)
q

k=1
1 “/m+1\ ml—
Em ( I ) (7)™ " Bawa .q-
9 k=0 q

Theorem 3.30. A g-analogue of [15, p. 45], [65, p. 127, (17)].

2Pql Bawan D, 1) — Bawan x
z" —/ Brwang(t) dy(t) = =2 rral {7;1 +)1} LSS R ) (3.26)
x q

Proof. ¢-Integrate (3.3) for, = 1 and use (3.10). [ |

This can be rewritten as@analogue of the well-known identity [39, p. 496, 8.2].

1

" = m Z (n —]: 1) BNWA,k,q<:U)- (327)
7 k=0 q
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The JHC-version is

"= ﬁ 2 (n . 1) Byncrg(@)a("> ). (3.28)
9 k=0 q

Cigler has given some examples of translation invariant operators. One of them is
the Bernoulli operator.

Definition 3.31. The firstg-Bernoulli operator is given by the followingintegral, a
g-analogue of [15, p. 91], [18, p. 154], [75, p. 59], [76, p. 701, 703], [68, p. 1217]:

dq1
Jengf(x) = / f(t)dy(t). (3.29)

Theorem 3.32. A g-analogue of [15, p. 44-45], [68, p. 1217]. The figsBernoulli
operator can be expressed in the form

VAN
Jengf(z) = NDWAqf( ).

Proof. Use (3.20) and (3.26). [ |

Theorem 3.33. A ¢-analogue of [15, p. 44-45]. We can expand a given formal power
series in terms of th&ywa 1 ,(z) as follows:

fla) = g quDSf(t) dq(t>BNV{V+]’fjm. (3.30)

Proof. Assume that

Z{k}q NWA kg ().

As we have
ah = SB N qBNWA k q(CC)
——Sar xk, (3.31)
Z it
SengSf(x
. Z {k}q
This implies

ar, = DFSgngf(%)]emo = D'ngquf( Yoo = / DEF(t)dy(t). (3.32)
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The following table lists some of the smallest Jackgddernoulli numbers:

n=>0 \ n=1 n=2 n=3
1 |- +q) [ ({3} [ (¢" —)({2}) ({4}~
n=4
¢"1— ¢ —2¢" — "+ " ({2}:{3},{5}0) "
A special case of thé, polynomials are the, polynomials of order., which are

obtained by putting’,,(t) = (Eg(z(f])f—)inl)n in (3.1).

Definition 3.34. A ¢g-analogue of [60, p. 142, (1)]:

2" N ()
ED T g()E,(zt) = ; R (3.33)
By (3.8) we get a-analogue of [60], [59, p. 519]:
Vinwa g7y () = 0l (). (3.34)

We will now define firstg-Euler polynomials, a special case of thgpolynomials.
There are many similar definitions of these, but we will follow [60, p. 143-147], [15, p.
51], because it is equivalent to theAppell polynomials from [3].

Definition 3.35. The generating function for the firgtEuler polynomials of degree

and ordem E&’@Ayyvq(m) is the followingg-analogue of [74, p. 102], [60, p. 309], [89, p.
345]:

( Z{ T NWAuq ), [t <. (3.35)

This can be generallzed to

Definition 3.36. The generating function for the firgtEuler polynomials of degree
and ordem E’,E,T\L,&A,V7q($|w1, ..., wy) is the followingg-analogue of [66, p. 143 (78)]:

2E
La(Z|wi, . W),
T E a7~ B et (3.36)
|t| < min - L
ol

The following polynomials are influenced byoNund, who would maybe have de-
noted them by instead ofGG.
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Definition 3.37. The generating function for theG polynomials of degree and order
n G,(\,’i,)\,A7y,q(x|w1, ..., wy) is the following formula reminding of [66, p. 143 (78)]:

2"E,(
n NWAZ/ (zlwr,s - wn),
[Tii(E (wk2 +1) Z ;v }q ! (3.37)
] < mi -
min | [—|,..., .
2(,(}1 ’ 2wn
Obviously, E,S,’\L,Q,A,V7q(x|w1, ...,Wwy) IS symmetric inwy,...,w,, and the same for
G,(\,’{,{,Ayl,’q(ﬂwl, ...,wy). In particular
T
B\ (@w) = " Exwag (;) . (3.38)
From
VN n v
o Bl ) =
we obtain
Vi n n
Ve B (ol ) = Bl (@l ).
1y--- ,wp
From
Vi n) v
o, Ol ) ="
we obtain
v n n—
w NWA.2.4 Gg\IWA Vq( Tlwi, . wn) = Gr(\JWAp,)u,q(x‘WpHa ceesWn).
1y - wp

Theorem 3.38. A g-analogue of [60, p. 144, (7)], [66, (7), p. 121], [85, p. 378, (28)].
The corresponding formula forpolynomials is [60, p. 143, (3)]:

v

v n n n—
Z (k) ErslvelA,y—k,q(x) + ErslvelA,y,q(x) = 2EIEIWA1,)u,q(x)' (3.39)
k=0 q

With this formula we can compute all firgtEuler polynomials of orden, given
knowledge of the polynomials of order— 1

Definition 3.39. A g-analogue of [65, p. 139], [56, p. 252]. The first generalizétller
numbers are given by

FI\(IC\)/A,mq = EIS?/?/A,V,Q<O)'
Furthermore we put

1 1
Fawa kg = Fn(w\)/A,k,q% Enwang(®) = Eja g (2)-
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Remark 3.40. The numbersiywa ., areg-analogues of the numbers in [59, p. 520],
[15, p. 51], which are multiples of the tangent numbers [77, p. 296]. Lucas [56, p. 250]
called them after Genocchi, but the author disagrees with this.

The g-analogues of the original integral Euler numbers (secant numbers), see Sali
[77], appear in [4].

Remark 3.41. Wheng = 1, our E,(z) = v!E;,(x), whereE,,(x) is the Euler poly-
nomial used in [54].

Theorem 3.42. The operator expression isjaanalogue of [15, 3.15 p. 51]:

2 2
E solx) = ¥ = ' =(x @, F v,
NWA, ,q( ) Eq(Dq) +I E(@q) _|_] ( q NWA,q)

The following two recursion formulas are quite useful for the computations of the first
q-Euler polynomial.

Theorem 3.43. A g-analogue of [66, (27), p. 24], [85, p. 378, (29)]:
ENWA,Vq + Z ( ) ENWA kg $) = 227, (340)

Theorem 3.44. A g-analogue of [15, 3.16 p. 51], [56, p. 252]:
(1 ®q Fawag)" + (Fawag)" =260,

Theorem 3.45. A g-analogue of [12, p. 6 (4.3)], [65, (19), p. 136], a corrected version
of [56, p. 261]:

f(.CL' @q FNWA,q @q 1) + f(l’ @q FNWA,q)£2f(-T)' (341)

We will also state the corresponding equation EﬁKA),AM written in two different
forms.

Theorem 3.46. A g-analogue of [65, (19), p. 150, p. 155], [66, (29) p. 126]:

Vi f (& Bg P o) =1 (2 g Fa )= Vi, f (Bxin (@)= f (B y (%)) (3.42)

The following table lists some of the firgtEuler numbersywa 4

n=0|n=1 n=2 n=3
1 | =271][27%(-1+¢q) | 27%(-1+2¢+2¢° — ¢°)

n=4
27 (¢ = D{3},!(¢" —4g + 1)
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The following table lists some of the firétyc,, 4

1 2712731 —¢q) | 273(—-1+2¢+2¢* — ¢°)

n=4
2741 -3¢ —3¢* +3¢" +3¢" — ¢°)

Theorem 3.47.We have the following operational representationg;-analogue of
[87]:

E&@A,V,q(wh s W) Z (B Wi Eawa )"

E\gﬁ)c,y,q(wla s 7wn)£(@g,l:1leJHC,l,q)y-
Corollary 3.48.
(3.43)

Theorem 3.49. The firstg-Euler polynomial can be expressed as a finite sum of differ-
entiable operators ar*. AImost ag-analogue of [54, p. 289]:

n(—1)m
ENWA,’VL,Q(LU) = Z %AKFWAJ]‘T”' (344)

m=0

Theorem 3.50. A generalization of (3.40):

2” Z() B g (@ ®q k) = 2", (3.45)

Proof. DevelopViwa , &&A7V7q(x). |
Definition 3.51. A g-analogue of [46, p. 88]. The notation from N. Nielsen (1865-
1925) [63, p. 401] is a slightly modified variant of the original paper by Lucas [56]:

JNWA,m,q(n) = (_1)k(Eq)m-

Theorem 3.52. A g-analogue of [15, p. 53], [60, p. 307], [37, p. 136]:

(—1)" " Enwam.q(Tg) + Enwam,q(0g)

. (3.46)

UNWA,m,q(n) =
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Proof.

n—1
LHS = Z(—l)kVNWA,qENWA,m,q (Eq)
=0

I
—

k
1 - —
:§ <_1)k(ENWA,m,q(kq Sop 1) + ENWA,m,q(kq)) = RHS.

o

=0
[
So far we considered onlyBernoulli polynomials ang-Euler polynomials of pos-

itive ordern. As the sequel shows, it will be useful to allowalso to be a negative
integer. The following calculations ageanalogues of Nrlund [66, p. 133 ff].

Definition 3.53. As ag-analogue of [66, (50) p. 133], [68, p. 1226, xvi] and [85, p.
378, (19)], we define firsi-Bernoulli polynomials of two variables as

B(n-i-p)

o\ DBg y|wr, ..., wy
NWA, ,q((n) q yl 1 +p) " (3.47)
= (BNWA,q(x‘wh ey Wn) Bg BNWA,q<y’wn+la e Wnap))”,

where we assume thatandp operate on: andy respectively, and the same for any
g-polynomial.

The relation (3.17) together with (3.47) show, tt&{ﬁz,AMq(:dwl, ...,wy,) is aho-
mogeneous function of,w, ...,w, of degreev, a ¢-analogue of [66, p. 134 (55)],
ie.,

Bl g A Dwr, .- dwn) = X Biwa g (@lwr, - wa), X € C. (3.48)

And the same fog-Euler, Lucas and: polynomials. This can be generalized in at least
two ways.

Theorem 3.54. A g-analogue of [76, p. 704], [66, p. 133]. ¥ n;, = n,

=1

n k - nj
Bl(\l\lslA,k,q(xl 69(] e @q xs) = Z <m1 .m ) H Bl(\lwzk,mj,q(l.j% (349)

mi+...+ms=k q5=1

where we assume that operates on;. And the same for any-polynomial.
Proof. In umbral notation we have, as in the classical case

(T1®Bg - - g Ts Dy ﬁq’y)k ~ ((71 B, ﬁltﬂl) @By - - Dy (T5 By ﬁsquﬂ))ka

wherey/, ..., +" are distinct umbrae, each equivalentito [
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Theorem 3.55. A g-analogue of [76, p. 704], [66, p. 133]. ¥ n, = n,

=1

n k i (ny) m
BIEIVQIA,k,q(Z'l By ... By zs) = E ( ) H BN\/’\}/A,mj,q(xj)q (2)7
may, . , Mg .
mi+...+ms=k q j=1
(3.50)
m = (mg,...,my,). We assume that; operates orx;. And the same for any-

polynomial.
By (3.10) and (3.34), we get

n n {V} ' vr—nm
ANWA,qBIElvzlA,y,q('CE) - {I/ . ;i} |£IZ' )
q

n (n) v
NWA,qENWA,u,q(x) =T,

and we have

Definition 3.56. A g-analogue of [65, p. 177], [66, (66), p. 138]. The figsBernoulli
polynomials of negative ordefn are given by
{V}q! AﬁWA,q v+n (351)

BISITNHA),V,q(T’wl? s 7wn) = X ,

T {v+nl! wi, e wn

and the firstg-Euler polynomial of negative ordern by the following¢-analogue of
[66, (67) p. 138]

NWA.q v (3.52)

Wiy ... ,Wn

E,SJ\_/\/T,LA)7V7Q($|W17 Ce W)

wherev, n € N. This defines;-Bernoulli andg-Euler polynomials of negative order as
iteratedAnwa , andVwa , Operating on positive integer powersaof

To save space in the following, we are only going to write down equationg-for
Bernoulli polynomials and numbers and not for the corresponghgler polynomials
Enwa v, and numbergywa . o. Any Anwa Will have to be changed t6/ywa in the dual.
Also ¢g-Lucas polynomials and numbers will have to be changegd@golynomials and
numbers in the dual. This applies to equations (3.53) to (3.59) and (3.100) to (3.105).
Furthermore,

Bl vg = Bl g (0). (3.53)

A calculation shows that formulas (3.10) and (3.34) hold for negative orders too, and
we get [2, p. 255 10.9]:

Bl (@ Dq 9)= (B o (%) Bq Biing(4))"- (3.54)
A special case is the followingranalogue of [66, p. 139, (71)]:

Blgl;VnA),u,q($ @q y):(Blglm,q(z) EBQ y)l/
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Theorem 3.57. A g-analogue of [66, p. 140 (72), (73)], [68, p. 1226, xvii]. This equa-
tion first occurred in [2, p. 255, 10.10]:

(x @4 y)"=(Biwin g (2) ©y Byng(4))"- (3.55)
In particular fory = 0, we get aj-analogue of [68, p. 1226, xviii]:
" Z(Bywing @4 Biwa o))" (3.56)

These recurrence formulas express fjr&ernoulli andg-Euler polynomials of or-
dern without mentioning polynomials of negative order. These equations can also be
expressed in the form

. NWA s (n)
2" Z{%%WWM@ (3.57)

Hence the firsg-Bernoulli andg-Euler polynomials satisfy lineardifference equations
with constant coefficients.

The following theorem is useful for the computation of fiygdBernoulli andg-Euler
polynomials of positive order. This is because the polynomials of negative order are of

simpler nature and can easily be computed. Wherﬂﬁ@\)@q etc. are known, (3.58)
can be used to compute tlﬁié\mvsyq.

Theorem 3.58.

- v n -n
Z <S) Bl(\lvelA,s,qu(\lWA),ufs,q = 5”,0‘ (358)
s=0 q
Proof. Putz = y = 0in (3.55). |

Theorem 3.59. A g-analogue of [66, p. 142]. Assume thAtz) is analytic withg-
Taylor expansion

l/

ZD” o

Then we can express powersli&quA,q andVNWA,q operating onf(x) as powers oD,
as follows. These series converge when the absolute valuesamall enough:

00 (—n)
AKIWA,q _ vin BNWA,u,q($|wlv W)
mwwﬁm—;%f@ T (3.59)
Proof. Use (3.10) and (3.2). [ |

Now put f(z) = E,(zt) to obtain the generating function of tlgeBernoulli and
g-Euler polynomials of negative order:

[T (Eg(wit) — (=n)
— —B T|Wi,y ..., Wn),
I, wn E { }q NWAVq |wy )
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Z:l wkt +1
[ =i (Eqg( 2) Z{ T NWAl/q (x|wi, ..., wn).

The reason for the difference in appearance compared to the original for the following
equation is that one of the function arguments is a Ward number.

Theorem 3.60. A ¢g-analogue of [65, p. 191, (10)], [57, p. 21 (18)]:

min(v,n)
m n\ {v}, ek
Bl(\I\N)A,Vq @q nq - Z (k) {I/ - Z}q' Bl(\IWA,V)—k,q(x)' (360)

=0

Proof. Use (2.29) and (3.10). [ |
We can putn = x = 0 in (3.60) to obtain @-analogue of [60, p. 133, (3)].
Theorem 3.61.

Ut v oyt (T _
{v— ;} . Z(_1> ' k B'S‘VbA%q(x Dy ky). (3.61)
“ k=0
Proof. Use equation (2.32). -

Theorem 3.62. A g-analogue of [65, (21) p. 163], [68, p. 1220]. The corresponding
formula forn = 1 occurred in [2, p. 254]:

oo B(”)

2 NY{VQfQ( ! Mg D3 F0) = Dy 9, ). (3.62)
k=0 o

Proof. Asin [65, p. 163] replacg (x) by f(z @, v) in (3.24):

F(Bing (@) ©qy B4 1) — f(Biwao(@) @ ¥) = Dof (Buway(®) ®qy).  (3.63)

Use the umbral formula (2.1) to get

= Bk (2) = Bk (@)
Z NW::ék’q,ANWA,qD(’;f(?J) = Z Nwqu, D§+1f(y).

Apply the operatoﬂNWA with respect tgy to both sides and use (3.59):

- Bk (2) > Biwak (7)o Blwara(¥)

YT Dl Dl () =Y T > Dyt (0)—

2k}, @ kY, {13,
Finally use (2.1), (2.8), (3.55) to rewrite the right-hand side. [ |

Remark 3.63. The RHS of (3.62) can also be writtdd], f(z ©, y) or D} f(x ©q y).
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If we putn = ¢ = 11in (3.62), we get an Euler—Maclaurin expansion known from
[60, p. 140]. If we also puyy = 0, we get an expansion of a polynomial in terms of
Bernoulli polynomials known from [54, p. 248].

Corollary 3.64. A g-analogue of Szep[87]. Lety(z) be a polynomial of degree. A
solution f(z) of the ¢-difference equation

Png () = Dro(a)

W1ye ..y Wn

is given by

v Bl(\lr\llzlA,k7q(x|w17 e ,Wn) Dkw(y) (364)
il "

Proof. The LHS of (3.64) can be written a&BNWA J(Tlwr, - wn) B¢ y), because if
we applyAfwa ... t0 both sides we get

f(x@qy):

YANK n AR n
s ) = Dpaele@gn) = S (B (ol )840

Theorem 3.65. A g-analogue of Mrlund [65, p. 156], [66, p. 127 (31)]. Compare [65,
p. 147]. A special case is found in [54, p. 307]:

o0 E(n)
Z %’(I,(m) NWA quf( ) =[x &g y). (3.65)
k=0 a°

Proof. As in [65, p. 155] replac¢g(z) by f(z &, v) in (3.42):

5 (FBno(2) @4 @0 1)+ F (Bl ) @0)) = F(Ey (1) ©,9). (366)

Use the umbral formula (2.1) to get

L >~ F
Z NWAkq( )VNWAqD Fly) = Z NWA,k,q(iU)DZ;f(y)‘

—~  {k}! —~  {k}!
Apply the operatorVNWA with respect tagy to both sides and use (3.59):
> Bywn (@) o, >\ Enwaq(@ E&;&;ﬁ”@)
LE Dkf( ) q Dk—H TNWA,L,g I/
,; {k}q! o ; {k}q! Z {

Finally use (2.1), (2.8), (3.55) to rewrite the right-hand side. |
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If we putn = ¢ = 1in (3.65), we get the Euler—-Boole theorem known from [37, p.
128], [60, p. 149].

Corollary 3.66. A g-analogue of Szép[87]. Lety(z) be a polynomial of degree. A
solution f () of the g-difference equation

WA f(a) = ola)

Wiy ... ,Wn
is given by
v B (x|wiy . wy)
f@®,y) = Z NWA,k,q{k} ' qucsp(y)_ (3.67)
k=0 7

Proof. The LHS of (3.67) can be written a&(Eﬁ,@Avq(:ﬁ\wl, ... wy) B, y), because if
we applyViwa . 1o both sides we get

o [ @gy) = ple@gy) = NGB (2l wn) € y)
(3.68)

There are a few formulas similar to the Leibniz theorem. We can express the NWA
difference operator in terms of the mean value operator and vice versa.

Theorem 3.67.
- —i [\ i n—i i
ATI\LIWA,q(fg) =2" Z(_l)n (z) NWA,qf(VNWA,qE(@q) )g- (3.69)
=0
Proof. Same as Jordan [54, p. 98, (13)]. [ |
Theorem 3.68.

Vinna(F9) = (=3) 22 (") Voo Bl B @

Proof. Same as [54, p. 99, (2)]. [ |
Theorem 3.69.
n (1) (n i n—i i
NWA,q(fg) = 5 i ANWA,qf( NWA,qE(@q) )9-
1=0

Proof. Same as [54, p. 99, (3)]. |
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Theorem 3.70. A g-analogue of Lagrange 1772, [54, p. 101], [15, p. 19], [60, p. 37].
The inverse NWA difference is given by

n—1 n
Dy gf @)ls = D (k) =D f(@)d,(x). (3.70)
k=0 0
Proof. Use the same idea as Euler, reproduced by F. Schweins [82, p. 9]. |

Theorem 3.71. The inverséV is given by

(f@) (=) lfnq) — 6.71)

k=0

VﬁWA,q 2

Theorem 3.72. The inverse NWA-difference is given by

Awangf o+ 1) O_Zf (2k +1,) (3.72)

Theorem 3.73. The inverséVywa 24 is given by

n—1

Vwa 2.0 (f@") il (CTRS 1">> =Y (—DFfFRE+1y). (3.73)

2
k=0

Theorem 3.74. The analogue of integration by parts ig-analogue of [54, p. 105], [15,
p. 21], [60, p. 41], [67, p. 19]:

—

3
|

—

n—

f(Eq)ANWA,qg(Eq) = [f(fq)g(fq)]g - E(@q)g(Eq)ANWA,qf(Eq)‘ (3.74)

=
Il

0

B
Il

Theorem 3.75. A g-analogue of Euler's symbolic formula from Glaisher [35, p. 303],
Lucas [56, p. 242, (1)] is given by

n—1 .

f(® v @y Brwag) dg(z) = | F(Brwag(x)) d(x)
k=0 e 0a (3.75)

Bnwa,q@qTq
- / F(@) dy(a).

Bnwa, g

Proof. Apply Anwa 4 to both sides to get

f(ﬂf)g:iANWA,q | f(z &4 Bawayg) dy().

0q

Then apply (3.12). [ |
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Corollary 3.76. A g-analogue of Rota & Taylor [76, p. 701]:

Jengf(x B Bawag)=f (7). (3.76)

We immediately get a proof of the following formula, which is of considerable use
in integration theory.

Theorem 3.77. Theg-Euler—Maclaurin summation theorem for formal power series. A
g-analogue of [15, p. 54], [35, p. 303], [67, p. 25], [76, p. 706], [54, p. 253]:

n—

—_

i) = [ ) dyla)

0 Oq

il

{21} (L )+ Z {N;V!f “9(Dy f(mg) — DET'£(0)).

(3.77)
Example 3.78. Put f(z) = «™ in (3.77) to get formula (3.25).

Corollary 3.79. A dual to theg-Euler—Maclaurin summation theorem (3.77). The
integral on the RHS shall be interpreted in the following way: Fjfsttegratef in the
form f(z). Then put in the values in the umbral sense according to (2.1):

nl 1

k+
/ f(Brnwa,g) d +Z{k+1 , kf( NWA k.q) [0 - (3.78)
We will now derive analogous results fgiEuler numbers. We start with
Theorem 3.80. A generalization of (3.46). Compare Goldstine [37, p. 136}(1):
n—1 (_1)171 B
> (=D f ()= — f (B o (2) )5 (3.79)

k=0

Proof. Apply Vnwa 4 to both sides to get by (3.71)

£(0,) + <—21>”1f<m> (—12>“ F (B @) 2. (3.80)

Finally use (3.42) witm = 1. [ |

=Viwa ¢

Theorem 3.81. Almost ag-analogue of Boole’s first summation formula for alternate
functions [54, p. 316, (2)]. Aj-analogue of the Euler formula from Glaisher [35, p.
310], Lucas [56, p. 252]:

n—1

1

.__.5 [f(FNWA,q) + (1) f(Fwag ©4 7))

(3.81)
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Proof. Use (3.65). [ |

We will continue this part with a theorem involving bogkBernoulli andg-Euler
polynomials.

Theorem 3.82. A g-analogue of Srivastava & Pitt[85, p. 379]:

Bimate 00) =3 () (Bma) + B 1)) Bvansrao).
q

k=0
(3.82)
The proofs of the following formulas are made through the generating function.
Observe that we have to change to JHC on the LHS.

Theorem 3.83. A g-analogue of the Raabe—Bernoulli complementary argument theo-
rem [70, p. 354], [60, p. 128, (1)]:

Bitcu,g() = (—1)" Bawa,wg(1 ©4 7).

Theorem 3.84. A g-analogue of the Euler complementary argument theorem from
Milne-Thomson [60, p. 145, (1)]:

Esncug(z) = (—1)" Enwavg(l ©¢ 7).

We now continue the study gfLucas and;-G polynomials in much the same way
as forg-Bernoulli andg-Euler polynomials. As there are no complementary argument
theorems for these, we do not need the JHC-versions.

Theorem 3.85. The successive differences@t.ucas polynomials can be expressed as
g-Lucas polynomials:

A (n) ' o)
w1 NWA ij LNWA Vq(x|w17 P 7wn> - {]/_—]Z}C]!LNWA%)’V_I)’Q((E|MP+17 AR JW'IL)' (3'83)

The following invertible operator will be useful in this connection.
Definition 3.86. Compare Cigler [15, p. 32} = 1). The operatof|"y , € C(D,) is

n — (Eq@qu) B [)n
SNy = Dy (3.84)

Theorem 3.87. Compare [15, p. 43, 3.3]:

- — n n BYA v—non
S (1) (k) Ligiaa(@ @ 2kg) = {v — n + 1}, 2" "2" (3.85)
k=0

By the generating function

§ANWA2‘ZL(NWAV¢1( ) { }q (Nr’:NP%V 1q( ):Dqu(\K/;Al,)V,q(x)' (386)
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The following symbolic relations are obtained.

Theorem 3.88.
1

n 5 \v n vl - n—1 v—
5 [ (Lang @0 782" = (Liang @4 0| 20} (Lo @027 " (3.87)

Theorem 3.89.

1

Dring Vo f (Lo g (@) =5 | (i (@)020) = F (Ll g (@)

=D, f (Ligwarq())-

Theorem 3.90. Theg-Lucas polynomials of degreeand ordem can be expressed as

(3.88)

L&%A,V,q(t) = Sl:ﬁ,qtu' (389)
The firstg-Lucas numbers have the following values:
Lnwaog = 15 Lawaig = (=3 — q)(2+2¢) 7",

Lnwazg = (1+3¢+8¢> +3¢° + ¢*) (4 + 8¢ + 8¢° + 4¢°)
Lnwasg = (=1 —2¢ = 2¢* = 9¢° + 9¢" + 2¢° +2¢° + ¢")[8(¢ + 1)*(¢* + 1)] 7,
Lnwaag = f(0)(16(1 +q)*{3},{5}9) 7,
where

flq) =143+ ¢* — 11¢° — 18¢"* — 63¢° — 1044¢° — 130¢"
— 104q8 — 63q9 _ 18q10 _ an + q12 + 3q13 + q14_

We will now give a few other equations fgrLucas polynomials. We start with

Definition 3.91. A g-analogue of Vandiver [90, p. 575], Nielsen [63, p. 401 (7)], Lucas
[56, p. 253]:

n—1

tNnwam,g(n) = Z@k +1)™ (3.90)

k=0
Theorem 3.92. A g-analogue of Lucas [56, p. 261]:

_ Lnwamirg((2n+1),) — LNWA,m+1,q(mq) (3.91)

{m+1},

tNWA m.q (1)

Theorem 3.93.

7®q2q Lawa ni1.0(2 @0 20) — Lnwant1o(T
22" =/ Lnwang(t) dg(t) = =24 +14( {:L j)l} NWA.n-1.g ) (3.92)
T q
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This can be rewritten as

1 " /n+1 _
I = — L 9 yntl-k _
’ {n+1}, kzzo ( k )q i () (20) (3.93)

The following symbolic relations foj-G polynomials are obtained.

Theorem 3.94. A g-analogue of Mrlund [65, p. 138]¢ = 1), [66, p. 125]:

1 n 5 \v n v| n— v
B (Gl(\lV)VA,q B TDg24)" + (Gl(\lv)VA,q ®q T) :(GE\IWA},)q ©q )" (3.94)
A g-analogue of [65, p. 137h(= 1), [66, p. 124]:
Vi zf (Gl o)) =5 [ (Gl o (£)8,2) + F(Glit (1)
- o 2 . o (3.95)
. n—1
= f Gy (@)).

The following table lists some of the fir§tywa ... A g-analogue of the integers
in [66, p. 27]:

n=0|n=1 n=2 n=3 n=4
1L [ -1 [27'(=1+q) |q(1+q) | -2 - D1 +¢)°

We will now give a few other equations fgfrGG polynomials. We start with

Definition 3.95. A ¢g-analogue of J. Herschel [46, p. 91]:

—_

TNWA,mH(n) = (—1)k(2k’ + lq)m
0

Theorem 3.96. A g-analogue of [56, p. 237], [63, p. 401]:

3

B
Il

TNWA,mJI(”) = ( ) NWA, +1,q(( n—; )q) + Gnwa, +17q(( )q) (3.96)
Proof.
n—1
LHS =) (—=1)"Vwa2,4Grnwam.q((2k +1),)
k=0
=0k
- 9 (GNWA,m,q(Qk + ]-q) + GNWA,m,q(zk + 3q)) = RHS.
k=0
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Theorem 3.97. Another integration by parts formula:

n—1

> FEE+ 1) Anwagg(2k + 1)

k=0
n—1

= [fQzF 19z + 1§ — > E(®)* g2k + 1) Anwazef (2F + 1,).
k=0

Theorem 3.98. Compare [37, p. 136(= 1):

S
—

(-1
2

(D f(2k +1,) = F(Grwa,g (22 +14))[5 (3.97)

0

e
Il

Definition 3.99. A g-analogue of the Lucas polynomial of negative order is given
by

—-n — {V} n v+n
Ll(\lWA),V,q(‘T) T :L}q ANWA,z,qZ‘ o, (3.98)
and theg-G polynomial of negative ordern is given by
G (T) = Viwa 247" (3.99)

whererv, n € N. This defineg-Lucas- and;-G polynomials of negative order as iterated
Anwa,q andVywa , Operating on positive integer powersaaf

Furthermore,
Theorem 3.100.
L i (% @4 9)=(Ligia o(%) B Liia o))" (3.100)
A special case is the following

Theorem 3.101.
(2 @q 1) =L (%) By Linn o))" (3.101)
Proof. Putp = —n in (3.100). |

In particular fory = 0
2= (Linwi g B Liwn (1)) (3.102)

These recurrence formulas expressucas- and;-G polynomials of order without
mentioning polynomials of negative order. These can also be expressed in the form

Lywns
7 = Z e D, L (). (3.103)
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We conclude that the-Lucas and;-G polynomials satisfy lineay-difference equations
with constant coefficients. The next equation is similar to (3.58).

v v . )
5 () Linng Lot = 5 @.100)
s=0 q
Proof. Putx = y = 0in (3.101). |

Theorem 3.102. Assume thaff (x) is analytic withg-Taylor expansion

l/

ST

Then we can express powersffwa , andVawa , Operating onf(z) as powers oD,
as follows. These series converge when the absolute valuéesamall enough:

(—m)
AR Z DY £(0 Lrawaa(®). (3.105)
NWA 2, q {V}q

Proof. Use (3.86) and (3.2). [ |

With f(z) = E,(zt) we get the generating function f@ﬁ,},&)m(x) andG,(\,W,ﬁvyyq(x):

(Ey(24t) — 1)"Eg(at) = Y WL&‘VCXW@), (3.106)
(E,(2,t) +1)" )
on Z{ }q GNWqu )

The reason for the difference in appearance compared to the original for the following
equation is that one of the function arguments is a Ward number.

Theorem 3.103.
n —_— - n {V} ' n—k
Ll(\IV)\/A,V,q(x Dy 2ng) = (k) {U_—IZ}|LE\IWA,)V—k,q<x>'
k=0 a

Proof. Use (2.29) and (3.86). [ |
Theorem 3.104.

{V} ' v—n - n— n n 91,
{V_—:L},-f = Z(—l) g I L(Nv)vA,y,q(ﬂf Dy 2kq).
a° k=0

Proof. Use equation (2.32). [ |
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Theorem 3.105.

3O ) DU = DTy @307
k=0 T

Proof. Replacef(z) by f(z &, y) in (3.88):

1 n = n n
5 (FERna) €42, 84 y) = F(Liiin o(2) €4 1) ) ZDyf (Liany @) @4 9). (3.108)

Use the umbral formula (2.1) to get

1 oo L(n) q( ) 0o L(n—l) q( )
5; NV%”;CI}CQ ANWA2qD fly) = % NV{\IAkI;, Dk“f(y)

Apply the operatoﬂNWA 2., With respect tg; to both sides and use (3.105):

1 — Lr(\K/)VAkq( ) - Ll(\KNAl)k (7) & Ll(\l:/\TllAJrll)(y)
- Z A;\LIWA Dkf( ) Z q Z Dk+l+nf(0) 1>q )
Finally use (3.101) to rewrite the right-hand side. |

Corollary 3.106. Let ¢(x) be a polynomial of degree. A solution f(x) of the g-
difference equation

L Blwaza ¢y = pro(a)

2 Wiy...,Wy
is given by
v L (x|wi, ... wy)
flx®,y) = Z NWA k,q o Di;gp(y). (3.109)
k=0 a

Proof. The LHS of (3.109)) can be written aﬁL,(\,T(A),AH(x\wl, ... wy) Byy), because if

1 .
we applyéﬁﬁWAyz’qﬁx to both sides, we get

1 Awazg .
2 Wi,...,Wn fle®qy) = Dq,zgp(x DqY)

1 AZ .
~ 9 wlj\'“{V.A;ZSn W(Lﬁlv)vA,q(ﬂwl, ey W) BgY).

Theorem 3.107.

Z N\*I{vzfql(@ a2 Dy f(y) = fz ®qy). (3.110)
k=0 &
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Proof. Replacef(z) by f(z &, y) in (3.95):

1

5 (F(Gn o(@) €420 @4 1) + F(Glatn o(2) €4 1) ) 21 (Gliaty() B4 v). (3.111)

Use the umbral formula (2.1) to get

= Grakg(®) . Crakq ()
)R, Dk — ,K,q Dk ]
;0 —{k}q! Vinwa 2,9 qf(y) kZ:O —{k}q! qf(y)

Apply the operatoWﬁ;\,}w,q with respect tq, to both sides and use (3.105):
- Gl(\K/)VA k q(aj) = Gl(\mAl)k (1) & G(NWA+11) (y)
R, n Dkf(y) — kg Dk-l—lf(()) 5bhq '
Z [k}l WAz Z {k}! Z ‘ {i,!
Finally use (3.101) to rewrite the right-hand side. [ |

Corollary 3.108. Let ¢(x) be a polynomial of degree. A solution f(z) of the ¢-
difference equation

7I\ZIWA,2, —
or u‘jn f(z) = () (3.112)
is given by
Y G,&K,{,Akq(ajwl, ey Wh) N
fle@gy) =) = T Dje(y). (3.113)
k=0 &

Proof. The LHS of (3.113)) can be written az{G,(j(,z,A,q(ﬂwl, ..., wy) By y), because
if we apply Va2, . t0 both sides we get

VﬁWA,zq gp(G(n)

NWA 2.4 flx®gy) = p(rOyy) = NWA,q(x|w17 ey Wn) By Y).

Wi,y ... ,Wn Wiy oo, Wn
n

There are a few formulas similar to the Leibniz theorem. We can express the NWA
difference operator in terms of the mean value operator and vice versa.

Theorem 3.109.

n
n

Buanaal 1) =231 () Vil (Vi E@)7)g. (3129

1=0

Proof. Same as Jordan [54, p. 98, (13)]. |
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Theorem 3.110.

n 1\" ¢ i Y\ i n—i %
VNWA,2,q<fg) = (_5) Z(_2) <z) NWA,2,qf(ANWA,2,qE(€Bq)2 q)g-
i=0

Proof. Same as [54, p. 99, (2)]. |
Theorem 3.111.

n S 1 i n 7 n—i 2i,

NWA,Q,q(fQ) = B ; ANWA,2,qf(VNWAQ,qE(@q) q)Q‘ (3.115)

i=0

Proof. Same as [54, p. 99, (3)]. [ |
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