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ABSTRACT 

Transformations of the form A + E’FAg2 are investigated that transform Toeplitz 
and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are 
matrices related to the discrete Fourier transformation or to various real trigonometric 
transformations. Combining these results with pivoting techniques, in paper II algo- 
rithms for Toeplitz and Toeplitz-plus-Hankel systems will be presented that are more 
stable than classical algorithms. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

Transformations of the form @ : A + ‘ZTA’Z2 mapping one class of 
matrices with displacement structure into another class with displacement 
structure appear in quite a number of papers in different contexts. A classical 
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example is the Frobenius-Fischer transformation (see [19, 161) transforming 
Hermitian Toeplitz into real Hankel matrices and so the trigonometric 
moment problem into the algebraic one. The general form of such transfor- 
mations is described in [16]. Another result concerning transformations of this 
kind is Fiedler’s theorem [8], which claims that if G?r and %‘s are any inverse 
Vandermonde matrices then Q, maps Hankel matrices into Lowner matrices. 
Recall that a tiwner matrix is a matrix of the form [(a, - bj)/(ci - dj)] (see 
[71). As a particular case of this theorem one obtains Lander’s result (see 
[16]), which claims that for a given Hankel matrix there exist inverse 
Vandermonde matrices such that the transformed matrix is block diagonal. 
This result is related to the one on Vandermode reduction of Bezoutians 
(see ill>. 

In this paper we study transformations mapping Toeplitz and Toeplitz- 
plus-Hankel matrices into generalized Cauchy matrices. Recall that a matrix 
C = [ aij] is said to be a generalized Cuuchy matrix if for certain n-tuples of 
complex numbers c = (ci); and d = (dj); the matrix 

V(C, d)C = [(ci - dj)uij]; 

has a rank r which is “small” compared with the order of C. The integer r 
will be called the Cuuchy rank of C (with respect to c and d). Cauchy 
matrices in the classical sense are matrices for which (ci - dj)uij = 1. Since 
we always consider generalized Cauchy matrices, we will omit this attribute. 
I_&ner matrices are matrices with Cauchy rank 2. We will also deal with 
matrices of Cauchy rank 4. In our paper two cases of Cauchy matrices will 
appear: (1) ci # dj for all i and j, and (2) c = d. 

There are quite a few theoretical motivations to study transformations 
between different classes of structured matrices, since the algebraic theory of 
one class can be transferred to the other class. But the main motivation for 
this paper was a more practical, numerical one. Let us explain this. The 
classical algorithms of Levinson and Schur types usually work well if the 
matrix is positive definite. However, if the matrix is indefinite they very often 
suffer from instability even if the matrix is well conditioned. The reason is 
that all these algorithms are based on recursions of the nested principal 
submatrices, which may be ill conditioned. 

The first proposal to overcome the problem of ill-conditioned principal 
sections is to apply a lookahead strategy, i.e. to jump from one well- 
conditioned section to the next one. This proposal was made first in [51 and 
[6] and further developed by many authors (see [131 and references therein). 
However, lookahead strategies have two disadvantages. First, there is the 
problem of step-size estimation. A “good” step-size estimator will slow down 
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the algorithm significantly. Secondly, even with a good step-size estimator the 
algorithm may not be fast, i.e. of complexity lower than O(n3>. As an example 
we consider a Toeplitz matrix 

T= ’ ’ +E [ 1 IO ’ 

where E is a Toeplitz matrix with a small norm and I denotes the identity 
matrix. The matrix T is well conditioned, but there is no fast lookahead 
Toeplitz algorithm for it. 

For general unstructured matrices, pivoting is the main tool to avoid 
instability. This cannot be applied to Toeplitz and related matrices, since 
permutations of columns or rows destroys the structure of the matrix. In 
contrast with Toeplitz-like matrices, Cauchy matrices do not have this disad- 
vantage: Permutations of rows and columns do no destroy their structure. On 
the other hand, for Cauchy matrices there exist fast algorithms for inversion 
and factorization with essentially the same complexity as the classical algo- 
rithms for Toeplitz and Hankel matrices. Concerning literature on this topic 
we refer to [16, 10, 11, 14, 20, 121. We will discuss this topic in more detail in 
the second paper of this pair. 

Thus, it remains to find suitable transformations from Toeplitz-like into 
Cauchy matrices. To our knowledge, it was first noticed in [14] that discrete 
Fourier transformations do this job in an efficient and stable way. In [15] it 
was remarked that the DFT is also convenient for transforming Toeplitz- 
plus-Hankel into Cauchy matrices. This idea was further developed in [12]. In 
the later paper also a mixed sine-I-cosine-III transformation was used to 
transform real Toeplitz-plus-Hankel matrices into Cauchy matrices. Some 
transformation results for symmetric Toeplitz matrices appear implicitly in 
papers on optimal preconditioners (see [26] and [17] for DFT and [la] for the 
sine-1 transformation). 

The present paper continues the investigation in this direction. Our main 
aim is to give a systematic account of transformations from Toeplitz and 
Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. Special at- 
tention is paid to transformations that preserve certain properties like symme- 
try and realness. 

In Section 2 we consider transformations of Toeplitz matrices by DFT 
into matrices with Cauchy rank 2, and in Section 3 transformations of 
Toeplitz-plus-Hankel matrices by DFT into matrices with Cauchy rank 4. 
Section 4 is dedicated to the transformation of real Toeplitz-plus-Hankel 
matrices into real Cauchy matrices. It turns out that many common real 
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trigonometric transformations, such as sine-I-IV, cosine-I-IV,’ the Hartley, 
and the real DFT, transform real Toeplitz-plus-Hankel matrices into matrices 
with Cauchy rank 4. No special advantage can be gained in the case of a 
nonsymmetric Toeplitz matrix. But in the case of a real symmetric Toeplitz 
matrix the sine-I, sine-II, cosine-I, and cosine-II transformations map them 
into the direct sum of two matrices of about half the size with Cauchy 
rank 2.2 

Since all transformations listed above are almost unitary, the condition of 
the matrix remains essentially unchanged. Furthermore, for all of these 
transformations fast and stable algorithms do exist (see [21, 23, 24, 25, 281). 

The method used in Section 2-4 is mainly straightforward computation. 
An alternative approach via displacement structure is presented in Section 5. 
The advantage of the displacement approach is that is can be generalized to 
Toeplitz-like matrices, i.e. to matrices T for which T - STTS has a small 
rank, where S denotes the operator of forward shift. For the classical Toeplitz 
and Toeplitz-plus-Hankel matrices, however, we found the direct approach 
simpler and more instructive. 

In paper II we will present algorithms for the solution of the Cauchy 
systems emerging from the transformation of Toeplitz and Toephtz-plus- 
Hankel systems. These will include the LU factorization of the corresponding 
Cauchy matrices and their inverses together with partial pivoting techniques. 

Let us finally note two other possible applications of the results concem- 
ing transformations from Toeplitz into Cauchy matrices. The first one con- 
cerns preconditioners for Toeplitz matrices (see also [27] and references 
therein). Let U be a unitary matrix such that for a Toeplitz matrix T, 
C = U-‘TU is a Cauchy matrix, Consider preconditioners of the form 
U’DU where D is diagonal. The optimal (in the Frobenius norm> diagonal 
preconditioner of C is the diagonal of C, and hence the optimal precondi- 
tioner for T is U-’ diag(C) U. If one takes the DFT for U, then one obtains 
in this way the T. Chan preconditioner. If U is the sine-1 transformation, then 
one obtains the preconditioners proposed in [2]. For the other trigonometric 
transformations new types of preconditioners are obtained. The importance 
of Cauchy matrices for iterative methods for Toephtz methods are recognized 
in [18]. 

The second application concerns representations of Toeplitz-like matrices 
with the help of trigonometric transformations. These representations are 
based on the representation of the corresponding Cauchy matrices. Related 
results were obtained using other methods, for example, in [91, [18], and [3]. 

’ The numbering of the sine and cosine transforms is not unique in the literature. We mainly 
follow the standard source [22]. 

‘After writing this paper we observed that this can be achieved also for the other 
transformations. 
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The representations give rise to fast matrix-vector multiplication algorithms 
which can be then used, for example, in iterative solvers. This will be 
discussed in more detail elsewhere. 

2. TRANSFORMATIONS OF TOEPLI’IZ MATRICES BY DFT 

In this section we show how Toeplitz matrices can be transformed into 
generalized Cauchv matrices with the help of complex DFT. In contrast with 
Lhe approach in [Id, 121, we do not maki 
structure but give direct proofs instead. 

For A E C, let Z(A) denote the column 
matrix of the forward shift operator, 

0 
1 

s= . 

i * 0 ’ 

I 

explicit use of their displacement 

Z(A) = [l A a** h”-‘lT and S the 

0 

1 0 I* 
We use the fact that matrices Sk and (SkjT (k = 0,. . . , n - 1) form a basis 
in the space of all n X n Toeplitz matrices. 

For two complex numbers A and /.L with Ap # 1 we have for k = 
0, 1, . . . , n - 1 

WTSkZ( P) = 
hn)Ln-k - h, 

Ap _ 1 > 
Z( A)TSkTZ( p) = A”;y_-lpk. (2.1) 

Moreover, 

Z( h)‘SkZ( A-‘) = hktn - k) and Z( A)rSkTZ( A-‘) = Awk(n - k). 

(2.2) 

Let now T = [u~_~]; be a Toephtz matrix. Then 

n-l n-l 

T = c’ akSk + c’ a_kSkT. 
k=O k=O 

(2.3) 

The prime on the sum sign is according to the following convention: 

ff ak := 2 + kcl ak. 

k=O 
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We introduce the functions 

n-l n-l 

u+(t) = C’ f+tk, a_(t) = c’ a_kt-k, u(t) = u_(t) + u+(t). 
k=O k=O 

Furthermore we fn two complex numbers 5 and 77 with I( I = 171 = 1. Let ci 
denote the nth roots of 5, and d4 the nth roots of n. From (2.1) we get for 
ci # dj 

where 

f(t) = &-k(t) -u+(t), f(t) = u_(t) - 

Furthermore, (2.2) leads to 

Z(Ci)TTZ(Ctyl) = WZ(Ci) - {U'+(Cj) - u’_(ci)}c~~ P-5) 

where the prime indicates the derivative. For a given n-tupk c = cc,>;, we 
denote by V(c) the Vandermonde matrix 

If c is the n-tuple of the nth roots of 5 ( in a certain unspecified order), then 
we set 

e3 = $ V(c). 
?I 

Note that F(l) is the DFT in the usual sense and 
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As an immediate consequence of (2.4) and (2.5) we obtain the following. 

THEOREM 1. Let 5,~ be two complex numbers with 151 = 1771 = 1, ck 
the nth roots of 5, and d, the nth roots of 77 (k = 1,. . . , n). Then for a 
Toeplitz matrix T = [a,_j]; the matrix C := 93 ,$)TF(T-‘)~ has Cauchy 
rank < 2. The entries cij of the matrix C are given by 

3 f('i) -ftdj) 

n ci-dj ’ 
ci # dj, 

cij = 

a(ci) - ${d+(c,) - o’_(ci)}ci, ci = dj. 

REMARK 2. For arbitrary Vandermonde matrices V(c) and V(d-‘I, 
where d-’ := (d;’ , . . . , d,‘), the matrix C = V(c)TV(d-‘)r has Cauchy 
rank < 4 with respect to c and d. This is also true for confluent Vander- 
monde matrices. 

REMARK 3. One gets a Cauchy matrix with Cauchy rank 2 if T is 
multiplied by the inverses of Vandermonde matrices. This was first observed 
by M. Fiedler [8]. Since this fact seems to be not relevant for the construction 
of fast stable algorithms, we do not discuss it in detail. 

We now consider some special cases. 

2.1. Nonsymmetric Standard Choice 
In [14l_it was proposed to choose 5 = 1 and 77 = -1. In this case we have 

f(t) = -f(t) = a(t). The entries of C =F(l)TY(-1)r are given by 

Cij = - 

2 a( wi) + a( cwj) 

’ n wi - UWj 

where oi are the nth unit roots and (T = exp(ri/n). Here and in the sequel 
i is the imaginary unit &i. 

2.2. Hermitian Toeplitz Matrices 
If the Toephtz matrix T is Hermitian, i.e. a_, = Zi, it is desirable to have 

also a Hermitian matrix after the transformation. Therefore, it is convenient 
to choose 5 = n = 1. In this case we have f(t) =flt> = a_(t) - a+(t). 
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Furthermore, since in the Hermitian case a+(t) = u_(t), we have f(t) = 
2i Im a+(t). The relation (2.5) goes over into 

Z(kJi)TTZ(Zi) = -2Re{tlfZ+(~i) + wi”‘+(wi)l’ 

We arrive at the following. 

THEOREM 4. Let T be a Hermitian Toeplitz matrix. Then C = 
FP(l)TF(l)* is a Hermitian matrix with Cuuchy rank ~2 (with respect to 
c = d = o> @en by C = [c,,];, 

1 
2 Imu+ -Imu+ 

- 
ni 1-w,Tjj ’ 

i #j, 

cij = 

-2Re u+(q) + i qu’+(q) , 
i 1 

i #j. 

The following fact concerning the matrix C is still more important for our 
construction of fast algorithms in paper II. 

COROLLARY 5.* Zf T is a Hermitian Toeplitz mutrix and D(w) = 
diag($F, then C = (ni/2)Y(l)TS(l)*D is a complex symmetric matrix 
satisfying 

D( 0)6 - 6D( w) = ZZG!?, 

where3 

Z=col[I Imu+(w,)]~, and K= _y i . 
[ I 

Hermitian Toeplitz matrices can be transformed even into real Cauchy 
matrices. For this we use a linear fractional transformation mapping the unit 
circle into the real line. We fix a complex number 3 with absolute value 1 

3 colt means the column vector with the components q. 
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different from the nth unit roots wk. We introduce numbers xj by 

l+Oj. 
X’=E_l= 

21m Zj[ 

(5- W,(" 

xj - i 
Clearly, the xj are real and oj = z 5. Hence 

J 

xi--i xj+i 
I - OiOj = I - - - 

ri+i xj-i 

= -2i(q + i)-‘(xi - xj)(xj - i)-l. 

This leads to the following. 

THEOREM 6. Let T be a Hermitian Toeplitz matrix and D f = 
diag((xj + i)-‘);,Then C = D+F(l)TF(l)*D_ is a real symmetric Cauchy 
matrix given by C = [ZiJl;, 

I 
1 ImU+ -Ima+(OJj) 

- 

n 
Eij = 

xi - xj 
i Zj, 

-2(x: + l)Re a+(q) + $ W,a’+(Wi) , 
( 1 

i= j. 

If we have a real symmetric Toeplitz matrix, then Theorem 6 describes a 
complex transformation into a real symmetric Cauchy matrix. In Section 4 we 
show that such matrices can be transformed into two real symmetric Cauchy 
matrices of about half the size with the help of real transformations. 

2.3. Symmetric Toeplitz Matrices 
We discuss now a transformation that transforms complex symmetric 

Toephtz matrices into symmetric Cauchy matrices. In Theorem 1 let ci be 
the roots of i and dj = cJ: ‘. Then the dj run over all nth roots of -i, and 
f(t) = --t> = a(t). If now T is symmetric, then we have act-‘> = act 1. 
Thus Theorem 1 goes over into the following. 
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THEOREM 7. Let T be a complex symmetric Toeplitz matrix. Then 
C = F(i>TF(i>T is a symmetric matrix with Cauchy rank Q 2 given by 
C = [CJ> 

cij = 
4Ci> + "("j) 

l_CiCj ’ 

where the ci are the nth roots of i. 

In order to get the matrix C in a form which is more convenient for the 
application of the algorithms described in paper II, we use the same linear 
fractional substitution as in the previous subsection. Here, however, it is 
possible to choose 5 = 1. That means we get 

1+ cj . 

x’ = 1-* I 

Then the xj are real and the entries of C can be represented in the form 

. a(ci) + "("j) 
cij = ( ‘i + I) 2i( xi + xj) 

(xj + i). 

Thus we get the following. 

COROLLARY 8. lf T is a complex symmetric Toeplitz matrix, D(X) = 
diag(xj>;, D, is as in Theorem 2.5, and c’ = 2i D+Y(i)TF(#‘D_, then 

D( x)d + 6D( x) = ZKZT, 

where 

Z=col[l a(cl K= y A. [ 1 
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3. TRANSFORMATION OF COMPLEX TOEPLIT’Z-PLUS-HANKEL 
MATRICES BY DFT 

In this section we show that complex Toeplitz-plus-Hankel matrices can 
be transformed into matrices with Cauchy rank < 4 with the help of DFT. 
Suppose that A = eib and p = ei@ (4, $ E R). Then 

A-i/+( A - j_q( hp - 1) = 2(cos 4 - cos r/Q. 

We apply this relation for A = c k = exp &i and p = dj = exp eji, where ck 
are the nth roots of 5 and dj the nth roots of 7, 151 = 171 = 1. Then we 
obtain from (2.4) for a Toeplitz matrix T defined by (2.3) 

2cidj(coS 4i - cos *)Z(ci)‘TZ(d,) = (ci - d,)(g(ci) - g(dl”))T (3.1) 

where 

g(t) = &P-(t) - a+(% g(t) = a-(t) - Sw+(q, 

and a_(t) and u+(t) are defined as in Section 2. 
We consider now Hankel matrices 

n-l 

H = [b,+j]o”-l = c’ (b,_,_klSk + b,_l+kskJ), 
k=O 

(3.2) 

where J denotes the counteridentity, 

I= 

Then 

1 

1 

1 
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n-1 

h(t) = C’ (bn_l-kt”-k - qb,_l+ktk), 
k=O 

h(t) = C’ (b,_l_ktn-k - Sbn-l+ktk). 
k=O 

Hence 

2CiU!j(COS ~~ - COS +j)Z(ci)THz(dj) = (cidj - l)(g(ci) - h(dj))* (3'3) 

For a Toeplitz-plus-Hankel matrix A = T + H we have now 

2cidj(c0S +i - COS $)l(Ci)'Al('j) 

= {Ci&) - h(Ci)} - {Z(Ci) - c,~(c*)}d, 

- Ci(g(rl,-l) + (tih((ti)) + (djg(dj’l) + h(dj))’ 

Thus we have proved the following. 

THEOREM 9. Let 5, q be two given complex numbers with I( 1 = 1~1 = 1; 
ci, dj the nth roots of 5 and q, respectively; and cos 4, = Re ci, cos I+!+ = 
Re di. Then for a Toeplitz-plus-Hankel matrix A = T + H, the matrix C := 
F(,$>As(qlT has Cauchy rank Q 4 with respect to (cos A); and (cos @‘. 
Zf 5 # q and ,$q # 1, then cos & # cos lcrj and the entries cij of C are given 

bY 

c,, = c(ci) - @(ci)dj - ciq(dj) •t PCdj) 
‘I 2nc,(coS 4i - cos Icl,)dj ’ 

where 

F(t) = tg(t) - h(t), q(t) = g(t) - t&t), 

p(t) = tg(t-‘> + h(t), q(t) = g(t-‘) + th(t). 
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REMARK 10. 

1. The entries of C can also be described in the cases 5 = 7) and 
&I = 1 using the relations 

n-l 

z(ci)%z(ci) = 6 C’ (n - k)(bn_l_kC:-k-l + bn_l+kC:+k-l) 
k=O 

and (2.5). 
2. For a simple implementation it is desirable to have also cos +i z 

cos 4 for i jt j. This can be guaranteed if 5 and 7 are chosen normal. One 
possibility is 5 = -77 = (l/ fix1 + i). 

3. In the case of a Hermitian Toeplitz-plus-Hankel matrix the trans- 
formed matrix will be Hermitian again if 5 = 5. We suggest choosing 
6 = -77 = i (rather than 5 = 71 = 1). With this choice we have cos I$~ = 
cos I/+ and cos A # cos 4 for i #j. 

4. REAL TRIGONOMETRIC TRANSFORMATIONS 

The disadvantages of the transformation with the help of DFT is that 
complex arithmetic is required even if the matrices are real. In this section 
we discuss some real trigonometric transformations. These transformations, 
however, transform Toeplitz matrices into matrices with Cauchy rank < 4 
rather than 2. This value can also be achieved for Toeplitz-plus-Ha&e1 
matrices. Therefore in this section we derive transformation formulas first for 
Toeplitz-plus-Hankel matrices. Later in the section we show that these 
formulas can be much simplified in the case of real symmetric Toeplitz 
matrices. 

4.1. Transform&ion with Chebyshev-Vandermond Matrices 
As the DFT is a special Vandermonde matrix, the real trigonometric 

transformations are special Chebyshev-Vandermonde matrices, up to diagonal 
factors. 

Polynomials u,(h) (k = 0, 1, . . . > satisfying the recursion 

Uk+l(h) = 2huk(h) - Uk-l(h) (k = 1,2,...) (4-l) 



206 GEORG HEINIG AND ADAM BOJANCZYK 

will be called polynomials of Chebyshev type. The Chebyshev polynomials of 
the first kind T,(A), 

T,(cos 8) = cos k6, 

have this property and satisfy the initial conditions u0 = 1, U,(A) = A, and 
the Chebyshev polynomials of the second kind U,(A), 

Uk(COS e) = 
sin(k + 1)0 

sin 8 ’ 

also satisfy this recursion with the initial conditions u0 = 1, u,(h) = 2A. If 
u,(A) and u,(A) are fixed, then (4.1) defines u,(A) also for negative k. In 
particular, U _ r = 0 and T_,(A) = A. 

For two sequences of polynomials uk( A> and ii,(A) satisijkg (4.0, we 
introduce the vectors u(A) = (U,(A)):-’ and c(A) = (i;,(A)),“- ‘. The fol- 
lowing lemma is crucial for the further investigation. 

LEMMA 11. If S denotes the mutrix of the forward shij?, then 

2( A - +( A)%( p) = c 
6”U”_k_l - t&U_1 + 2ik_1UlJ - U,_1U”_k, 

2(A - /.+?(A)*S%( FL) = ti,_ku,-l - $,u~_~ + 2i_,uk -&-k-&r 

2( A - /.+( A)‘/S%( /.L) = 2i,_k~,, - &,u,_~ 

_ 
+ U_rU,_r-k - u,-1_I;u_1, 

2(A - /+(A)rSkJu( CL) = G,uk -t&u, + 2ik-1~,_1 - cn_luk-l. 

Proof. We have 

n-k-l 

b( A)TSk~( P) = C ci+k( A)ui( PI* 
i=O 

According to the recursion (4.1) we get 

2( A - p)ii( A)rSku( CL) 

n-k-l 

Telescoping the latter sums, we obtain the first equality. Analogously, the 
other relations are verified. m 
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A matrix of the form 

(4.2) 

where r = (xi>; E R”, is called a Chebyshev-Vandermonde matrix. The 
following is an immediate consequence of Lemma 11. 

PROPOSITION 12. If g(Z) and g(x) are Chebyshev-Vandmmond mu- 
t&es, then for any Toeplitz-plus-Hankel mutt-ix A the matrix ‘&(~‘)A%(x)~ 
has Cauchy rank < 8. 

We are looking now for special choices of .uj(h) and xi for which the 
transformed matrix has Cauchy rank Q 4. There are many possibilities. We 
restrict ourselves to those which lead to the classical sine and cosine transfor- 
mations, because for them fast and stable algorithms are well known and 
furthermore they have some additional symmetry properties that simplify the 
computation. In particular we will get matrices with a 2 X 2 block structure 
[Cij]f such that the Cij have Cauchy rank < 2. In the case of a symmetric 
Toeplitz matrix we even have C,, = C,, = 0. 

4.2. Sine-l Transform&ion 
Let us deal first with the case of Chebyshev polynomials of the second 

kind, C(A) = u(A) = U(A) = (U,(h)):- ‘. We introduce 

in i7r 
xi := cos - 

n+l 
and yi := sin - 

n+l 
(i = l,...,n). 

The xi (i = 1,. . . , n) are just the roots of the polynomial U,(A). Furthermore 
we denote 

. . . . 
s.. := sin 

‘I 2 = yig_i( xi), cij := sin 5 = Tj(Xi)* 

The matrix Y/(X) is related to the sine-1 transform, which is the matrix-vector 
multiplication, by 
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From Lemma 11 we get 

which implies U(xi)rU(rj) = 0 for i z j, and 2U(x,)rU(x,) = 
U,‘(x,)U,_,(x,). Taking into account that U,_,(xi) = C-l)‘+’ and 

y;u;(x,) = (-l)‘+‘(n + l), 

we obtain the well-known fact that 9,’ = (Ynz)-‘. 
It is important to observe the symmetry relations 

Sik = (-l)‘+Lk+l> Cik = ( -l)iCi,“_k+l. 

In particular, sin = yiU, _ ,(xi) = ( -lY+ ’ yi. Using these relations, we obtain 
from Lemma 11 

2(Xi -*j)y,yjU(*i)rS’U(xj) =Sikyj - (-l)i+jyisjk, 

2( xi - xj) y* yjU( X*)TSkTU( rj) = ( -l)*+jsik Yj - YiSjk 9 

(4.3) 

2( xi - Xj) yi YjU( ‘JTJSW( Xj) = ( -q’+& yj - ( -l)j+iyisjt, 

2(Xi -xj)yiyjU(x,)TSkJU(Xj) = (-l)j+‘sfkyj - ( 4)i+1Yisj~* 

From the relations (4.3) we may conclude how Toeplitz-plus-Hankel matrices 
are transformed by the sine transform except for the main diagonal. In order 
to evaluate the main diagonal we differentiate the first relation in Lemma 11 
with respect to /A and obtain 

2u( “$-SkU( *j) = u,,-,( xj)u;_,( x,). 

Since 

4x4 = &Au”(“) - (k + l)Tk+l(A)), 

we conclude 

y;u;-,( x,) = ( -l)i+ltjk, 
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where 
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1 
ti, := - 

Y, 
XiS{k + (?I - k + I)+. 

Hence 

2y&u( X,)TSkU( xi) = ti,. (4.4 

We get the same expression for 2yFU(xi)rSkTU(x,). 
Differentiating the third relation in Lemma 11 with respect to A, we 

obtain 

2y,%( XI)~~S~U( ri) = y;U,l_k( xi) = ( -l)i+lt&. (4.5) 

Due to symmetry or skew symmetry of the vectors U(x,), we get the same 
expression for 2 y~U(xi>TSkJU(xi). 

We consider a Toeplitz-plus-Hankel matrix A = [ aj_j + b,+j],“- ‘. This 
matrix can be represented in the form 

m-l 

A = c’ ($Sk + a_kSkT + b,_,_k]Sk + b,_l+kSk]). (4.6) 
k=O 

We introduce the numbers 

ji' = -$j- E: qka+k, g?= -& t’ %kbn-lfk7 (4’7) 
k-0 

hi = -& F; t,k(ak + a-k), 

(4.8) 

li = -& ?’ tik(b,,-1-k + bn-l+k)l 
k-0 

and fi = f,? + fi-, gi = g+ + g;. We arrive at the following. 

THEOREM 13. L_.et A be given by (4.6). Then the m&-ix PiA9: = [y,l; 
has Catchy rank Q 4 with respect to (x,); and the entries are given by 

a;j)yj - yi p;*) 
i #j, 

Yij = xi - Xf 

hi + ( -l)‘+‘li, i =j, 



.b= d cI+dz 
Y 

<b+d ‘ 
I-bzx _ I-dzX bd 

= Ppo3 

T-bz 
5 

I-dzh _ r-bzhr-dzJ 

‘b= d ,dz 
Y 

bd3 
<b#d ‘ 

bzx - dzx = “%%a 
bzldzlj _ bzhdzl 

(6’P) 
(,(4s) + 4S}4V yz = y%] = J, 

1-u 

‘~~I+?(~-)+~~I+r(~-)+~+ct/r,?(T-) = ~i’d 

xm~vloa wav am 31~13~ mom OTZ 
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4.3. Cosirn?-Z Transformution 
We assume now that in Lemma 11 ii,(A) = u,(h) = T,(h). We introduce 

the vector polynomials 

T(A) = (T,(A)),“-’ and i;(h) = (~T,(h));-l, 

where 

Ek = 
+, k=O,n-1 

1, k = l,...,n 1 2. 

We consider these vector polynomials at the points 

j= xj := cos - 
n-1 

(i = O,...,n - 1). 

Furthermore we introduce 

yj := sin JL 
n- 1 

and 

. . 

2 = TJXj), 
ijr 

cij := cos sij = sin - = YjV,_l(Xj). 

n-l 

Let us point out that the quantities xi, yi, cij, and sij are different to those in 
the previous subsection. 

The vectors T(xj) are related to the cosine-I transformation, which is the 
matrix-vector multiplication, by 

In contrast with the sine-1 transformation, ‘8: is not symmetric and not 
unitary. But, as for the sine-1 transform, the relation (gJ)-’ = %‘,! holds. 
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We have the fohowing symmetry relations for the c,k and s,k: 

Cfk = (++l-k, Sik = (-l)‘+‘s,,,_l_k. 

In particular, 

Tn_l( xi) = Ci,n-l = ( -l)i, T”(Xi) = Gin = (-#xi. 

In order to study the action of the cosine-I transformation on Toeplitz and 
Toeplitz-plus-Hankel matrices, we study their action on the powers of the 
shift Sk. We have to distinguish the cases (a) k z 0, n - 1, (b) k = n - 1, 
and (c) k = 0. 

Case (a): k Z 0, n - 1. Applying Lemma 11 we get, 

= T,,(%-k-1( CL) - T&+%-i(A) - T,-,(A)T,-,( P). (4.10) 

This implies 

2( A - ~)T( A)‘SkT’( /L) 

= T,(A)T,-,-,( CL) - AT,(A) + Tk-l(A) - Tn-,(A)Tn-k( w) (4.11) 

for k = 1,. . , , n - 2. 
From (4.11) we obtain now 

In view of 

we conclude 

2( xi - x , ) f (  # s k T ’ (  x j )  =  Y i S i k  -  (  - l ) i + j y j s j k  (4.12) 

for k = 1, . . . . n - 2. 
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Analogously, for k # 0, n - 1, 

2(X, - rj)i;( r,)TSkTi;( rj) = ( -l)r+f t,,sik - yjsjk, 

2( xi - xj)f( x,)‘JskT’( xj) = ( -1)‘yfSik - ( -1)’ yjsjk, 

2( xi - xj)i( *i)‘sk]+( rj) = (-l)jy& - (+,jsjk. 

213 

ln order to compute the diagonal of the cosine transformed matrices, we 
differentiate (4.11) with respect to p and obtain 

2f( xi)‘skf( xi) = -T,_l( xi)T”_k-l( xi) - T”( xi)Ti-k-l( xi) 

+ Tn- 1( xi)TA-k( xi> (4.13) 

for k = I,..., n - 1. Since T/(h) = kUk _ ,(A), we conclude, as long as 
yi + O, 

2f( xi)TSkf( xi) = -cik + (n - k - l)xi ‘i’“iik-l - (n - k)?. 
t 

tik := 2f( xi)‘skf( xi) = (n - k - l)cik - 7. 
I 

For i = 0 or i = n - 1 we have yi = 0. In this case tik can be calculated 
directly from (4.13), giving 

f( Xi)‘SkT’( Xi) = 
2(n -k - 1) for i = 0, 

( -l)k(n - k - 1) for i = n - 1. 

Furthermore, 

?( rJVri;( q) = ( -l)‘i;( Xi)‘JSkf( Xi) 

= (-l)‘i;( r,)‘S’ji’( xi) = t&. 
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Case (b): k = n - 1. In this case we obtain via direct calculation the 
relations 

f( xJ’sn-‘~( Xj) = ( -1)‘/4, i;( xJV(n-i)Q Xj) = ( -1)94, 

i;( xJ’s+( Xj) = f, f( xi)rJs”-‘Q Xj) = ( +“+j/4/. 

Case (cl: k = 0. For this case we use the fact that (P,‘)” = Z,. From this 
we obtain for i # 0, n - 1 

?( xJ’f( Xj) = G aij - +{l + (-l)‘+j}. (4.14) 

Furthermore, 

2n - 3 
f( xO)‘i;( x0) = i;( X”_i)‘i;( X,-i) = 2 

and 

The last relation shows that (4.142 is valid for all i # j. 
In order to calculate T(x~)~JT(x~) one has only to multiply the previous 

expressions by ( -1)j. 
Now we have a complete collection of transformation formulas and a 

theorem can be formulated which is completely analogous to Theorem 3.1. 
As a consequence we obtain the following. 

COROLLARY 16. Zf A is a Toeplitz-plus-Hankel matrix, then the matrix 
II’g,‘A(%n’jTII has a 2 X 2 block structure [C,]; such that the Cij have 
Cauchy rank < 2. Zf A is a symmetric Toeplitz matrix, then moreover 
C,, = C,, = 0, i.e., the transformed matrix is the direct sum of two matrices 
with Cauchy rank < 2. 

4.4. Cosine-III and Sine-ZZZ Transformations 
We study now the transformation of Toeplitz-plus-Hankel matrices with 

the cosine-III transformation. Due to the weaker symmetry properties of this 
transformation, we will not get an essential simplification for the case of a 
symmetric Toeplitz matrix. 



UZ up = (&x)!& = I!, ‘ uz 
&(I + CZ)! JQI + Cz)t 

so3 = (‘X)!J = &I 

UZ 

&(I + cz> 
up = 4i 

‘(I - u ‘ * * * ‘0 = j-) UZ so3 = lx 
&(I + i-z) 

sapou 12aqsXqayD aql P (y)J .wp!suoa pm ” 

‘I _%<Y )W) = 1 _,“(y )& 

STZ I ‘SWlbINH331 NOI.LVbI~OdSNVW. 
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This follows from the equality 

which is a consequence of (4.10). From (4.10) we obtain also the equalities 

2( h - /.@( A)??( /L) 

= T,(V,-,-,( CL) + L(A) - AT,(A) - T,-,(A)L,( CL) (4.15) 

for k = l,..., n - 1, and 

2(A - ~)f(A>‘f( CL) = Tn(A)L( cc) - L,(Wn( 1-4 - +(A - CL). 

(4.16) 

We have the symmetry relation 

Ci& = ( -l)isi,,_k. 

In particular, ci, n _ i = (-1)‘~~. With these relations and ci k_l = xicik + 
yisik we conclude from (4.15) 

2( xi - Xj)f( Xi)‘Sk9( Xj) = y&k - ( -l)‘+jsjk) (4.17) 

for k = l,..., n - 1, and 

2Tl(x,)Tf(xj) = -f. (4.18) 

AnaIogously we obtain the following relations, using the equality si, k + 1 = 
XiSik + Yicik: 

2( xi - x#( Xi)rSkrf( Xj) = (( -l)‘+& - SjL) yj, (4.19) 

2( xi - *#( Xi)‘JSkrf’( Xj) = ( -l)lyic,k - ( _l)‘YjCjk, (4.20) 

2(ri - rj)i( ~i)rS~Jf(rj) = (-l)‘Ci,k-lYj - (-l)‘YiCj,k-~* (4.21) 

The relations (4.19) and (4.21) hold for k = 1,. . . , n - 1, whereas (4.20) 
holds for k = 0,. . . , n - 1. 
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Differentiating (4.15) with respect to CL and putting A = /-L = Xi we 
obtain 

2T^( Xi)‘Pf( Xi) = 2?( xi)TSkr?( Xi) = (n - k)Cik. 

Furthermore, after some elementary calculations one gets 

2~(Xi)‘JS~~(Xi) = (-I)$ - k)si,k_l - z - S&) 
t 

2~(Xi)‘SkJ?(Xi) = (-I)‘(? + (k - I)s+J. 
I 

(4.22) 

(4.23) 

(4.24) 

Now with the help of (4.17)-(4.24) one can show how Toeplitz-plus-Hankel 
matrices transform with the cosine-III transformation. In particular, we 
obtain the following. 

COROLLARY 17. If A is a Toephtz-plus-Hankel matrix, then the matrix 
nT’Z’~l’A(%‘~l’)Tfl has a 2 X 2 block structure [Cij]f such that the Cij have 
Cauchy rank ,< 2. 

Note that similar formulas hold for the sine-III transformation which is 
defined by 

2 
$7111 = $I - ‘jsin 

j(2i - 1)7f ” 

n 2n 1 . i,j=l 
4.5. Cosine-11 and Sine-11 Transformutions 
We show now that also the cosine-II and sine-II transformations are also 

suitable for the transformation of Toeplitz and Toeplitz-plus-Hankel matrices 
into Cauchy matrices. Because of their symmetry properties they are conve- 
nient for symmetric Toephtz matrices. For this we consider the polynomials 
V,(h) of Chebyshev type defined by 

vk*( A) := U,(A) - {*u,_,(A)}. (4.25) 
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Then V_f,(A) = fl, V,,(h) = 1. Furth ermore, it is easily checked that 

2k + 1 2k + 1 
co.9 - sin - 8 

Vk+(cos e) 2 = e and V;(cos 0) 2 = 8 . 
cos - sin - 

2 2 

We define 

ilr 
c!ji := cos g, 

i7r 
xi := cos -, & := sin - 

n 2n 

and 

i(2k + 1)~ i(2k + 1)~ 
Cik := cos 

2n 
= &v,‘( xi), sik ‘= sin 2n = &V,-( Xi). 

In particular, ci, _ 1 = cio = tji and si, _ 1 = -sio = -&. We have the follow- 
ing symmetry relations: 

ci,,-k_l = (-l)icik, Si,n_k_l = (-l)‘+%ik. 

From Lemma 11 we obtain now the following relations for V(A) = 
(V,(A)),“- ‘: 

= ( -l)i(c,,k-l - ‘t,k)$i - (-‘)‘6(cj,k-, - Cj,k), 
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and 

2( Xi - Xj)liS,v-( Xi)‘skv-(Xj) 

= (Si.k_l + Sik)q - ( -l)i+j&(sj,k-l + 'jk)t 

2( Xi - Xj)~i~iV-( Xi)TSkTV-( xj) 

= ( -l)i+j(si,k_l + sik)q - li(‘j,k-l + ‘j/c)> 

2( xi - xj)&v-( Xi)TJSkV-( Xj) 

= ( -l)i(siTk-lsik)lj - ( -l)j!Zi(sj,k-l + sjk)> 

= ( 4)i(si,k_l + Sik)Si - (-l)it(sj,k-l + 'j&l* 

This leads to the following. 

COROLLARY 18. Zf A is a Toeplitz-plus-Hankel matrix, then the matrices 
IITF~lA(%‘~l)TI’I and flrY~lA(S”)Tf’I have a 2 X 2 block structure [Cij]f 
such that the Cij have Cauchy rank < 2. Zf A is a symmetric Toeplitz matrix, 
then 1Tu)reover Cl2 = C,, = 0, i.e., the transformed matrix is the direct sum 
of two matrices with Cauchy rank < 2. 

4.6. Mixed Transformations 
Of course, it is possible to combine different transformations. We show 

this for the combination of the sine-1 and cosine-I transformation. The 
advantage of this combination is that a symmetric Toephtz matrix will be 
transformed into the direct sum of two matrices with Cauchy rank 2. 
However these two matrices are clearly not symmetric. A potential advantage 
of this kind of transformation is that in the case of even order the nodes of 
the corresponding Cauchy matrices are painvise different. This leads to 
simpler recursions in Cauchy solvers discussed in paper II. 
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Let Y$ A) be defined as in Section 4.3, and U(A) as in 4.2. According to 
Lemma 11 and (4.11) we have 

= W)T,-,-,(P) - W(A) + u,-,(A) - V-,(W,-,(CL). (4.26) 

Let xi, yi, cij, sij (i,j = 1,. . .) n> be defined as in Section 4.2, and let 

ijT 
Cij = cos - 

n- 1’ 
x; = Cij (i,j = 0 ,..., n - 1). 

Then we get from (4.26) 

2( xi - x;.)U( q)‘SV( x;> = -xiSi,k+i + Si& + (-l)‘+jc;,+i. 

Taking into account that sik = xi+, k+ i - yici, k+l, we conclude that 

2( xi - x;)U( x~)~S”T(X;) = -c~,~+~ + (-l)‘+j+_i (4.27) 

for i = 1,. . . , n and j = 0,. . . , n - 1. 
Analogously, 

2( xi - $)U( xi)TSq x;.) = -( -l)‘+&+i + C&i, (4.28) 

2( xi - $)U( q)‘JSY( x;) = ( -l)iCi,k+l - (-l)&;,,+ (4.29) 

2( xi - r;)u( ri)‘Sk/?( r;) = -( -l)jCi,k+i f (-l)‘$_i (4.30) 

for i = 1,. . . , n and j = 0,. , . , n - 1. 
Let us assume that the order n is even. Then x, z xj for all i and j. For 

a given Toeplitz-plus-Hankel matrix A defined by (4.61, we introduce the 
numbers 

From (4.27)-(4.30) we get the following. 
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THEOREM 19. Let A be given by (4.6). Then the matrix 9iASy = [‘)‘,I; 
ha.s Cauchy rank Q 4, and the entries are given by 

where 

,y = -p( -Qi”jy+( -1)‘g;-( -l)jg’, 

p;*) = -( -l)i+jf;+-f;-+(-l)jg;--( -l)ig;+. 

THEOREM 20. L.et T be given by (2.3). Then 

where C,,, = [ceve”lpl and Codd = [ctqd]r2, with ml = [(n + 1)/g], m2 = 
[n/2], are given !lq y 

i 

fipY2q - Y2pf2q p f 4 
even = 

%q x2P - x2q 

h 2P’ P = 49 

odd = 

fip-1Y2q-l - Yzp-lf2q-1, p z q 

cPq 
x2p- 1 - xzq-1 

h 2p+l’ P =9* 

4.7. Real Modi;fication.s of DFT and the Hartley Transformation 
There are some real modifications of the complex DFT which can also be 

used to transform Toeplitz-plus-Hankel into Cauchy matrices. Among them is 
the Hartley transformations. 

Let ci (i = 1, . . . . n) denote the nth roots of 1 or -1 ordered in such a 
way that c2k = .&. _ 1 [0 < k < (n - 1)/2], and let q E C be given such 
that a2k~2k_1 is nonreal for all k. We introduce vectors ui = (zL~~)~‘=Y~ by 
u?f = qcj + Zic{ and the matrix 9,, by 

gn = [“i.j-ll~’ 
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The matrix 9” is obtained from the DFT 9$1) or <,( -1) after multiplica- 
tion from the left by a permutation matrix and a block diagonal matrix with 
blocks 

ai %+1 

[ I zi cYi+l * 

Clearly &?,, is nonsingular if ffsk ffZk_ 1 is nonreal. 
We consider two special cases. First we choose ffZk _ i = !j and (YZk = i/2. 

Then we obtain the real DFTY R n with entries cos(:!ij?r/n) and sin(2i@/n). 
Secondly, we choose (Y = (1 - i)/2. In this case we obtain a row permu- 

tation of the discrete Hartley transformation, which is, by definition, the 
matrix-vector multiplication by 

&“, = 
[ 

zij?r 2ijlr n 
cos - + sin - 

n I n 1’ 

As can be checked, both the real DFT and the Hartley transformation 
transform Toeplitz-plus-Hankel matrices into matrices with Cauchy rank 
< 4. Due to the lack of symmetry properties, these transformations do not 
appear to offer any advantage for transforming symmetric Toeplitz matrices. 
Therefore we refrain from presenting the explicit formulas. 

4.8. More Transform&ions 
There are more Chebyshev Vandermonde transformations transforming 

Toeplitz-plus-Hankel matrices into matrices with Cauchy rank < 4 which we 
did not include in this paper. However most of them do not have the nice 
symmetry properties of the sine-1 and cosine-I transformations. 

For example, the cosine-IV and sine-IV transformations 

@‘” = 
(2i + l)(Zj + 1)T n-1 

” 4n I 0 

and 

91” 

2 U - sin 
(2i + 1)(2j + 1)7r n-1 

= 
n n 4n 1 0 

have similar properties to the cosine-III and sine-111 transformations. To get 
the corresponding formulas one has to take, as in Section 4.5, the polynomials 
V,*(h) = U,(h) - {&U,_,(A)) and to consider them at the points xi = 
((2i + %)/2n. 
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Furthermore, one can consider the vectors U(h) at the roots of U,,(h) - 77 
for q = fl, which are cos(2i?r/n) and cos((2j + l>v/n + 2) for q = 1, and 
cos{2im/(n + 2)) and cos((2i - l)lr/n} for 77 = -1. For general Toeplitz- 
plus-Hankel matrices it is recommended to combine the cases 77 = 1 and 
71 = -1. Similarly one can consider the vector U(h) at the roots of U,(h) & 
U,_ r(A). In all cases one gets transformations transforming Toeplitz-plus- 
Hankel matrices into Cauchy rank < 4. 

5. DISPLACEMENT APPROACH 

We discuss now a different approach to obtaining the transformation 
results in the previous sections. This approach is based on a quite general but 
very simple idea. This idea was used in [14] and also in [ 121. The approach 
utilizes the concept of displacement structure. 

Let U, V be two fLved matrices. The W displacement rank of a matrix A 
is by definition the rank r of V(A) := AU - VA. If r is small compared with 
the order of A, then A is said to possess a W displacement structure. 
Assume that U and V admit diagonalizations 

U = Q$(c)Q;‘, V = Q$(d)Q;l> 

D(c) = diag(cj);, D(d) = diag(dj);. Then the following is obvious. 

PROPOSITION 21. lf A has W displacement rank r, then C = Q;‘AQ, 
has Cauchy rank r. 

We present now a survey of the displacement operators corresponding to 
the transformations discussed in Sections 2-4. In Section 2 we considered the 
complex DFT transformation Fn,( 5 ). The displacement operator correspond- 
ing to this transformation is the &cyclic shift operator 

for which 

where c is the n-tuple of the nth roots of 5, and 5 is chosen in one of the 
several ways described in Section 2. 
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In Sections 3 and 4 we considered real trigonometric transformations. 
The displacement operator U for these transformations has the eigenvectors 
which are the columns of the transpose of the matrix of trigonometric 
transformations. The corresponding displacement operators are listed below. 

All rows with the possible exception of the first and last two are of the 
form [o **+ 0 1 0 1 0 *** 01. The entries with differ from the displace- 
ment operator for the sine-1 transformation are written in boldface: 

sin-1 
0 1 
1 0 1 

1 

sin-11 
-1 1 

1 0 1 

i 

sin-III 
0 1 
1 0 1 

2 

sin-IV 
-1 1 

1 0 1 

i 

0 
1 

0 
1 

0 
1 

1 
i I 

1 
0 

1 
-1 

1 
0 I 

1 
1 1 

1 1 
1 0 I --* 

0 1 
2 0 

cos-II 

1 

cos-III 

1 

1 

cos-IV 

1 

Hartley and Real DFT 

1 

1 0 1 
1 1 

0 1 
1 0 I 
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In the last case the transformation is not uniquely determined by the 
displacement operator U, since U has double eigenvalues. 
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