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Model problem

Heat equation with homogeneous Dirichlet boundary conditions
∂tu = ∂xxu, on (0,∞)× (0, 1)

u(t, 0) = 0 t ∈ [0,∞)
u(t, 1) = 0 t ∈ [0,∞)
u(0, x) = u0(x), x ∈ [0, 1].

Approach: Discretize in space and solve ODE in time.

I step size h = 1
N+1

I grid points

x0 = 0, x1 = h, . . . , xN = Nh, xN+1 = 1

I intermediate points

x0.5 = h/2, x1.5 = (1.5)h, . . . , xN.5 = (N.5)h
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Discretization of the heat equation

I central differences for i = 0, . . . ,N yield

∂xu(t, xi .5) =
u(t, xi+1)− u(t, xi )

h
+O(h)

I and again central differences for i = 1, . . . ,N yield

∂xxu(t, xi ) =
∂xu(t, xi .5)− ∂xu(t, x(i−1).5)

h
+O(h)

=
u(t, xi+1)− 2u(t, xi ) + u(t, xi−1)

h2
+O(h2),

together with the Dirichlet boundary conditions

u(t, x0) = 0 = u(t, xN+1).
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Discretization of the heat equation

Semidiscrete approximation

Obtain the initial value problem

(1)

{
u′(t) = −

(
K
h2

)
u(t), for t > 0

u(0) = u0

According to our discretization the N × N difference matrix K is
given by

K =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


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Solution of the Semidiscrete Approximation

Solution to (1)

The solution to the initial value problem (1) is given by

(2) u(t) = e−Kt/h
2
u0.

I We already know that e−Kt/h
2

decays fast from the diagonal
[Ise00].

I This presentation is about the structure of e−Kt/h
2
.

Functions of difference matrices are Toeplitz plus Hankel.
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2nd model problem: wave equation

Wave equation with Dirichlet boundary conditions
∂ttu = ∂xxu, on (0,∞)× (0, 1)
u(t, 0) = 0, t ∈ [0,∞)
u(t, 1) = 0, t ∈ [0,∞)
u(0, x) = u0(x), x ∈ [0, 1]
∂tu(0, x) = v0(x), x ∈ [0, 1].

Same steps lead to:

Semidiscrete approximation, initial value problem

(3)


u′′(t) =

(
− K

h2

)
u(t), for t > 0

u(0) = u0

u′(0) = v0.
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Solution to semidiscrete wave equation

Solution to (3)

The solution to the initial value problem (3) is given by

u(t) = cos(
√
Kt/h)u0 + hK−1/2 sin(

√
Kt/h)v0

= cos(
√
Kt/h)u0 + t sinc(

√
Kt/h)v0.

We are interested in the structure of

I
√
K

I e−tK/h
2

I cos(
√
Kt/h)

I sinc(
√
Kt/h)
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Definition

Toeplitz, Hankel

A matrix A = (ai ,j) ∈ CN×N is called Toeplitz if

ai ,j = ai+1,j+1

holds for all i , j ∈ {1, . . . ,N − 1}.
A matrix A = (ai ,j) ∈ CN×N is called Hankel if

ai ,j = ai+1,j−1

holds for all i ∈ {1, . . . ,N − 1} and j ∈ {2, . . . ,N}.

For more information about Toeplitz matrices see [Wid65].
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Functions of K

Start with Eigenvectors of K . We have the following
correspondence:

K ! − d2

dx2
with homogeneous boundary conditions

The Eigenfunctions of the right side are sines:

− d2

dx2
sin(kπx) = k2π2 sin(kπx).

Get the orthonormal Eigenvalues in the discrete case by sampling
in the grid points:

vk =

√
2

N + 1
(sin(kπh), sin(2kπh), . . . , sin(Nkπh))T .
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Functions of K (cont.)

vk =
√

2
N+1 (sin(kπh), sin(2kπh), . . . , sin(Nkπh))T ,

with corresponding Eigenvalues

λk = 2− 2 cos(kπh), k = 1, . . . ,N.

Write the difference matrix as

K =
N∑

k=1

λkvkv
T
k .

For a function f (defined on the spectrum of K ) the matrix
function f (K ) is defined by

f (K )m,n =
2

N + 1

N∑
k=1

f (λk) sin(mkπh) sin(nkπh).
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Functions of K are Toeplitz and Hankel

The trigonometric identity

sin(x) sin(y) =
1

2
(cos(x − y)− cos(x + y))

is essential for the following (see also [BBR13]).

For θk = kπh this
implies

f (K )m,n =
2

N + 1

N∑
k=1

f (λk) sin(mθk) sin(nθk)

=
1

N + 1

N∑
k=1

f (λk)

cos((m − n)θk)︸ ︷︷ ︸
Toeplitz

− cos((m + n)θk)︸ ︷︷ ︸
Hankel

 .
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Approximate sum by integral

For N →∞ we get the following limit (see also [BBR13]).

Remember therefore θk = kπ
N+1 and λk = 2− 2 cos

(
kπ
N+1

)
:

f (K )m,n =
1

N + 1

N∑
k=1

f (λk) (cos((m − n)θk)− cos((m + n)θk))

N→∞−−−−→ 1

π

∫ π

0
f (2− 2 cos (θ)) (cos((m − n)θ)− cos((m + n)θ)) dθ

This are the Fourier cosine coefficients of f (2− 2 cos(·)) times 1/2.

Maximilian A. März Functions of Difference Matrices are Toeplitz plus Hankel



Introduction
Functions of K

The heat and the wave equation
Miscellaneous

References

Approximate sum by integral

For N →∞ we get the following limit (see also [BBR13]).

Remember therefore θk = kπ
N+1 and λk = 2− 2 cos

(
kπ
N+1

)
:

f (K )m,n =
1

N + 1

N∑
k=1

f (λk) (cos((m − n)θk)− cos((m + n)θk))

N→∞−−−−→ 1

π

∫ π

0
f (2− 2 cos (θ)) (cos((m − n)θ)− cos((m + n)θ)) dθ

This are the Fourier cosine coefficients of f (2− 2 cos(·)) times 1/2.

Maximilian A. März Functions of Difference Matrices are Toeplitz plus Hankel



Introduction
Functions of K

The heat and the wave equation
Miscellaneous

References√
K

For f =
√
· we obtain

f (2− 2 cos(θ)) =
√

2− 2 cos(θ) = 2 sin

(
θ

2

)
,

and so for p = m − n, respectively p = m + n, we get the Fourier
cosine coefficients (times 1/2) of the periodic, even function∣∣∣∣sin

(
θ

2

)∣∣∣∣ , for θ ∈ (−π, π).

With

ap =
4

π(1− 4p2)
,

we obtain (√
K
)
m,n

= am−n − am+n.
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Aliasing

In the Hankel part

1

N + 1

N∑
k=1

f (λk) cos(pkπh)

of the exact f (K ) we observe the following aliasing effect

cos (pkπh) = cos(2kπ − pkπh)

= cos

(
(2N + 2− p)kπ

N + 1

)
= cos((2N + 2− p)kπh).

This implies a reflection across the main antidiagonal. The integral
is closer to a sum over the lower frequencies. Therefore choose the
Hankel part as a2N+2−m−n if (m + n) > N + 1.

Maximilian A. März Functions of Difference Matrices are Toeplitz plus Hankel



Introduction
Functions of K

The heat and the wave equation
Miscellaneous

References

Aliasing

In the Hankel part

1

N + 1

N∑
k=1

f (λk) cos(pkπh)

of the exact f (K ) we observe the following aliasing effect

cos (pkπh) = cos(2kπ − pkπh)

= cos

(
(2N + 2− p)kπ

N + 1

)
= cos((2N + 2− p)kπh).

This implies a reflection across the main antidiagonal. The integral
is closer to a sum over the lower frequencies. Therefore choose the
Hankel part as a2N+2−m−n if (m + n) > N + 1.

Maximilian A. März Functions of Difference Matrices are Toeplitz plus Hankel



Introduction
Functions of K

The heat and the wave equation
Miscellaneous

References

e−tK

The same steps lead to

(e−tK )m,n =
2

N + 1

N∑
k=1

e2t cos(θk )−2t sin(mθk) sin(nθk),

and for p = m − n and p = m + n the limits for N →∞ are

bp =
e−2t

π

∫ π

0
e2t cos(θ) cos(pθ)dθ

= e−2t Ip(2t),

where Ip is the modified Bessel function of the first kind.
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Remarks

I Note that the entries of
√
K decay with O(p−2). This

corresponds to the fact that the derivative of f (θ) =
∣∣sin

(
θ
2

)∣∣
has a discontinuity in 0, which means O(p−2) in the 2nd
Fourier coefficient [Wei02].

I Also, the convergence rate of the Riemann sum to the exact
integral is only N−2 because f is not analytic. In contrary, this
convergence is faster than exponential, if f is analytic [TW14].
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Remarks (cont)

For a two dimensional problem, discretize the Laplacian

−4 = −∂xx − ∂yy
(with homogeneous boundary conditions) via the Kronecker sum

K = K ⊕ K = (K ⊗ I ) + (I ⊗ K ).

The N2 Eigenvectors of K are given by ([Hor86])

vk ⊗ vl , for k , l = 1, . . . ,N

with corresponding Eigenvalues

λk,l = λk + λl .

Similar steps as above lead to
√
K. For e−K observe

e−K = e−(K⊕K) = e−K ⊗ e−K .
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The heat equation

Recall the semidiscrete approximation{
u′(t) =

(
− K

h2

)
u(t), for t > 0

u(0) = u0

with the solution given by

u(t) = e−Kt/h
2
u0.

As we just saw the centrosymmetric (aliasing!) e−Kt/h
2

is given by
the entries

bm−n − bm+n, for m + n ≤ N + 1

with
bp = e−2t/h2

Ip(2t/h2).
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Shifts

Without boundary conditions a shift in the initial condition u0

produces the same shift in u(t) in all times. ! Toeplitz.
b a
c b a

c b a
c b




0 0
1 0
0 1
0 0

 =


a 0
b a
c b
0 c



The Hankel produces a shift in the other directions.
a b

a b c
a b c
b c




0 0
1 0
0 1
0 0

 =


0 a
a b
b c
c 0


Why?
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Method of images and shifts

Recall that the function

Φ(t, x) =
1√
4πt

e−
x2

4t , for x ∈ R, t > 0

is a fundamental solution of the 1D Heat equation.

Suppose the initial condition is given by u(0, x) = δa(x) and
suppose we have only the left boundary with homogeneous
boundary conditions.
Take an additional image source −δ−a(x). By symmetry the
solution is then given by

u(t, x) = (Φ(t, ·)∗(δa−δ−a))(x) =
1√
4πt

(
e−(x−a)2/4t − e−(x+a)2/4t

)
.
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Methods of images and shifts (cont.)

u(t, x) =
1√
4πt

(
e−(x−a)2/4t − e−(x+a)2/4t

)
Let the source at x = a move to the right, then the second
exponential from the image source moves to the left.
! anti-shift-invariant, Hankel.

For two boundary points do basically the same, but both, the
source δa(x) and the image −δ−a(x), have to be balanced also at
x = 1 by −δ2−a(x) and δ2+a(x) . . . This leads to

u(0, x) =
∞∑

k=−∞
δ−2k+a(x)−

∞∑
k=−∞

δ2k−a(x), for x ∈ R.

Both boundary conditions are then satisfied by symmetry and

δa(x) moves to the right ⇒ δ2k−a(x) moves to the left .
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Methods of images and shifts (cont.)
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The wave equation

Wave equation with Dirichlet boundary conditions
∂ttu = ∂xxu, on (0,∞)× (0, 1)
u(t, 0) = 0 t ∈ [0,∞)
u(t, 1) = 0 t ∈ [0,∞)
u(0, x) = u0(x), x ∈ [0, 1]
∂tu(0, x) = v0(x), x ∈ [0, 1].

Semidiscrete Approximation

Obtain the initial value problem
u′′(t) =

(
− K

h2

)
u(t), for t > 0

u(0) = u0

u′(0) = v0.
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The wave equation (cont.)

Recall d’Alembert’s formula for the solution:

u(t, x) =
1

2
(u0(x + t) + u0(x − t)) +

1

2

∫ x+t

x−t
v0(s)ds,

and compare it with the solution to the semidiscrete approximation

u(t) = cos(
√
Kt/h)u0 + hK−1/2 sin(

√
Kt/h)v0

= cos(
√
Kt/h)u0 + t sinc(

√
Kt/h)v0.

cos(
√
Kt/h) and sinc(

√
Kt/h) are both Toeplitz plus Hankel and

the entries can be explicitly calculated via Bessel function values.
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The wave equation (cont.)
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Test for Toeplitz plus Hankel

Test

A matrix M ∈ CN×N is of the form Toeplitz plus Hankel iff it
satisfies the (N − 2)2 conditions

(4) Mi−1,j + Mi+1,j = Mi ,j−1 + Mi ,j+1, for 1 < i , j < N.

For a proof of this cross-sum relation, see [BBB95].
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The four corner theorem

Consider the same K for a second difference, but with different
corner entries (1, 1), (1,N), (N, 1), (N,N). This corresponds to
different boundary conditions:

K1,1 = 1,KN,N = 1 Neumann boundary
K1,N = −1,KN,1 = −1 Periodic boundary
K1,1 = 1,KN,N = 2 mixed Neumann-Dirichlet
K1,1 = 2,KN,N = 1 mixed Dirichlet-Nuemann

It turns out, that independently of the entries in the four corners,
every matrix function is of the form Toeplitz plus Hankel, as long
as K is symmetric.
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The four corner theorem (cont.)

The equation (4) is equivalent to

Mi−1,j −2Mi ,j +Mi+1,j = Mi ,j−1−2Mi ,j +Mi ,j+1, for 1 < i , j < N.

Consider now M = vvT for an Eigenvector v of K . Then this
becomes

(5) v(j)42v(i) = v(i)42v(j), for 1 < i , j < N.

Since v is an Eigenvector of the difference matrix, we know that
42v(i) = λv(i) for 1 < i < N. Equation (5) is passed, since it
becomes

v(j)λv(i) = v(i)λv(j), for 1 < i , j < N.

Every matrix function of K is Toeplitz plus Hankel.
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The four corner theorem (cont.)
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The four corner theorem (cont.)
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Resolvents

Recall the definition of a matrix function by Cartan:

Equivalent characterizations for Toeplitz plus Hankel

Let f be analytic inside a closed simple contour Γ enclosing σ(A).
Then

f (A) =
1

2πi

∫
Γ
f (z)(zI − A)−1dz ,

where the integral is taken entry-wise.

Furthermore, if the contour Γk encloses one simple Eigenvalue λk
we get the projection

Pk = vkv
T
k =

1

2πi

∫
Γk

(zI − A)−1dz .
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Equivalent conditions for Toeplitz plus Hankel (cont.)

This gives us the following three equivalent conditions for a matrix
function to be of the form Toeplitz plus Hankel:

I For all analytic functions f , the matrix function f (A) is
Toeplitz plus Hankel.

I The Resolvent R(z) = (zI − A)−1 is Toeplitz plus Hankel for
all z ∈ C \ σ(A).

I The projections onto all Eigenspaces of A are Toeplitz plus
Hankel.

For a explicit form of the Resolvent (zI − K )−1 via Bessel
functions and the Laplace transform, see [SM14].
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What to take home?

I Heat, wave equations in 1D and their semidiscrete
approximations.

I Solutions of the approximations via Matrix functions in K .

I Discrete sines and cosines as Eigenvectors of the difference
matrix K lead to the Toeplitz plus Hankel structure.

I Approximate the resulting sums via Riemann integrals and
(often) find explicit expressions.

I Method of image sources connects the Hankel structure with
boundary conditions.
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