Functions of Difference Matrices are Toeplitz plus Hankel

Maximilian A. März

Based on: G. Strang and S. MacNamara. "Functions of Difference Matrices are Toeplitz plus Hankel" . In: SIAM Review 56.No. 3 (2014), pp. 525-546

November 14, 2014
Berlin
Mathematical
School

Table of Contents

(1) Introduction
(2) Functions of K
(3) The heat and the wave equation
(4) Miscellaneous

Model problem

Heat equation with homogeneous Dirichlet boundary conditions

$$
\left\{\begin{aligned}
\partial_{t} u & =\partial_{x x} u, & & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0 & & t \in[0, \infty) \\
u(t, 1) & =0 & & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & & x \in[0,1] .
\end{aligned}\right.
$$

Model problem

Heat equation with homogeneous Dirichlet boundary conditions

$$
\left\{\begin{aligned}
\partial_{t} u & =\partial_{x x} u, & & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0 & & t \in[0, \infty) \\
u(t, 1) & =0 & & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & & x \in[0,1] .
\end{aligned}\right.
$$

Approach: Discretize in space and solve ODE in time.

- step size $h=\frac{1}{N+1}$
- grid points

$$
x_{0}=0, x_{1}=h, \ldots, x_{N}=N h, x_{N+1}=1
$$

- intermediate points

$$
x_{0.5}=h / 2, x_{1.5}=(1.5) h, \ldots, x_{N .5}=(N .5) h
$$

Discretization of the heat equation

- central differences for $i=0, \ldots, N$ yield

$$
\partial_{x} u\left(t, x_{i .5}\right)=\frac{u\left(t, x_{i+1}\right)-u\left(t, x_{i}\right)}{h}+\mathcal{O}(h)
$$

- and again central differences for $i=1, \ldots, N$ yield

$$
\begin{aligned}
\partial_{x x} u\left(t, x_{i}\right) & =\frac{\partial_{x} u\left(t, x_{i .5}\right)-\partial_{x} u\left(t, x_{(i-1) .5}\right)}{h}+\mathcal{O}(h) \\
& =\frac{u\left(t, x_{i+1}\right)-2 u\left(t, x_{i}\right)+u\left(t, x_{i-1}\right)}{h^{2}}+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

together with the Dirichlet boundary conditions

$$
u\left(t, x_{0}\right)=0=u\left(t, x_{N+1}\right)
$$

Discretization of the heat equation

Semidiscrete approximation

Obtain the initial value problem
(1)

$$
\left\{\begin{aligned}
\mathbf{u}^{\prime}(t) & =-\left(\frac{K}{h^{2}}\right) \mathbf{u}(t), \quad \text { for } t>0 \\
\mathbf{u}(0) & =\mathbf{u}_{0}
\end{aligned}\right.
$$

According to our discretization the $N \times N$ difference matrix K is given by

$$
K=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

Solution of the Semidiscrete Approximation

Solution to (1)
The solution to the initial value problem (1) is given by
(2)

$$
\mathbf{u}(t)=e^{-K t / h^{2}} \mathbf{u}_{0} .
$$

Solution of the Semidiscrete Approximation

Solution to (1)

The solution to the initial value problem (1) is given by

$$
\begin{equation*}
\mathbf{u}(t)=e^{-K t / h^{2}} \mathbf{u}_{0} . \tag{2}
\end{equation*}
$$

- We already know that $e^{-K t / h^{2}}$ decays fast from the diagonal [Ise00].
- This presentation is about the structure of $e^{-K t / h^{2}}$.

Functions of difference matrices are Toeplitz plus Hankel.

2nd model problem: wave equation

Wave equation with Dirichlet boundary conditions

$$
\left\{\begin{array}{lll}
\partial_{t t} u & =\partial_{x x} u, & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0, & t \in[0, \infty) \\
u(t, 1) & =0, & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & x \in[0,1] \\
\partial_{t} u(0, x) & =v_{0}(x), & x \in[0,1] .
\end{array}\right.
$$

2nd model problem: wave equation

Wave equation with Dirichlet boundary conditions

$$
\left\{\begin{array}{lll}
\partial_{t t} u & =\partial_{x x} u, & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0, & t \in[0, \infty) \\
u(t, 1) & =0, & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & x \in[0,1] \\
\partial_{t} u(0, x) & =v_{0}(x), & x \in[0,1] .
\end{array}\right.
$$

Same steps lead to:
Semidiscrete approximation, initial value problem
(3)

$$
\begin{cases}\mathbf{u}^{\prime \prime}(t)=\left(-\frac{K}{h^{2}}\right) \mathbf{u}(t), \quad \text { for } t>0 \\ \mathbf{u}(0)=\mathbf{u}_{0} \\ \mathbf{u}^{\prime}(0)=\mathbf{v}_{0}\end{cases}
$$

Solution to semidiscrete wave equation

Solution to (3)

The solution to the initial value problem (3) is given by

$$
\begin{aligned}
\mathbf{u}(t) & =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+h K^{-1 / 2} \sin (\sqrt{K} t / h) \mathbf{v}_{0} \\
& =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+t \operatorname{sinc}(\sqrt{K} t / h) \mathbf{v}_{0}
\end{aligned}
$$

We are interested in the structure of

- \sqrt{K}
- $e^{-t K / h^{2}}$
- $\cos (\sqrt{K} t / h)$
- $\operatorname{sinc}(\sqrt{K} t / h)$

Table of contents

(1) Introduction
(2) Functions of K
(3) The heat and the wave equation

4 Miscellaneous

Definition

Toeplitz, Hankel

A matrix $A=\left(a_{i, j}\right) \in \mathbb{C}^{N \times N}$ is called Toeplitz if

$$
a_{i, j}=a_{i+1, j+1}
$$

holds for all $i, j \in\{1, \ldots, N-1\}$.
A matrix $A=\left(a_{i, j}\right) \in \mathbb{C}^{N \times N}$ is called Hankel if

$$
a_{i, j}=a_{i+1, j-1}
$$

holds for all $i \in\{1, \ldots, N-1\}$ and $j \in\{2, \ldots, N\}$.
For more information about Toeplitz matrices see [Wid65].

Functions of K

Start with Eigenvectors of K. We have the following correspondence:

$$
K \leadsto-\frac{d^{2}}{d x^{2}} \text { with homogeneous boundary conditions }
$$

The Eigenfunctions of the right side are sines:

$$
-\frac{d^{2}}{d x^{2}} \sin (k \pi x)=k^{2} \pi^{2} \sin (k \pi x)
$$

Functions of K

Start with Eigenvectors of K. We have the following correspondence:

$$
K \leadsto-\frac{d^{2}}{d x^{2}} \text { with homogeneous boundary conditions }
$$

The Eigenfunctions of the right side are sines:

$$
-\frac{d^{2}}{d x^{2}} \sin (k \pi x)=k^{2} \pi^{2} \sin (k \pi x)
$$

Get the orthonormal Eigenvalues in the discrete case by sampling in the grid points:

$$
\mathbf{v}_{k}=\sqrt{\frac{2}{N+1}}(\sin (k \pi h), \sin (2 k \pi h), \ldots, \sin (N k \pi h))^{T} .
$$

Functions of K (cont.)

$$
\mathbf{v}_{k}=\sqrt{\frac{2}{N+1}}(\sin (k \pi h), \sin (2 k \pi h), \ldots, \sin (N k \pi h))^{T}
$$

with corresponding Eigenvalues

$$
\lambda_{k}=2-2 \cos (k \pi h), k=1, \ldots, N
$$

Functions of K (cont.)

$$
\mathbf{v}_{k}=\sqrt{\frac{2}{N+1}}(\sin (k \pi h), \sin (2 k \pi h), \ldots, \sin (N k \pi h))^{T}
$$

with corresponding Eigenvalues

$$
\lambda_{k}=2-2 \cos (k \pi h), k=1, \ldots, N
$$

Write the difference matrix as

$$
K=\sum_{k=1}^{N} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}
$$

For a function f (defined on the spectrum of K) the matrix function $f(K)$ is defined by

$$
f(K)_{m, n}=\frac{2}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right) \sin (m k \pi h) \sin (n k \pi h)
$$

Functions of K are Toeplitz and Hankel

The trigonometric identity

$$
\sin (x) \sin (y)=\frac{1}{2}(\cos (x-y)-\cos (x+y))
$$

is essential for the following (see also [BBR13]).

Functions of K are Toeplitz and Hankel

The trigonometric identity

$$
\sin (x) \sin (y)=\frac{1}{2}(\cos (x-y)-\cos (x+y))
$$

is essential for the following (see also [BBR13]). For $\theta_{k}=k \pi h$ this implies

$$
\begin{aligned}
f(K)_{m, n} & =\frac{2}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right) \sin \left(m \theta_{k}\right) \sin \left(n \theta_{k}\right) \\
& =\frac{1}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right)(\underbrace{\cos \left((m-n) \theta_{k}\right)}_{\text {Toeplitz }}-\underbrace{\cos \left((m+n) \theta_{k}\right)}_{\text {Hankel }}) .
\end{aligned}
$$

Approximate sum by integral

For $N \rightarrow \infty$ we get the following limit (see also [BBR13]).
Remember therefore $\theta_{k}=\frac{k \pi}{N+1}$ and $\lambda_{k}=2-2 \cos \left(\frac{k \pi}{N+1}\right)$:

$$
\begin{aligned}
& f(K)_{m, n}=\frac{1}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right)\left(\cos \left((m-n) \theta_{k}\right)-\cos \left((m+n) \theta_{k}\right)\right) \\
& \xrightarrow{N \rightarrow \infty} \frac{1}{\pi} \int_{0}^{\pi} f(2-2 \cos (\theta))(\cos ((m-n) \theta)-\cos ((m+n) \theta)) d \theta
\end{aligned}
$$

Approximate sum by integral

For $N \rightarrow \infty$ we get the following limit (see also [BBR13]).
Remember therefore $\theta_{k}=\frac{k \pi}{N+1}$ and $\lambda_{k}=2-2 \cos \left(\frac{k \pi}{N+1}\right)$:

$$
\begin{aligned}
& f(K)_{m, n}=\frac{1}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right)\left(\cos \left((m-n) \theta_{k}\right)-\cos \left((m+n) \theta_{k}\right)\right) \\
& \xrightarrow{N \rightarrow \infty} \frac{1}{\pi} \int_{0}^{\pi} f(2-2 \cos (\theta))(\cos ((m-n) \theta)-\cos ((m+n) \theta)) d \theta
\end{aligned}
$$

This are the Fourier cosine coefficients of $f(2-2 \cos (\cdot))$ times $1 / 2$.

For $f=\sqrt{ } \cdot$ we obtain

$$
f(2-2 \cos (\theta))=\sqrt{2-2 \cos (\theta)}=2 \sin \left(\frac{\theta}{2}\right)
$$

and so for $p=m-n$, respectively $p=m+n$, we get the Fourier cosine coefficients (times $1 / 2$) of the periodic, even function

$$
\left|\sin \left(\frac{\theta}{2}\right)\right|, \text { for } \theta \in(-\pi, \pi) .
$$

For $f=\sqrt{ } \cdot$ we obtain

$$
f(2-2 \cos (\theta))=\sqrt{2-2 \cos (\theta)}=2 \sin \left(\frac{\theta}{2}\right)
$$

and so for $p=m-n$, respectively $p=m+n$, we get the Fourier cosine coefficients (times $1 / 2$) of the periodic, even function

$$
\left|\sin \left(\frac{\theta}{2}\right)\right|, \text { for } \theta \in(-\pi, \pi) .
$$

With

$$
a_{p}=\frac{4}{\pi\left(1-4 p^{2}\right)},
$$

we obtain

$$
(\sqrt{K})_{m, n}=a_{m-n}-a_{m+n}
$$

Aliasing

In the Hankel part

$$
\frac{1}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right) \cos (p k \pi h)
$$

of the exact $f(K)$ we observe the following aliasing effect

$$
\begin{aligned}
\cos (p k \pi h) & =\cos (2 k \pi-p k \pi h) \\
& =\cos \left(\frac{(2 N+2-p) k \pi}{N+1}\right)=\cos ((2 N+2-p) k \pi h) .
\end{aligned}
$$

Aliasing

In the Hankel part

$$
\frac{1}{N+1} \sum_{k=1}^{N} f\left(\lambda_{k}\right) \cos (p k \pi h)
$$

of the exact $f(K)$ we observe the following aliasing effect

$$
\begin{aligned}
\cos (p k \pi h) & =\cos (2 k \pi-p k \pi h) \\
& =\cos \left(\frac{(2 N+2-p) k \pi}{N+1}\right)=\cos ((2 N+2-p) k \pi h) .
\end{aligned}
$$

This implies a reflection across the main antidiagonal. The integral is closer to a sum over the lower frequencies. Therefore choose the Hankel part as $a_{2 N+2-m-n}$ if $(m+n)>N+1$.

The same steps lead to

$$
\left(e^{-t K}\right)_{m, n}=\frac{2}{N+1} \sum_{k=1}^{N} e^{2 t \cos \left(\theta_{k}\right)-2 t} \sin \left(m \theta_{k}\right) \sin \left(n \theta_{k}\right)
$$

and for $p=m-n$ and $p=m+n$ the limits for $N \rightarrow \infty$ are

$$
\begin{aligned}
b_{p} & =\frac{e^{-2 t}}{\pi} \int_{0}^{\pi} e^{2 t \cos (\theta)} \cos (p \theta) d \theta \\
& =e^{-2 t} l_{p}(2 t)
\end{aligned}
$$

where I_{p} is the modified Bessel function of the first kind.

Remarks

- Note that the entries of \sqrt{K} decay with $\mathcal{O}\left(p^{-2}\right)$. This corresponds to the fact that the derivative of $f(\theta)=\left|\sin \left(\frac{\theta}{2}\right)\right|$ has a discontinuity in 0 , which means $\mathcal{O}\left(p^{-2}\right)$ in the 2nd Fourier coefficient [Wei02].
- Also, the convergence rate of the Riemann sum to the exact integral is only N^{-2} because f is not analytic. In contrary, this convergence is faster than exponential, if f is analytic [TW14].

Remarks (cont)

For a two dimensional problem, discretize the Laplacian

$$
-\triangle=-\partial_{x x}-\partial_{y y}
$$

(with homogeneous boundary conditions) via the Kronecker sum

$$
\mathcal{K}=K \oplus K=(K \otimes I)+(I \otimes K)
$$

Remarks (cont)

For a two dimensional problem, discretize the Laplacian

$$
-\triangle=-\partial_{x x}-\partial_{y y}
$$

(with homogeneous boundary conditions) via the Kronecker sum

$$
\mathcal{K}=K \oplus K=(K \otimes I)+(I \otimes K)
$$

The N^{2} Eigenvectors of \mathcal{K} are given by ([Hor86])

$$
\mathbf{v}_{k} \otimes \mathbf{v}_{l}, \text { for } k, l=1, \ldots, N
$$

with corresponding Eigenvalues

$$
\lambda_{k, l}=\lambda_{k}+\lambda_{/} .
$$

Similar steps as above lead to $\sqrt{\mathcal{K}}$. For $e^{-\mathcal{K}}$ observe

$$
e^{-\mathcal{K}}=e^{-(K \oplus K)}=e^{-K} \otimes e^{-K}
$$

Table of contents

(1) Introduction
(2) Functions of K
(3) The heat and the wave equation

4 Miscellaneous

The heat equation

Recall the semidiscrete approximation

$$
\begin{cases}\mathbf{u}^{\prime}(t)=\left(-\frac{K}{h^{2}}\right) \mathbf{u}(t), \quad \text { for } t>0 \\ \mathbf{u}(0)=\mathbf{u}_{0}\end{cases}
$$

with the solution given by

$$
\mathbf{u}(t)=e^{-K t / h^{2}} \mathbf{u}_{0}
$$

The heat equation

Recall the semidiscrete approximation

$$
\left\{\begin{array}{l}
\mathbf{u}^{\prime}(t)=\left(-\frac{K}{h^{2}}\right) \mathbf{u}(t), \quad \text { for } t>0 \\
\mathbf{u}(0)=\mathbf{u}_{0}
\end{array}\right.
$$

with the solution given by

$$
\mathbf{u}(t)=e^{-K t / h^{2}} \mathbf{u}_{0}
$$

As we just saw the centrosymmetric (aliasing!) $e^{-K t / h^{2}}$ is given by the entries

$$
b_{m-n}-b_{m+n}, \text { for } m+n \leq N+1
$$

with

$$
b_{p}=e^{-2 t / h^{2}} I_{p}\left(2 t / h^{2}\right)
$$

Shifts

Without boundary conditions a shift in the initial condition \mathbf{u}_{0} produces the same shift in $\mathbf{u}(t)$ in all times. $\leftrightarrow \rightsquigarrow \rightarrow$ Toeplitz.

$$
\left(\begin{array}{llll}
b & a & & \\
c & b & a & \\
& c & b & a \\
& & c & b
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
b & a \\
c & b \\
0 & c
\end{array}\right)
$$

Shifts

Without boundary conditions a shift in the initial condition \mathbf{u}_{0} produces the same shift in $\mathbf{u}(t)$ in all times. $\leftrightarrow \rightsquigarrow$ Toeplitz.

$$
\left(\begin{array}{cccc}
b & a & & \\
c & b & a & \\
& c & b & a \\
& & c & b
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
b & a \\
c & b \\
0 & c
\end{array}\right)
$$

The Hankel produces a shift in the other directions.

$$
\begin{aligned}
& \left(\begin{array}{llll}
& & a & b \\
& a & b & c \\
a & b & c & \\
b & c & &
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & a \\
a & b \\
b & c \\
c & 0
\end{array}\right) \\
& \text { Why? }
\end{aligned}
$$

Method of images and shifts

Recall that the function

$$
\Phi(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, \text { for } x \in \mathbb{R}, t>0
$$

is a fundamental solution of the 1D Heat equation.

Method of images and shifts

Recall that the function

$$
\Phi(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, \text { for } x \in \mathbb{R}, t>0
$$

is a fundamental solution of the 1D Heat equation.
Suppose the initial condition is given by $u(0, x)=\delta_{a}(x)$ and suppose we have only the left boundary with homogeneous boundary conditions.

Method of images and shifts

Recall that the function

$$
\Phi(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}, \text { for } x \in \mathbb{R}, t>0
$$

is a fundamental solution of the 1D Heat equation.
Suppose the initial condition is given by $u(0, x)=\delta_{a}(x)$ and suppose we have only the left boundary with homogeneous boundary conditions.
Take an additional image source $-\delta_{-a}(x)$. By symmetry the solution is then given by

$$
u(t, x)=\left(\Phi(t, \cdot) *\left(\delta_{a}-\delta_{-a}\right)\right)(x)=\frac{1}{\sqrt{4 \pi t}}\left(e^{-(x-a)^{2} / 4 t}-e^{-(x+a)^{2} / 4 t}\right)
$$

Methods of images and shifts (cont.)

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}}\left(e^{-(x-a)^{2} / 4 t}-e^{-(x+a)^{2} / 4 t}\right)
$$

Let the source at $x=a$ move to the right, then the second exponential from the image source moves to the left. $\leftrightarrow \leadsto$ anti-shift-invariant, Hankel.

Methods of images and shifts (cont.)

$$
u(t, x)=\frac{1}{\sqrt{4 \pi t}}\left(e^{-(x-a)^{2} / 4 t}-e^{-(x+a)^{2} / 4 t}\right)
$$

Let the source at $x=a$ move to the right, then the second exponential from the image source moves to the left.
$\leftrightarrow \leadsto$ anti-shift-invariant, Hankel.
For two boundary points do basically the same, but both, the source $\delta_{a}(x)$ and the image $-\delta_{-a}(x)$, have to be balanced also at $x=1$ by $-\delta_{2-a}(x)$ and $\delta_{2+a}(x) \ldots$ This leads to

$$
u(0, x)=\sum_{k=-\infty}^{\infty} \delta_{-2 k+a}(x)-\sum_{k=-\infty}^{\infty} \delta_{2 k-a}(x), \text { for } x \in \mathbb{R}
$$

Both boundary conditions are then satisfied by symmetry and $\delta_{a}(x)$ moves to the right $\Rightarrow \delta_{2 k-a}(x)$ moves to the left.

The wave equation

Wave equation with Dirichlet boundary conditions

$$
\left\{\begin{array}{lll}
\partial_{t t} u & =\partial_{x x} u, & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0 & t \in[0, \infty) \\
u(t, 1) & =0 & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & x \in[0,1] \\
\partial_{t} u(0, x) & =v_{0}(x), & x \in[0,1] .
\end{array}\right.
$$

The wave equation

Wave equation with Dirichlet boundary conditions

$$
\left\{\begin{array}{lll}
\partial_{t t} u & =\partial_{x x} u, & \text { on }(0, \infty) \times(0,1) \\
u(t, 0) & =0 & t \in[0, \infty) \\
u(t, 1) & =0 & t \in[0, \infty) \\
u(0, x) & =u_{0}(x), & x \in[0,1] \\
\partial_{t} u(0, x) & =v_{0}(x), & x \in[0,1] .
\end{array}\right.
$$

Semidiscrete Approximation

Obtain the initial value problem

$$
\left\{\begin{array}{l}
\mathbf{u}^{\prime \prime}(t)=\left(-\frac{K}{h^{2}}\right) \mathbf{u}(t), \quad \text { for } t>0 \\
\mathbf{u}(0)=\mathbf{u}_{0} \\
\mathbf{u}^{\prime}(0)=\mathbf{v}_{0}
\end{array}\right.
$$

The wave equation (cont.)

Recall d'Alembert's formula for the solution:

$$
u(t, x)=\frac{1}{2}\left(u_{0}(x+t)+u_{0}(x-t)\right)+\frac{1}{2} \int_{x-t}^{x+t} v_{0}(s) d s
$$

The wave equation (cont.)

Recall d'Alembert's formula for the solution:

$$
u(t, x)=\frac{1}{2}\left(u_{0}(x+t)+u_{0}(x-t)\right)+\frac{1}{2} \int_{x-t}^{x+t} v_{0}(s) d s
$$

and compare it with the solution to the semidiscrete approximation

$$
\begin{aligned}
\mathbf{u}(t) & =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+h K^{-1 / 2} \sin (\sqrt{K} t / h) \mathbf{v}_{0} \\
& =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+t \operatorname{sinc}(\sqrt{K} t / h) \mathbf{v}_{0}
\end{aligned}
$$

The wave equation (cont.)

Recall d'Alembert's formula for the solution:

$$
u(t, x)=\frac{1}{2}\left(u_{0}(x+t)+u_{0}(x-t)\right)+\frac{1}{2} \int_{x-t}^{x+t} v_{0}(s) d s
$$

and compare it with the solution to the semidiscrete approximation

$$
\begin{aligned}
\mathbf{u}(t) & =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+h K^{-1 / 2} \sin (\sqrt{K} t / h) \mathbf{v}_{0} \\
& =\cos (\sqrt{K} t / h) \mathbf{u}_{0}+t \operatorname{sinc}(\sqrt{K} t / h) \mathbf{v}_{0}
\end{aligned}
$$

$\cos (\sqrt{K} t / h)$ and $\operatorname{sinc}(\sqrt{K} t / h)$ are both Toeplitz plus Hankel and the entries can be explicitly calculated via Bessel function values.

Table of contents

(1) Introduction
(2) Functions of K

3 The heat and the wave equation
(4) Miscellaneous

Test for Toeplitz plus Hankel

Test

A matrix $M \in \mathbb{C}^{N \times N}$ is of the form Toeplitz plus Hankel iff it satisfies the $(N-2)^{2}$ conditions
(4) $M_{i-1, j}+M_{i+1, j}=M_{i, j-1}+M_{i, j+1}$, for $1<i, j<N$.

For a proof of this cross-sum relation, see [BBB95].

The four corner theorem

Consider the same K for a second difference, but with different corner entries $(1,1),(1, N),(N, 1),(N, N)$. This corresponds to different boundary conditions:

The four corner theorem

Consider the same K for a second difference, but with different corner entries $(1,1),(1, N),(N, 1),(N, N)$. This corresponds to different boundary conditions:

$$
\begin{aligned}
& K_{1,1}=1, K_{N, N}=1 \\
& K_{1, N}=-1, K_{N, 1}=-1 \\
& K_{1,1}=1, K_{N, N}=2 \\
& K_{1,1}=2, K_{N, N}=1
\end{aligned}
$$

Neumann boundary Periodic boundary mixed Neumann-Dirichlet mixed Dirichlet-Nuemann

The four corner theorem

Consider the same K for a second difference, but with different corner entries $(1,1),(1, N),(N, 1),(N, N)$. This corresponds to different boundary conditions:

$$
\begin{aligned}
& K_{1,1}=1, K_{N, N}=1 \\
& K_{1, N}=-1, K_{N, 1}=-1
\end{aligned}
$$

$$
K_{1,1}=1, K_{N, N}=2 \quad \text { mixed Neumann-Dirichlet }
$$

$$
K_{1,1}=2, K_{N, N}=1 \quad \text { mixed Dirichlet-Nuemann }
$$

It turns out, that independently of the entries in the four corners, every matrix function is of the form Toeplitz plus Hankel, as long as K is symmetric.

The four corner theorem (cont.)

The equation (4) is equivalent to
$M_{i-1, j}-2 M_{i, j}+M_{i+1, j}=M_{i, j-1}-2 M_{i, j}+M_{i, j+1}$, for $1<i, j<N$.

The four corner theorem (cont.)

The equation (4) is equivalent to
$M_{i-1, j}-2 M_{i, j}+M_{i+1, j}=M_{i, j-1}-2 M_{i, j}+M_{i, j+1}$, for $1<i, j<N$.
Consider now $M=\mathbf{v v}^{\top}$ for an Eigenvector \mathbf{v} of K. Then this becomes
(5)

$$
\mathbf{v}(j) \triangle^{2} \mathbf{v}(i)=\mathbf{v}(i) \triangle^{2} \mathbf{v}(j), \text { for } 1<i, j<N
$$

The four corner theorem (cont.)

The equation (4) is equivalent to
$M_{i-1, j}-2 M_{i, j}+M_{i+1, j}=M_{i, j-1}-2 M_{i, j}+M_{i, j+1}$, for $1<i, j<N$.
Consider now $M=\mathbf{v v}^{T}$ for an Eigenvector \mathbf{v} of K. Then this becomes
(5) $\quad \mathbf{v}(j) \triangle^{2} \mathbf{v}(i)=\mathbf{v}(i) \triangle^{2} \mathbf{v}(j)$, for $1<i, j<N$.

Since \mathbf{v} is an Eigenvector of the difference matrix, we know that $\triangle^{2} \mathbf{v}(i)=\lambda \mathbf{v}(i)$ for $1<i<N$. Equation (5) is passed, since it becomes

$$
\mathbf{v}(j) \lambda \mathbf{v}(i)=\mathbf{v}(i) \lambda \mathbf{v}(j), \text { for } 1<i, j<N .
$$

The four corner theorem (cont.)

The equation (4) is equivalent to
$M_{i-1, j}-2 M_{i, j}+M_{i+1, j}=M_{i, j-1}-2 M_{i, j}+M_{i, j+1}$, for $1<i, j<N$.
Consider now $M=\mathbf{v v}^{T}$ for an Eigenvector \mathbf{v} of K. Then this becomes
(5) $\quad \mathbf{v}(j) \triangle^{2} \mathbf{v}(i)=\mathbf{v}(i) \triangle^{2} \mathbf{v}(j)$, for $1<i, j<N$.

Since \mathbf{v} is an Eigenvector of the difference matrix, we know that $\triangle^{2} \mathbf{v}(i)=\lambda \mathbf{v}(i)$ for $1<i<N$. Equation (5) is passed, since it becomes

$$
\mathbf{v}(j) \lambda \mathbf{v}(i)=\mathbf{v}(i) \lambda \mathbf{v}(j), \text { for } 1<i, j<N .
$$

Every matrix function of K is Toeplitz plus Hankel.

Resolvents

Recall the definition of a matrix function by Cartan:

Equivalent characterizations for Toeplitz plus Hankel

Let f be analytic inside a closed simple contour Γ enclosing $\sigma(A)$. Then

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} d z
$$

where the integral is taken entry-wise.
Furthermore, if the contour Γ_{k} encloses one simple Eigenvalue λ_{k} we get the projection

$$
P_{k}=\mathbf{v}_{k} \mathbf{v}_{k}^{T}=\frac{1}{2 \pi i} \int_{\Gamma_{k}}(z I-A)^{-1} d z
$$

Equivalent conditions for Toeplitz plus Hankel (cont.)

This gives us the following three equivalent conditions for a matrix function to be of the form Toeplitz plus Hankel:

- For all analytic functions f, the matrix function $f(A)$ is Toeplitz plus Hankel.
- The Resolvent $R(z)=(z I-A)^{-1}$ is Toeplitz plus Hankel for all $z \in \mathbb{C} \backslash \sigma(A)$.
- The projections onto all Eigenspaces of A are Toeplitz plus Hankel.

For a explicit form of the Resolvent $(z l-K)^{-1}$ via Bessel functions and the Laplace transform, see [SM14].

What to take home?

- Heat, wave equations in 1D and their semidiscrete approximations.
- Solutions of the approximations via Matrix functions in K.
- Discrete sines and cosines as Eigenvectors of the difference matrix K lead to the Toeplitz plus Hankel structure.
- Approximate the resulting sums via Riemann integrals and (often) find explicit expressions.
- Method of image sources connects the Hankel structure with boundary conditions.

References I

R. Bevilacqua, N. Bonanni, and E. Bozzo. "On Algebras of Toeplitz Plus Hankel Matrices". In: Linear Algebra Appl. 223/224 (1995), pp. 99-118.
M. Benzi, P. Boito, and N. Razouk. "Decay Properties of Spectral Projectors with Applications to Electronic Structure". In: SIAM Review 55 (2013), pp. 3-64.

R. A. Horn. Topics in Matrix Analysis. New York, NY, USA: Cambridge University Press, 1986.
A. Iserles. "How large is the exponential of a banded matrix?" In: J. New Zealand Math. Soc. 29 (2000), pp. 177-192.

References II

G. Strang and S. MacNamara. "Functions of Difference Matrices are Toeplitz plus Hankel" . In: SIAM Review 56.No. 3 (2014), pp. 525-546.
L. Trefthen and J. Weideman. "The exponentially convergent trapezoidal rule". In: Siam Review 56.No. 3 (2014), pp. 385-458.
J. Weideman. "Numerical integration of periodic functions: A few examples". In: Amer. Math. Monthly 109 (2002), pp. 21-36.
围
H. Widom. "Toeplitz matrices". In: Studies in Real and Comple Analysis. Ed. by I. Hirschmann. Vol. 3. Studies in mathematics. Washington University: The Mathematical Asscoiation on America, 1965.

