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Abstract

The generalized Stirling numbers Ss;h(n, k) introduced recently by the authors are
shown to be a special case of the three parameter family of generalized Stirling numbers
S(n, k;α, β, r) considered by Hsu and Shiue. From this relation, several properties of
Ss;h(n, k) and the associated Bell numbers Bs;h(n) and Bell polynomials Bs;h|n(x) are
derived. The particular case s = 2 and h = −1 corresponding to the meromorphic
Weyl algebra is treated explicitly and its connection to Bessel numbers and Bessel
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polynomials is shown. The dual case s = −1 and h = 1 is connected to Hermite
polynomials. For the general case, a close connection to the Touchard polynomials of
higher order recently introduced by Dattoli et al. is established, and Touchard polyno-
mials of negative order are introduced and studied. Finally, a q-analogue Ss;h(n, k|q)
is introduced and first properties are established, e.g., the recursion relation and an
explicit expression. It is shown that the q-deformed numbers Ss;h(n, k|q) are special
cases of the type-II p, q-analogue of generalized Stirling numbers introduced by Rem-
mel and Wachs, providing the analogue to the undeformed case (q = 1). Furthermore,
several special cases are discussed explicitly, in particular, the case s = 2 and h = −1
corresponding to the q-meromorphic Weyl algebra considered by Diaz and Pariguan.

1 Introduction

The Stirling numbers (of the first and second kind) are certainly among the most important
combinatorial numbers as can be seen from their occurrence in many varied contexts, see,
e.g., [16, 64, 66, 75] and the references given therein. One of these interpretations is in
terms of normal ordering special words in the Weyl algebra generated by the variables U, V
satisfying

UV − V U = 1, (1)

where on the right-hand side the identity is denoted by 1. A concrete representation for (1)
is given by the operators

U 7→ D ≡ d

dx
, V 7→ X

acting on a suitable space of functions (where (X · f)(x) = xf(x)). In the mathematical
literature, the simplification (i.e., normal ordering) of words in D,X can be traced back to
at least Scherk [59] (see [3] for a nice discussion of this and several other topics related to
normal ordering words inD,X) and many similar formulas have appeared, e.g., in connection
with operator calculus [16, 56, 57, 58]. Already Scherk derived that the Stirling numbers of
second kind S(n, k) (A008277 in [64]) appear in the normal ordering of (XD)n, or, in the
variables used here,

(V U)n =
n
∑

k=1

S(n, k)V kUk. (2)

This relation has been rediscovered countless times. In the physical literature, this con-
nection was rediscovered by Katriel [35] in connection with normal ordering expressions in
the boson annihilation operator a and creation operator a† satisfying the commutation rela-
tion aa† − a†a = 1 of the Weyl algebra. Since the normal ordered form has many desirable
properties simplifying many calculations, the normal ordering problem has been discussed
in the physical literature extensively; see [3] for a thorough survey of the normal ordering for
many functions of X and D with many references to the original literature. Let us point out
some classical references [1, 9, 49, 53, 74], some more recent references [2, 5, 26, 31, 40, 62], as
well as some references concerned with the q-deformed situation [4, 36, 38, 43, 61]. Relation
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(2) has been generalized by several authors to the form (here we assume r ≥ s)

(V rU s)n = V n(r−s)

n
∑

k=1

Sr,s(n, k)V
kUk, (3)

where the coefficients are, by definition, generalized Stirling numbers of the second kind, see,
e.g., [3, 6, 10, 11, 37, 46, 47, 48, 51, 59, 60, 67, 68, 69, 70, 71] (e.g., A000369, A035342,
A078739, A078740 in [64])). Clearly, one has S1,1(n, k) = S(n, k). Let us briefly mention
that also q-analogues of these Stirling numbers have been discussed [46, 47, 60, 71].

In another direction, Hsu and Shiue introduced in [34] a three parameter family of gen-
eralized Stirling numbers as connection coefficients which unified many of the previous gen-
eralizations. This family of generalized Stirling numbers has been treated subsequently in
a number of papers, see, e.g., [17, 19, 33]; furthermore, q-analogues [18, 20, 65] as well as
p, q-analogues [7, 55] have been studied.

Two of the present authors considered in [41] variables U, V satisfying the following
generalization

UV − V U = hV s (4)

of the commutation relation (1), where it was assumed that h ∈ C \ {0} and s ∈ R. The
parameter h should be considered as a free “deformation parameter” (Planck’s constant)
and we will often consider the special case h = 1. Note that in the case s = 0 equation (4)
reduces to (1) (if h = 1). Now, it is very natural to consider in the context of arbitrary s ∈ R

the expression (V U)n for variables U, V satisfying (4) and to define the generalized Stirling
numbers Ss;h(n, k) by

(V U)n =
n
∑

k=1

Ss;h(n, k)V
s(n−k)+kUk. (5)

The coefficientsSs;h(n, k) can be interpreted as some kind of generalized Stirling numbers
of the second kind. They are very closely related to the generalized Stirling numbers Sr,1(n, k)
considered by Lang [37] - and already before him by, e.g., Scherk [59], Carlitz [11], Toscano
[67, 68, 69] and Comtet [16] - and more recently in [3, 10, 48, 51]. Burde considered in [8]
matrices X,A satisfying XA − AX = Xp with p ∈ N and discussed the coefficients which
appear when (AX)n is normal ordered. Note that in terms of our variables U, V , Burde
considered the normal ordered form of (UV )n, which is from our point of view less natural.
However, since one can write (V U)n = V (UV )n−1U , these two problems are, of course,
intimately related. Diaz and Pariguan [23] described normal ordering in the meromorphic
Weyl algebra. Recall that for s = 0 (and h = 1), one has the r epresentation D,X of the
variables U, V satisfying the relation DX − XD = 1 of the Weyl algebra (1). Considering
instead of X the operator X−1, one finds the relation D(X−1)−X−1D = −X−2 and, thus,
a representation of the variables U, V for s = 2 and h = −1.

The present authors began a serious study of the generalized Stirling numbers Ss;h(n, k)
(and related generalized Bell numbers Bs;h(n)) in [44], where also more references to the
literature can be found. In [44], many properties of these numbers were derived, e.g., the
recursion relation, an explicit expression and several explicit examples for special choices
of the parameters s, h. This study was continued in [45], where the particular case s = 2
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and h = −1 corresponding to the meromorphic Weyl algebra was treated briefly as well
as related q-identities. Furthermore, in [42] it was shown that the exponential generating
function of the generalized Bell numbers Bs;h(n) satisfies an algebraic differential equation
as in the conventional case. Thus, although many properties of these generalized Stirling
and Bell numbers are known, there still exist a lot of questions. It is the aim of the present
paper to fill some of these gaps in our current understanding of these numbers.

The paper is organized as follows. In Section 2, several general results for Ss;h(n, k) and
Bs;h(n) are established. In particular, it is shown thatSs;h(n, k) corresponds to a special case
of the three parameter family of generalized Stirling numbers introduced by Hsu and Shiue
[34], allowing to deduce several properties of Ss;h(n, k) and Bs;h(n) quickly. In Section 3, the
special case s = 2 and h = −1 is treated in detail and the connection to Bessel numbers and
Bessel polynomials is discussed. Using operator methods, relations between the generalized
Stirling numbers are derived in Section 4. Combinatorial proofs of these relations are given
in Section 5. In Section 6, a close connection to the Touchard polynomials of higher order
introduced recently by Dattoli et al. [21] is discussed, and Touchard polynomials of negative
order a re introduced and studied. A q-analogue of the numbers Ss;h(n, k) is introduced in
Section 7 and first properties are established, e.g., the recursion relation, a general closed
form expression, and explicit formulas in several special cases. Finally, in Section 8, some
conclusions are presented.

2 Some general results

The generalized Stirling numbers (5) can be defined for s ∈ R and h ∈ C \ {0}, equivalently,
by the recursion relation

Ss;h(n+ 1, k) = Ss;h(n, k − 1) + h(k + s(n− k))Ss;h(n, k), (6)

if n ≥ 0 and k ≥ 1, with Ss;h(n, 0) = δn,0 and Ss;h(0, k) = δ0,k for n, k ∈ N0 [44]. The
related Bell numbers are defined by Bs;h(n) =

∑n
k=0Ss;h(n, k). More generally, let us define

the generalized Bell polynomials Bs;h|n(x) by

Bs;h|n(x) :=
n
∑

k=0

Ss;h(n, k)x
k (7)

such that Bs;h|n(1) = Bs;h(n), the n-th generalized Bell number. Choosing s = 0 and h = 1
yields the Stirling numbers of the second kind S(n, k) (A008277 in [64]), whereas choosing
s = 1 and h = −1 yields the Stirling numbers of the first kind s(n, k) (A008275 in [64]), i.e.,

S0;1(n, k) = S(n, k), S1;−1(n, k) = s(n, k). (8)

Hsu and Shiue introduced in the seminal paper [34] a three parameter family of gen-
eralized Stirling numbers which unified many of the earlier generalizations of the Stirling
numbers. Let us denote the generalized factorial with increment α by

(z|α)n = z(z − α) · · · (z − nα + α)
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if n ≥ 1 with (z|α)0 = 1. In particular, we write (z|1)n = (z)n. Hsu and Shiue defined a
Stirling-type pair {S1, S2} = {S1(n, k), S2(n, k)} ≡ {S(n, k;α, β, r), S(n, k; β, α,−r)} by the
inverse relations

(t|α)n =
n
∑

k=0

S1(n, k)(t− r|β)k, (9)

(t|β)n =
n
∑

k=0

S2(n, k)(t+ r|α)k, (10)

where n ∈ N and the parameters α, β, r are real or complex parameters satisfying (α, β, r) 6=
(0, 0, 0). The pair {S1, S2} is also called an 〈α, β, r〉-pair. The classical Stirling number pair
{s(n, k), S(n, k)} is the 〈1, 0, 0〉-pair, i.e.,

s(n, k) = S(n, k; 1, 0, 0), S(n, k) = S(n, k; 0, 1, 0). (11)

From the definitions, it is clear that one has the orthogonality relations

m
∑

k=n

S1(m, k)S2(k, n) =
m
∑

k=n

S2(m, k)S1(k, n) = δm,n, (12)

where δm,n is the Kronecker symbol [34]. Furthermore, one can easily derive a recursion
relation.

Theorem 1 ([34], Theorem 1). The generalized Stirling numbers S(n, k;α, β, r) satisfy the
recursion relation

S(n+ 1, k;α, β, r) = S(n, k − 1;α, β, r) + (kβ − nα + r)S(n, k;α, β, r) (13)

with the initial values S(n, 0;α, β, r) = (r|α)n.

Comparing the recursion relations (6) and (13), one obtains the following result.

Theorem 2. The generalized Stirling numbers Ss;h(n, k) correspond to the case α := −hs, β :=
h(1−s), r := 0 of the generalized Stirling numbers S(n, k;α, β, r) due to Hsu and Shiue, i.e.,

Ss;h(n, k) = S(n, k;−hs, h(1− s), 0). (14)

Conversely, if r = 0 and α 6= β, then the generalized Stirling numbers S(n, k;α, β, 0) of Hsu
and Shiue correspond to the case s := α

α−β
and h := β−α of the generalized Stirling numbers

Ss;h(n, k), i.e.,
S(n, k;α, β, 0) = S α

α−β
;β−α(n, k), α 6= β. (15)

Proof. Noting that h{k + s(n − k)} = (hsn + h(1 − s)k) and comparing (6) and (13), one
finds that one has to choose α = −hs, β = h(1 − s) and r = 0. Since Ss;h(n, 0) = δn,0 and
S(n, 0;−hs, h(1 − s), 0) = (0| − hs)n = δn,0, the initial values coincide. The other direction
is shown in the same fashion by solving α = −hs and β = h(1− s) for s and h.
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Remark 3. Theorem 2 shows that there exists a bijection ψ between the sets of parameters
(s, h) and (α, β 6= α, r = 0) of the two kinds of generalized Stirling numbers given by
ψ(s, h) = (−hs, h(1 − s), 0) and ψ−1(α, β, 0) = ( α

α−β
, β − α) with ψ−1 ◦ ψ = ψ ◦ ψ−1 = Id.

Note that ψ(s, h) = (α, α, 0) would imply h = 0, which is excluded from the beginning. The
generalized Stirling numbers S(n, k;α, β, 0) have been introduced by Tsylova [70].

Note that due to this identification we can derive some nice consequences for the gener-
alized Stirling numbers Ss;h(n, k). As a first step, we call a pair

{Ss̄;h̄,Ss;h} = {Ss̄;h̄(n, k),Ss;h(n, k)}

of (arrays of) generalized Stirling numbers a dual pair, if it is a Stirling-type pair when
considered as generalized Stirling numbers of Hsu and Shiue.

Proposition 4. The pair {Ss̄;h̄,Ss;h} is a dual pair if and only if s̄ = 1 − s and h̄ = −h,
i.e., dual pairs have the form

{S1−s;−h,Ss;h}
for s ∈ R and h ∈ C \ {0}. Furthermore, for a dual pair one has the orthogonality relations

m
∑

k=n

S1−s;−h(m, k)Ss;h(k, n) =
m
∑

k=n

Ss;h(m, k)S1−s;−h(k, n) = δm,n.

Proof. Let the array Ss;h = {Ss;h(n, k)} = {S(n, k;−hs, h(1 − s), 0)} ≡ {S2(n, k)} be
given. Its partner {S1(n, k)} in the Stirling-type pair is given by {S1(n, k)} ≡ {S(n, k;h(1−
s),−hs, 0)}. If we want to identify the last array as {Ss̄;h̄(n, k)} = {S(n, k;−h̄s̄, h̄(1−s̄), 0)},
we must have

−h̄s̄ = h(1− s), h̄(1− s̄) = −hs.
From this one finds s̄ = 1 − s and h̄ = −h, as claimed. The orthogonality relations now
follow from (12).

From Theorem 2, it follows that the dual pair given by {S1−s;−h(n, k),Ss;h(n, k)} corre-
sponds to the < h(1− s),−hs, 0 >-pair {S(n, k;h(1− s),−hs, 0), S(n, k;−hs, h(1− s), 0)}.
Note that there do not exist self-dual arrays Ss;h in the sense that {Ss;h,Ss;h} is a dual
pair of arrays. If Ss;h was self-dual, one would have s = 1 − s as well as h = −h, implying
(s, h) = (1/2, 0). However, h 6= 0 is assumed from the beginning since otherwise everything
is trivial, see, e.g., the recursion relation (6).

Example 5. Let s = 0 and h = 1; this case corresponds to the Weyl-algebra. Here one
has S0;1(n, k) = S(n, k). The corresponding dual pair is given by {S1;−1,S0;1}. From
[44, Equation (14)], one has S1;−1(n, k) = s(n, k). Thus, the conventional Stirling pair
is reproduced, as was to be expected since the dual pair {S1;−1,S0;1} corresponds to the
< 1, 0, 0 >-pair, see (11).

Example 6. Let s = 2 and h = −1; this case corresponds to the meromorphic Weyl-algebra.
The corresponding dual pair is given by {S−1;1,S2;−1} and will be considered in more detail
in Section 3. It corresponds to the < 1, 2, 0 >-pair.
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Example 7. Let s = 1
2
and h = 2. Here one has S 1

2
;2(n, k) = L(n, k), the unsigned

Lah numbers [44, Example 3.3] (A008297 in [64]). The corresponding dual pair is given
by {S 1

2
;−2,S 1

2
;2}. Since S 1

2
;−2 = (−1)n−k

S 1
2
;2(n, k) = (−1)n−kL(n, k), one finds that

{(−1)n−kL(n, k), L(n, k)} constitutes a dual pair and corresponds to the < 1,−1, 0 >-pair,
as already mentioned in [34].

Before closing this section, let us briefly discuss the convexity of the generalized Bell
polynomials and Bell numbers. Defining in close analogy to (7) for the generalized Stirling
numbers of Hsu and Shiue

Sn(x) ≡ Sn(α, β, r; x) :=
n
∑

k=0

S(n, k;α, β, r)xk,

Corcino and Corcino showed in [19] the following result:

Theorem 8 ([19], Theorem 2.2). The sequence Sn(x) with x > 0 and α ≤ 0 and β, r ≥ 0
possesses the convexity property, i.e.,

Sn+1(x) ≤
1

2
(Sn(x) + Sn+2(x)) .

Using the bijection from Theorem 2, we can translate this into a convexity result for the
polynomials Bs;h|n(x).

Theorem 9. The sequence of generalized Bell polynomials Bs;h|n(x) with x > 0 and 0 ≤
s ≤ 1 and h ≥ 0 possesses the convexity property. Consequently, the corresponding sequence
of Bell numbers Bs;h(n) = Bs;h|n(1) also possesses the convexity property.

Proof. According to Theorem 2, the polynomial Bs;h|n(x) corresponds to Sn(−hs, h(1 −
s), 0; x), so we require, by Theorem 8, that hs ≥ 0 and h(1− s) ≥ 0. The solutions to these
inequalities must satisfy either h = 0 or h > 0 with 0 ≤ s ≤ 1.

Some examples of combinations (s, h) satisfying the conditions of the preceding theorem
are as follows:

• (0, 1), corresponding to the Stirling numbers of the second kind S(n, k),
• (1, 1), corresponding to the unsigned Stirling numbers of the first kind c(n, k) ≡

|s(n, k)|, and
• (1/2, 2), corresponding to the (unsigned) Lah numbers L(n, k).

3 The dual pair for s = 2 and h = −1

It was already mentioned above that the case s = 2 and h = −1 corresponds to the meromor-
phic Weyl algebra, see also [45]. Recall that in the conventional Weyl algebra (corresponding
to s = 0 and h = 1), one has the relation UV − V U = 1, which is usually represented by
the operators U 7→ D = d/dx and V 7→ X, see the Introduction. In the meromorphic Weyl

7

http://oeis.org/A008297


algebra, one considers [23, 24, 45] instead of the multiplication operator X the multiplication
operator X−1 and obtains in this fashion a representation of

UV − V U = −V 2, (16)

i.e., of the case s = 2 and h = −1. From (5) one obtains in this case, for n ∈ N,

(V U)n =
n
∑

k=1

S2;−1(n, k)V
2n−kUk. (17)

It was mentioned briefly in [45] that one has for this case a connection to Bessel polyno-
mials. We now make this connection completely explicit. The generalized Stirling numbers
S2;1(n, k) ≡ S(n, k) were called meromorphic Stirling numbers in [45]; note that the case
h = 1 was considered there, but one has the simple relation S2;−1(n, k) = (−1)n−k

S2;1(n, k)
so that we will call S2;−1(n, k) also meromorphic Stirling numbers. In Remark 2.4 in [45], it
was shown as Equation (2.4) that

S(n, k) =
(n− 1)!

2n−k(k − 1)!

(

2n− k − 1

n− 1

)

,

yielding

S2;−1(n, k) = (−1)n−k (n− 1)!

2n−k(k − 1)!

(

2n− k − 1

n− 1

)

. (18)

According to Example 6, one has the dual pair {S−1;1,S2;−1} of arrays. The former array
has been considered in [44, Proposition 5.6] and is given by

S−1;1(n, k) =
(2n− 2k)!

2n−k(n− k)!

(

n

2k − n

)

, (19)

where ⌈n
2
⌉ ≤ k ≤ n. Using (14), we see that the dual pair {S−1;1(n, k),S2;−1(n, k)} corre-

sponds to the Stirling-type pair {S(n, k; 1, 2, 0), S(n, k; 2, 1, 0)}.
In order to draw the explicit connection to Bessel numbers, we recall some of their basic

properties which can be found in [76] (see also [14, 32]). The n-th Bessel polynomial is
defined by

yn(x) :=
n
∑

k=0

(n+ k)!

2kk!(n− k)!
xk. (20)

The coefficient of xn−k in the (n−1)-th Bessel polynomial yn−1(x) is called the signless Bessel
number of the first kind and is denoted by a(n, k) (A001497 in [64]). The Bessel number
of the first kind is defined by b(n, k) = (−1)n−ka(n, k) and is given for 1 ≤ k ≤ n by [76,
Equation (2)]

b(n, k) = (−1)n−k (2n− k − 1)!

2n−k(k − 1)!(n− k)!
. (21)

Comparing (18) and (21), we see that the meromorphic Stirling numbers are given by the
Bessel numbers of the first kind, i.e.,

S2;−1(n, k) = b(n, k). (22)
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Combining this with the identity

S2;−1(n, k) = (−1)n−k
S2;1(n, k) = (−1)n−kS(n, k;−2,−1, 0),

we obtain for the generalized Stirling numbers of Hsu and Shiue that S(n, k;−2,−1, 0) =
(−1)n−kb(n, k), a connection which was already mentioned by Pitman [54, Equation (18)].

The Bessel numbers of the second kind B(n, k) can be defined as the number of partitions
of {1, 2, . . . , n} into k nonempty blocks of size at most 2, see [76] (A144299 in [64]). Thus,
one has for ⌈n

2
⌉ ≤ k ≤ n the explicit expression [76, Equation (8)]

B(n, k) =
n!

2n−k(2k − n)!(n− k)!
. (23)

Comparing (19) and (23), we see that the generalized Stirling numbers S−1;1(n, k) are given
by the Bessel numbers of the second kind, i.e.,

S−1;1(n, k) = B(n, k). (24)

Since {S−1;1,S2;−1} is a dual pair for which one has orthogonality relations (see Proposi-
tion 4), the same is true for the Bessel numbers, i.e., one has

m
∑

k=n

B(m, k)b(k, n) =
m
∑

k=n

b(m, k)B(k, n) = δm,n. (25)

Of course, these relations are well-known [32] (for example, in [76] they are derived via ex-
ponential Riordan arrays and Lagrange inversion). Let us summarize the above observations
in the following theorem.

Theorem 10. The dual pair {S−1;1(n, k),S2;−1(n, k)} of arrays corresponding to the mero-
morphic Stirling numbers S2;−1(n, k) is given by the arrays of Bessel numbers of the second
and first kind {B(n, k), b(n, k)}, i.e., S−1;1(n, k) = B(n, k) and S2;−1(n, k) = b(n, k).

Now, we discuss the above results in connection with the normal ordering of expressions
(X−1D)n. Since V 7→ X−1 and U 7→ D gives a representation of (16), one obtains from (17)
the relation

(X−1D)n =
n
∑

k=1

S2;−1(n, k)(X
−1)2n−kDk. (26)

Hadwiger considered already in 1943 [30] the operator X−1D and derived an expression
similar to (26). This equation can also be written as

(X−1D)n = (X−1)2n
n
∑

k=1

S2;−1(n, k)X
kDk. (27)

Let us change the variable from x to t = x−1. It follows that X−1 = T as well as Dx =
d/dx = −t2d/dt = −T 2Dt, thus

X−1Dx = −T 3Dt. (28)
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Therefore, (X−1Dx)
n = (−1)n(T 3Dt)

n. Letting V ≡ T and U ≡ T 2Dt shows that UV =
V U + V 2, i.e., T and T 2Dt represent the case s = 2 and h = 1. Thus,

(T 3Dt)
n =

n
∑

k=1

S2;1(n, k)T
2n−k(T 2Dt)

k.

It follows that

(X−1Dx)
n = (−1)n(T 3Dt)

n

= (−1)nT 2n

n
∑

k=1

S2;1(n, k)T
−k(T 2Dt)

k

= (−1)n(X−1)2n
n
∑

k=1

S2;1(n, k)X
k(−Dx)

k

= (X−1)2n
n
∑

k=1

S2;1(n, k)(−1)n−kXkDk
x,

which is equivalent to (27) since S2;−1(n, k) = S2;1(n, k)(−1)n−k. This represents a nice
consistency check. Let us consider another example. For this we consider V ≡ X and
U ≡ X−1D satisfying UV = V U + V −1, i.e., the case s = −1 and h = 1. Thus,

Dn = (X ·X−1D)n =
n
∑

k=1

S−1;1(n, k)X
2k−n(X−1D)k. (29)

Using (27), this yields

Dn =
n
∑

k=1

k
∑

l=1

S−1;1(n, k)S2;−1(k, l)X
2k−n−2k+lDl

=
n
∑

l=1

{

n
∑

k=l

S−1;1(n, k)S2;−1(k, l)

}

X l−nDl

=
n
∑

l=1

δn,lX
l−nDl = Dn,

where we have used in the third line an orthogonality relation of the dual pair {S−1;1,S2;−1}.
Recall that the conventional Stirling numbers of the second kind S(n, k) appear as normal

ordering coefficients, i.e., (XD)n =
∑n

k=1 S(n, k)X
kDk, and the conventional Stirling num-

bers of the first kind s(n, k) in the converse expansion, i.e., XmDm =
∑m

k=1 s(m, k)(XD)k.
The role of the Stirling numbers is played in the meromorphic case by the Bessel numbers,
as the following proposition shows.

Proposition 11. For any n ∈ N one has the expansion

(X−1D)n = (X−1)2n
n
∑

k=1

b(n, k)XkDk. (30)

10



Similarly, one has for any m ∈ N the expansion

XmDm =
m
∑

k=1

B(m, k)X2k(X−1D)k. (31)

Proof. The first asserted equation follows from (27) since S2;−1(n, k) = b(n, k). The second
equation follows similarly from S−1;1(n, k) = B(n, k) and (29).

Remark 12. As a consistency check, we insert (31) into (30) and obtain

(X−1D)n = (X−1)2n
n
∑

k=1

b(n, k)
k
∑

l=1

B(k, l)X2l(X−1D)l

= (X−1)2n
n
∑

l=1

{

n
∑

k=l

b(n, k)B(k, l)

}

X2l(X−1D)l

= (X−1)2n
n
∑

l=1

δn,lX
2l(X−1D)l = (X−1D)n,

where we have used in the third line an orthogonality relation of the Bessel numbers.

4 Some relations between generalized Stirling numbers

Generalizing (28), we obtain by the change of variables t = x−1 for arbitrary λ ∈ R that

XλDx = −T 2−λDt,

generalizing the case λ = −1 considered above. By taking powers one obtains relations
between generalized Stirling numbers corresponding to different sets of parameters. As a
first step, note that if V ≡ X and U ≡ Xλ−1Dx, then UV = V U + V λ−1, i.e., one has a
representation of the case s = λ− 1 and h = 1. It follows that

(XλDx)
n =

n
∑

k=1

Sλ−1;1(n, k)X
(λ−1)(n−k)+k(Xλ−1Dx)

k.

In the same fashion, we obtain

(T 2−λDt)
n =

n
∑

k=1

S1−λ;1(n, k)T
(1−λ)(n−k)+k(T 1−λDt)

k.

Using T = X−1 as well as T 1−λDt = −Xλ+1Dx, the right-hand side equals

n
∑

k=1

S1−λ;1(n, k)X
(λ−1)(n−k)−k(−Xλ+1Dx)

k,

11



and it follows that

n
∑

k=1

Sλ−1;1(n, k)X
k(2−λ)(Xλ−1Dx)

k =
n
∑

k=1

S1−λ;−1(n, k)X
−kλ(Xλ+1Dx)

k.

Now, we wish to express (Xλ+1Dx)
k in terms of (Xλ−1Dx)

m. For this, we write

Xλ+1Dx = X2 ·Xλ−1Dx.

If we let V ≡ X2 and U ≡ Xλ−1Dx, it follows that

UV f(x) = xλ−1Dx(x
2f(x)) = 2xλf(x) + xλ+1Dxf(x) = 2V λ/2f(x) + V Uf(x),

i.e., one has a representation of the case s = λ/2 and h = 2. This implies

(Xλ+1Dx)
k = (X2 ·Xλ−1Dx)

k =
k
∑

m=1

Sλ
2
;2(k,m)Xλ(k−m)+2m(Xλ−1Dx)

m,

showing

n
∑

k=1

Sλ−1;1(n, k)X
k(2−λ)(Xλ−1Dx)

k

=
n
∑

k=1

k
∑

m=1

S1−λ;−1(n, k)Sλ
2
;2(k,m)X(2−λ)m(Xλ−1Dx)

m

=
n
∑

m=1

{

n
∑

k=m

S1−λ;−1(n, k)Sλ
2
;2(k,m)

}

X(2−λ)m(Xλ−1Dx)
m.

Comparing coefficients, one obtains the following identity:

Sλ−1;1(n, k) =
n
∑

l=k

S1−λ;−1(n, l)Sλ
2
;2(l, k). (32)

Denoting s = 1− λ, this shows the following proposition.

Proposition 13. For arbitrary s ∈ R, one has the following identity between generalized
Stirling numbers:

S−s;1(n, k) =
(−1)n

2k

n
∑

l=k

(−2)lSs;1(n, l)S 1−s
2

;1(l, k). (33)

Corollary 14. For s = 1 one obtains from Proposition 13 a relation between Bessel numbers
of the second kind and Stirling numbers of the first and second kind (see [76, Equation (19)]):

B(n, k) =
n
∑

l=k

2l−ks(n, l)S(l, k).

12



Proof. This follows from (33) sinceS−1;1(n, k) = B(n, k) as well asS1;1(n, l) = (−1)n−ls(n, l)
and S0;1(l, k) = S(l, k).

In another direction, it is possible to consider (XλD)n in several different ways. One is
as (X ·Xλ−1D)n as above, leading to Sλ−1;1(n, k). Another way is to consider V ≡ Xλ and
U ≡ D.

Lemma 15. The operators Xλ and D define for any λ ∈ R via V 7→ Xλ and U 7→ D a
representation of variables U, V satisfying UV = V U + λV

λ−1
λ , i.e., of the case s = λ−1

λ
and

h = λ.

Proof. Since D(xλf(x)) = λxλ−1f(x) + xλDf(x), one has

{

D ◦Xλ −Xλ ◦D
}

f(x) = λXλ−1f(x) = λ(Xλ)
λ−1
λ f(x),

showing the assertion.

More generally, splitting the exponent one can write (XλD)n also as (Xν · Xλ−νD)n

with ν 6= 0. In this fashion, one calculates xλ−νD(xνf(x)) = νxλ−1f(x) + xλDf(x) so that
V 7→ Xν and U 7→ Xλ−νD yields a representation of

UV − V U = νV
λ−1
ν ,

i.e., of the case s = λ−1
ν

and h = ν. Here the numbers Sλ−1
ν

;ν(n, k) will be involved. Splitting

a given λ in two different ways, one obtains from (Xν ·Xλ−νD)n = (XλD)n = (Xκ ·Xλ−κD)n

the relation

n
∑

k=1

Sλ−1
ν

;ν(n, k)X
(λ−1)(n−k)+kν(Xλ−νD)k =

n
∑

k=1

Sλ−1
κ

;κ(n, k)X
(λ−1)(n−k)+kκ(Xλ−κD)k. (34)

Let us write κ = ν − σ with σ > 0, so that (Xλ−κD)k = (Xσ ·Xλ−νD)k. Noting that

(Xσ ·Xλ−νD)k =
k
∑

l=1

Sσ+λ−ν−1
σ

;σ(k, l)X
(σ+λ−ν−1)(k−l)+lσ(Xλ−νD)l,

the right-hand side of (34) becomes

n
∑

k=1

k
∑

l=1

S λ−1
ν−σ

;ν−σ(n, k)Sσ+λ−ν−1
σ

;σ(k, l)X
(λ−1)(n−k)+k(ν−σ)X(σ+λ−ν−1)(k−l)+lσ(Xλ−νD)l,

or
n
∑

l=1

{

n
∑

k=l

S λ−1
ν−σ

;ν−σ(n, k)Sσ+λ−ν−1
σ

;σ(k, l)

}

X(λ−1)(n−l)+lν(Xλ−νD)l.

Comparing this with the left-hand side of (34), one has shown the following generalization
of (33):

Sλ−1
ν

;ν(n, k) =
n
∑

l=k

S λ−1
ν−σ

;ν−σ(n, l)Sσ+λ−ν−1
σ

;σ(l, k). (35)

13



For example, fixing ν = 1 and considering the dependence on σ, one finds

Sλ−1;1(n, k) =
n
∑

l=k

Sλ−1
1−σ

;1−σ(n, l)Sσ+λ−2
σ

;σ(l, k).

Furthermore, considering σ = 2, this gives

Sλ−1;1(n, k) =
n
∑

l=k

S1−λ;−1(n, l)Sλ
2
;2(l, k),

i.e., (32) from above. Switching to s = λ−1, one obtains from (35) the following proposition.

Proposition 16. Let s ∈ R, ν 6= 0, and σ > 0. Then one has the following identity between
generalized Stirling numbers:

S s
ν
;ν(n, k) =

n
∑

l=k

S s
ν−σ

;ν−σ(n, l)S s+σ−ν
σ

;σ(l, k).

Corollary 17. Choosing s = 1, ν = 2, and σ = 1 in the identity of Proposition 16 gives
the following relation between (unsigned) Lah numbers and Stirling numbers of the first and
second kind (see [73]):

L(n, k) =
n
∑

l=k

c(n, l)S(l, k),

where c(n, l) = (−1)n−ls(n, l) denotes the unsigned Stirling number of the first kind.

5 Combinatorial proofs

In this section, we provide combinatorial proofs of Propositions 4, 16, and 13. It will be more
convenient to let a = hs and b = h(1 − s) and consider Ga;b(n, k) given by the equivalent
recurrence

Ga;b(n, k) = Ga;b(n− 1, k − 1) + [a(n− 1) + bk]Ga;b(n− 1, k), n, k ≥ 1, (36)

with Ga;b(n, 0) = δn,0 and Ga;b(0, k) = δ0,k for all n, k ≥ 0. Note that Ga;b(n, k) =
S(n, k;−a, b, 0) from above.

When a = b = 1, we see from (36) that the Ga;b(n, k) reduce to the (unsigned) Lah
numbers L(n, k). It is well known that L(n, k) = |L(n, k)|, where L(n, k) denotes the set of
all distributions of n labeled balls, denoted 1, 2, . . . , n, among k unlabeled, contents-ordered
boxes such that no box is left empty, which are often termed Lah distributions. See [63] and
[72]. For example, if n = 3 and k = 2, then L(3, 2) = 6, the distributions being {1, 2}, {3};
{2, 1}, {3}; {1, 3}, {2}; {3, 1}, {2}; {2, 3}, {1}; and {3, 2}, {1}. Let L(n) =∑n

k=0 L(n, k) and
L(n) = ∪n

k=0L(n, k). Then L(n) = |L(n)|, the cardinality of the set of all distributions
of n labeled balls in unlabeled, contents-ordered boxes. See, e.g., [52], where the L(n) are
described as counting sets of lists having size n.

We now recall a combinatorial interpretation for Ga;b(n, k) given in [44] which we will
make use of. We first will need the following definition, where [n] = {1, 2, . . . , n} if n is a
positive integer, with [0] = ∅.
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Definition 18. If λ ∈ L(n) and i ∈ [n], then we say that i is a record low of λ if there are
no elements j < i to the left of i within its block in λ.

For example, if n = 10 and λ = {6, 5, 8, 1, 9}, {4, 10, 2, 3}, {7} ∈ L(10), then the elements
6, 5, and 1 are record lows in the first block, 4 and 2 are record lows in the second, and 7 is a
record low in the third block for a total of six record lows altogether. Note that the smallest
element within a block as well as the left-most one are always record lows.

Definition 19. Given λ ∈ L(n), let rec∗(λ) denote the total number of record lows of λ not
counting those corresponding to the smallest member of some block. Let nrec(λ) denote the
number of elements of [n] which are not record lows of λ.

For example, if λ is as above, then rec∗(λ) = 3 (corresponding to 6, 5, and 4) and
nrec(λ) = 4 (corresponding 8, 9, 10, and 3). Given λ ∈ L(n) and indeterminates a and b,
define the (a, b)-weight of λ, which we’ll denote wa;b(λ), by

wa;b(λ) = anrec(λ)brec
∗(λ).

For each n and k, we have that Ga;b(n, k) is the joint distribution polynomial for the nrec
and rec∗ statistics on L(n, k).

Theorem 20. [44, Theorem 5.1] If n, k ≥ 0, then

Ga;b(n, k) =
∑

λ∈L(n,k)
wa;b(λ). (37)

Using this interpretation, we now provide bijective proofs of Propositions 4, 16, and 13.

Combinatorial proof of Proposition 4.

We prove, equivalently,

n
∑

k=m

Ga;b(n, k)G−b;−a(k,m) =
n
∑

k=m

G−b;−a(n, k)Ga;b(k,m) = δm,n, (38)

where m and n are given integers with 0 ≤ m ≤ n and Ga;b(n, k) is defined by (36). We treat
only the first equality, the proof of the second being similar. To do so, we consider a collection
of Lah distributions whose elements themselves are Lah distributions. More precisely, given
m ≤ k ≤ n, let Ak denote the set of ordered pairs ρ = (α, β), where α ∈ L(n, k) and β is
a Lah distribution having m blocks whose elements are the blocks of α. Here, we order the
blocks of α according to the size of smallest elements when ordering them within β. Define
the weight of ρ, which we will denote v(ρ), by

v(ρ) = (−1)k−mwa;b(α)wb;a(β).

For example, if n = 20, m = 5, and k = 10, and ρ = (α, β), where

α ={1}, {8, 15, 19, 2, 17}, {3, 5}, {4, 18}, {6}, {7, 20}, {13, 9}, {16, 10}, {11},
{14, 12}
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and

β ={{1}}, {{4, 18}, {8, 15, 19, 2, 17}, {7, 20}}, {{6}, {14, 12}, {3, 5}}, {{13, 9}},
{{11}, {16, 10}},

then we have
v(ρ) = (−1)10−5(a6b4)(b2a3) = −a9b6.

Let A = ∪n
k=mAk. By (37), the left-hand side of (38) gives the total weight of all the

members of A, each summand giving the total weight of Ak, upon noting nrec(β)+rec∗(β) =
k −m for all β ∈ L(k,m). To complete the proof, we will define an involution of A which
pairs each member of A with another of opposite weight when m < n. (Note that if m = n,
then the identity is trivial, both sides reducing to one and A containing only a single member,
namely, {{1}}, {{2}}, . . . , {{n}}.)

Let ρ = (α, β) ∈ A. Let us assume further, for convenience, that the blocks of β are
arranged from left to right in increasing order according to the size of the smallest element
of [n] lying within. Let C denote the left-most block of β containing at least two elements
of [n] altogether. Note that the blocks of α within C may come in any order and suppose C
contains r elements of [n] altogether, which we’ll denote by c1 < c2 < · · · < cr.

We now define an involution of A in two steps. Given ρ = (α, β), let io denote the largest
index i ∈ [r]− {1}, if it exists, such that one of the following conditions holds:

(I) the element ci is the first element of a block of α within C containing at least two
elements of [n] and is not the smallest element of that block;

(II) the element ci is the first and smallest element of a block of α within C which comes
directly to the right of a block whose first element is smaller than ci.

If condition (I) holds, and the block containing cio is of the form {cio , x1, x2, . . . , d, y1, y2, . . .},
where d is the second left-to-right minima from the left, then replace the single block with two
blocks {d, y1, y2, . . .}, {cio , x1, x2, . . .}. Conversely, if (II) holds, merge the block containing cio
with the one directly before it by writing its elements prior to the elements of its predecessor.
Let ρ′ = (α′, β′) denote the resulting member of A obtained by changing the block C in either
of the two ways described. Note that α′ has one more or one fewer blocks than α and β′

has one more or one fewer (block) elements than β. Observe further that changing C as
described above when the first condition holds takes away a factor of b since cio is no longer
counted in rec∗(α) (as it is now a block minimum), but introduces a factor of −b since the
new block {cio , x1, x2, . . .} is a non-record low and is thus counted in nrec(β′), whence ρ and
ρ′ have opposite weight.

For example, if ρ = (α, β) is as given above, then C is the second block of β, with r = 9,
io = 4 (condition (I) holding), and cio = 8. We then have ρ′ = (α′, β′), where

α′ ={1}, {2, 17}, {3, 5}, {4, 18}, {6}, {7, 20}, {8, 15, 19}, {13, 9}, {16, 10}, {11},
{14, 12}
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and

β′ ={{1}}, {{4, 18}, {2, 17}, {8, 15, 19}, {7, 20}}, {{6}, {14, 12}, {3, 5}}, {{13, 9}},
{{11}, {16, 10}},

whence
v(ρ′) = (−1)11−5(a6b3)(b3a3) = a9b6 = −v(ρ).

The mapping ρ 7→ ρ′ is seen to be an involution of A which is not defined in the case
when the block C is either of the following forms:

(i) C = {E1, E2, . . . , Et, {c2γ2}, {c1γ1}},
(ii) C = {E1, E2, . . . , Et, {c1γ1c2γ2}},

where γ1 and γ2 are possibly empty sequences and the Ei are contents-ordered blocks which
occur in decreasing order according to the size of the first element and in which the first
element is also the smallest one within each block. However, exchanging (i) for (ii), and
vice-versa, defines an involution in this case that reverses the weight, which completes the
proof of (38).

Combinatorial proof of Proposition 16.

Equivalently, we prove the identity

Ga;b(n, k) =
n
∑

ℓ=k

Ga;t(n, ℓ)G−t;b(ℓ, k), (39)

where n and k are given integers with 0 ≤ k ≤ n. If k ≤ ℓ ≤ n, then let Aℓ consist of the
ordered pairs ρ = (α, β) as described in the preceding proof. Define the weight u(ρ) by

u(ρ) = wa;t(α)w−t;b(β).

Let A = ∪n
ℓ=kAℓ. By (37), the right-hand side of (39) gives the total u-weight of all the

members of A.
We now define an involution on A as follows. Let ρ = (α, β) ∈ A, where we assume that

the blocks of α are ordered according to the size of smallest elements and that the blocks
of β are arranged from left to right in increasing order according to the size of the smallest
element of [n] contained within them. Let D denote a block of β and suppose D contains
r members of [n] altogether, which we denote c1 < c2 < · · · < cr. Assume that an index
i exists such that ci ∈ D satisfies either condition (I) or (II) in the proof of Proposition 4
above, letting io denote the largest such i. Assume further that D is the left-most block of
β for which io exists.

Now apply the first involution of the preceding proof using the block D. This pairs each
member of A − A∗ with another of opposite weight, where A∗ consists of those members
ρ = (α, β) of A in which the blocks of α contained within any block of β occur from left
to right in decreasing order according to the size of the first element, with the first element
also the smallest within each of these blocks. To complete the proof, we define a weight-
preserving bijection between A∗ and L(n, k). To do so, given ρ = (α, β) ∈ A∗, simply erase
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parentheses enclosing the blocks of α lying within each block of β and concatenate words.
To reverse this, within each block of λ ∈ L(n, k), place a divider just before each left-to-right
minimum. Note that each left-to-right minimum in λ (except for those corresponding to
block minima ) contributes a factor of b towards the weight of λ, just as each block of α,
excepting the smallest, lying within a block of β contributes a factor of b towards the weight
u(ρ) since these blocks occur in decreasing order.

A similar argument can be applied to Proposition 13.

Combinatorial proof of Proposition 13.

We prove, equivalently,

Ga;b(n, k) =
(−1)n

2k

n
∑

ℓ=k

(−2)ℓG−a;t(n, ℓ)G t
2
; b
2
(ℓ, k), (40)

where Ga;b(n, k) satisfies (36) and a = −s, b = 1 + s, and t = 1 − s for some parameter s.
Let Aℓ and A be as in the proof of Proposition 16 above. If ρ = (α, β) ∈ Aℓ, then define the
weight r(ρ) by

r(ρ) = (−1)n−ℓ2ℓ−kw−a;t(α)w t
2
; b
2
(β).

By (37), the right-hand side of (40) gives the total weight with respect to r of all the members
of A. But since nrec(α) + rec∗(α) = n− ℓ and nrec(β) + rec∗(β) = ℓ− k for all α ∈ L(n, ℓ)
and β ∈ L(ℓ, k), we may rewrite the r-weight more simply as

r(ρ) = wa;−t(α)wt;b(β).

Identity (40) now follows from the proof of Proposition 16.

6 Touchard polynomials of arbitrary integer order and

generalized Bell polynomials

Following [21], we define the Touchard polynomials (also called exponential polynomials) for
n ∈ N by

Tn(x) := e−x(XD)nex. (41)

Note that one can obtain from this definition of the Touchard polynomials and the fact that
(XD)n =

∑n
k=0 S(n, k)X

kDk the relation

Tn(x) =
n
∑

k=0

S(n, k)xk = Bn(x), (42)

where the second equality corresponds to the definition of the conventional Bell polynomials.
In [21], Touchard polynomials of higher order are considered. They are defined for m ∈ N

(and n ∈ N) by
T (m)
n (x) := e−x(XmD)nex (43)
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and reduce for m = 1 to the case above. Many of their properties are discussed in [21].
In particular, noting that the normal ordering of (XmD)n leads to the generalized Stirling
numbers Sm,1(n, k), one has a close connection between the Touchard polynomials of order
m and the Stirling numbers Sm,1(n, k). On the other hand, from Lemma 15 we know that

V 7→ Xm and U 7→ D defines a representation for UV = V U + mV
m−1
m , i.e., of the case

s = m−1
m

and h = m. Thus,

(XmD)n =
n
∑

k=0

Sm−1
m

;m(n, k)X
(m−1)(n−k)+mkDk = X(m−1)n

n
∑

k=0

Sm−1
m

;m(n, k)X
kDk.

Inserting this into (43) shows the first part of the following theorem.

Theorem 21. Let m ∈ N. The Touchard polynomials of order m are given as

T (m)
n (x) = x(m−1)n

n
∑

k=0

Sm−1
m

;m(n, k)x
k. (44)

The polynomial T
(m)
n has degree mn in x and can be written in terms of generalized Bell

polynomials as
T (m)
n (x) = x(m−1)n

Bm−1
m

;m|n(x). (45)

In particular, T
(m)
n (1) = Bm−1

m
;m(n).

Proof. The first equation (44) was already derived above. Inserting the definition of the
generalized Bell polynomials shows the second equation. The last assertion follows from
Bm−1

m
;m|n(1) = Bm−1

m
;m(n).

Example 22. Let us consider m = 1. In that case we obtain T
(1)
n (1) = B0;1(n) ≡ B(n), the

conventional Bell numbers (A000110 in [64]), as was to be expected. For m = 2 we obtain

T
(2)
n (1) = B1

2
;2(n), where B1

2
;2(n) =

∑n
k=0 L(n, k) since S 1

2
;2(n, k) = L(n, k), where we have

denoted the (unsigned) Lah number by L(n, k). For m = 3 one obtains T
(3)
n (1) = B2

3
;3(n).

Corollary 23 ([21]). The Touchard polynomials of order m ≥ 2 have the explicit expression

T (m)
n (x) = [(m− 1)x(m−1)]n

n
∑

k=0

k
∑

j=0

(−1)k−j

k!

(

k

j

)

Γ(n+ j
m−1

)

Γ( j
m−1

)
xk. (46)

Proof. In [44, Theorem 3.9], the following expression was derived for the generalized Stirling
numbers (where s 6= 0):

Ss;h(n, k) =
hn−ksnn!

(1− s)kk!

k
∑

j=0

(−1)k−j

(

k

j

)(

n+ j
s
− j − 1

n

)

. (47)

Inserting s = m−1
m

and h = m, this equals

Sm−1
m

;m(n, k) =
(m− 1)nn!

k!

k
∑

j=0

(−1)k−j

(

k

j

)(

n+ j
m−1

− 1

n

)

.
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Using
(

n+ j
m−1

− 1

n

)

=
Γ(n+ j

m−1
)

Γ( j
m−1

)n!
,

inserting this into (44), and simplifying the resulting expression shows the claimed equation.

The explicit form of the Touchard polynomials of order m ≥ 2 was also derived in [21],
see Equation (40) and the subsequent discussion. It was mentioned in [21, Equation (37)]
that the higher order Touchard polynomials satisfy the recursion relation

(xm + xmD)T (m)
n (x) = T

(m)
n+1(x). (48)

Let us consider Touchard polynomials for a fixed order m ∈ N with m ≥ 2. Recall-
ing Theorem 9, we observe that the sequence of generalized Bell polynomials Bm−1

m
;m|n(x)

satisfies for x > 0 the convexity property. From the obvious inequality

(xm−1 − 1)2 ≥ 0,

we obtain 2xm−1 ≤ 1+ x2(m−1) and, after multiplication by x(m−1)n (here x ≥ 0 is used), the
inequality

2x(m−1)(n+1) ≤ x(m−1)n + x(m−1)(n+2),

which shows that the sequence x(m−1)n also possesses the convexity property for x > 0.

Corollary 24. For a fixed order m ≥ 2, the sequence (T
(m)
n (x))n∈N of Touchard polynomials

of order m can be written as a product of two sequences which both possess for x > 0 the
convexity property.

Recall that a sequence (an)n∈N is called log concave if and only if a2n ≤ an−1an+1 for all
n ≥ 2. Let (an)n∈N and (bn)n∈N be given sequences. We will say that the two sequences are
2-log concave if and only if

an−1

an
≤ bn
bn+1

and
bn−1

bn
≤ an
an+1

(49)

for all n ≥ 2.

Proposition 25. Let two convex sequences (an)n∈N and (bn)n∈N be given and assume that
they are in addition 2-log concave. Then the product sequence (cn)n∈N with cn = anbn is also
convex.

Proof. Since (an)n∈N and (bn)n∈N are both convex, one has 2an ≤ an−1 + an+1 as well as
2bn ≤ bn−1 + bn+1, implying

4cn ≤ cn−1 + cn+1 + an−1bn+1 + an+1bn−1.

Thus,
2cn ≤ cn−1 + cn+1 + (an−1bn+1 + an+1bn−1 − 2anbn),

and cn is convex if an−1bn+1 + an+1bn−1 − 2anbn ≤ 0. Since the two sequences (an)n∈N and
(bn)n∈N are 2-log concave, they satisfy an−1bn+1 ≤ anbn as well as bn−1an+1 ≤ anbn, showing
the desired inequality.
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In Corollary 24, it was shown that the sequences of Touchard polynomials of higher order
can be written as products of two convex sequences of polynomials. In view of Proposition 25,
one could hope that the sequences (x(m−1)n)n∈N and (Bm−1

m
;m|n(x))n∈N are 2-log concave,

implying that the sequence (T
(m)
n (x))n∈N is convex (for x > 0). Unfortunately, this is not

true. The two inequalities (49) give for an = x(m−1)n and bn = Bm−1
m

;m|n(x)

Bm−1
m

;m|n+1(x) ≤ xm−1
Bm−1

m
;m|n(x) and xm−1

Bm−1
m

;m|n−1(x) ≤ Bm−1
m

;m|n(x).

Together they imply
Bm−1

m
;m|n+1(x) = xm−1

Bm−1
m

;m|n(x),

which is not true.
It is now very tempting to introduce Touchard polynomials of negative order by using

(43) for −m with m ∈ N.

Definition 26. Let m ∈ N. The Touchard polynomials of negative order −m are defined
for all n ∈ N by

T (−m)
n (x) := e−x(X−mD)nex. (50)

Remark 27. One can also define the Touchard polynomials of order zero, but due to T
(0)
n (x) =

e−xDnex = 1 for all n ∈ N, no interesting polynomials result.

From the definition above, it is easy to see that the analogue of (48) holds true, i.e.,

(x−m + x−mD)T (−m)
n (x) = T

(−m)
n+1 (x). (51)

In complete analogy to the case of positive order, one has the following theorem.

Theorem 28. The Touchard polynomials of negative order −m are given as

T (−m)
n (x) = x−(m+1)n

n
∑

k=0

Sm+1
m

;−m(n, k)x
k. (52)

Furthermore, T
(−m)
n is a polynomial in 1

x
of degree (m+1)n− 1 and can be written in terms

of the generalized Bell polynomials as

T (−m)
n (x) = x−(m+1)n

Bm+1
m

;−m|n(x). (53)

In particular, T
(−m)
n (1) = Bm+1

m
;−m(n).

Proof. Using Lemma 15 for λ = −m, we find that

(X−mD)n = X−(m+1)n

n
∑

k=0

Sm+1
m

;−m(n, k)X
kDk.

Inserting this into the definition of T
(−m)
n (x), one has shown that

T (−m)
n (x) = e−xx−(m+1)n

n
∑

k=0

Sm+1
m

;−m(n, k)x
kex,

which is equivalent to the first assertion. The other assertions are shown in analogy to
Theorem 21.
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As in the case of positive order, one can obtain an explicit expression for the Touchard
polynomials of negative order.

Corollary 29. The Touchard polynomials of negative order −m have the explicit expression

T (−m)
n (x) =

(

−(m+ 1)

x(m+1)

)n n
∑

k=0

k
∑

j=0

(−1)k−j

k!

(

k

j

)

Γ(n− j
m+1

)

Γ(1− j
m+1

)
xk. (54)

It seems to be nontrivial to find a general expression for T
(−m)
n (x) that is more explicit

than this. When m = 2, for example, we get

T (−2)
n (x) = x−3n

n
∑

k=1

S 3
2
;−2(n, k)x

k = x−3n
B3

2
;−2|n(x).

In the case m = 1, however, one obtains a more pleasing result.

Theorem 30. The Touchard polynomials of order −1 may be expressed by Bessel polyno-
mials, i.e.,

T (−1)
n (x) = x−nyn−1(−

1

x
), (55)

where yn−1 is the (n − 1)-th Bessel polynomial defined in (20). In particular, T
(−1)
n (x) is a

polynomial of degree 2n− 1 in 1
x
.

Proof. From (52) we obtain for m = 1 the expression

T (−1)
n (x) = x−2n

n
∑

k=1

S2;−1(n, k)x
k = x−2n

n
∑

k=1

b(n, k)xk, (56)

where we have used (22) in the second equation. Using the definition of the Bessel numbers
b(n, k) and the explicit form of the Bessel polynomials given in (20), we obtain

yn−1(z) =
n
∑

k=1

b(n, k)(−z)n−k,

hence

yn−1(−
1

x
) = x−n

n
∑

k=1

b(n, k)xk.

Inserting this into the above equation for T
(−1)
n (x) yields the assertion.

Example 31. The first few Touchard polynomials of order −1 are given explicitly as

T
(−1)
1 (x) = x−2(x),

T
(−1)
2 (x) = x−4(x2 − x),

T
(−1)
3 (x) = x−6(x3 − 3x2 + 3x),

T
(−1)
4 (x) = x−8(x4 − 6x3 + 15x2 − 15x).
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Proposition 32. Let s = 2 and h = −1. The n-th meromorphic Bell polynomial B2;−1|n(x)
can be expressed by Bessel polynomials, i.e.,

B2;−1|n(x) = xnyn−1(−
1

x
) = x2nT (−1)

n (x). (57)

In particular, the n-th meromorphic Bell number B2;−1(n) is given by B2;−1(n) = yn−1(−1) =

T
(−1)
n (1).

Proof. From the definition and (56), one has

B2;−1|n(x) =
n
∑

k=1

S2;−1(n, k)x
k = x2nT (−1)

n (x) = xnyn−1(−
1

x
),

showing the first assertion. Recalling Bs;h(n) = Bs;h|n(1), the remaining assertions follow.

In the case s = 2 and h = −1, one can also write B2;−1|n(x) =
∑n

k=1 b(n, k)x
k. For the

dual parameters s = −1 and h = 1, one has in a similar fashion

B−1;1|n(x) =
n
∑

k=1

S−1;1(n, k)x
k =

n
∑

k=1

B(n, k)xk.

Defining the Hermite polynomials Hn by their exponential generating function [16, Page 50],

e2tz−t2 =
∑

n≥0

Hn(z)
tn

n!
,

it was shown in [44, Example 4.2] that

B−1;1(n) =

(

i√
2

)n

Hn

(

1

i
√
2

)

.

This is equivalent to
n
∑

k=1

B(n, k) =

(

i√
2

)n

Hn

(

1

i
√
2

)

,

which is also mentioned in [76, Page 631]. For Hermite polynomials one has the classical
Rodriguez formula [58, Page 45], yielding the following property analogous to (41):

Hn(x) = (−1)nex
2

Dne−x2

. (58)

Note that considering successive derivatives of e−x2
involves the combinatorics of the

product rule. On the other hand, considering (X−1D) instead ofD shows that (X−1D)e−x2
=

(−2)e−x2
, hence

(X−1D)ke−x2

= (−2)ke−x2

. (59)
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This shows that - although considering Dne−x2
is difficult - (X−1D)ne−x2

is simple! Recall
that (29) allows us to transform the derivative Dn into a sum of “derivatives” (X−1D)k. It
follows that

Hn(x) = (−1)nex
2

Dne−x2

= (−1)nex
2

n
∑

k=1

S−1;1(n, k)X
2k−n(X−1D)ke−x2

= (−x)−n

n
∑

k=1

S−1;1(n, k)(−2x2)k,

where we have used (59) in the last line. Letting z = −2x2, hence x = −i
√

z/2 (we choose
the negative root), we may write

B−1;1|n(z) =
n
∑

k=1

S−1;1(n, k)z
k =

(

i
√
z√
2

)n

Hn

( √
z

i
√
2

)

.

Thus, we have shown the following analogue to Proposition 32.

Proposition 33. Let s = −1 and h = 1. The n-th generalized Bell polynomial B−1;1|n(x)
can be expressed by Hermite polynomials, i.e.,

B−1;1|n(x) =

(

i
√
x√
2

)n

Hn

(√
x

i
√
2

)

.

In particular, the n-th generalized Bell number B−1;1(n) is given by

B−1;1(n) =

(

i√
2

)n

Hn

(

1

i
√
2

)

.

As the last point of this section, we wish to determine the exponential generating function
for the Touchard polynomials of negative order. To do so, we first recall some results con-
cerning the higher order case discussed in [21] as well as some related operational formulas.
Note that the case m = 1 corresponds to the conventional Bell numbers, yielding the well
known result [57, Page 64]

∑

n≥0

λn

n!
T (1)
n (x) =

∑

n≥0

λn

n!
Bn(x) = ex(e

λ−1).

Now, let us consider the case m ≥ 2. Directly from the definition of T
(m)
n (x) in (43), we

obtain
∑

n≥0

λn

n!
T (m)
n (x) = e−xeλx

mDex, (60)

where we have denoted D = d
dx

as above. For such generalized exponential operators, the
action of eλq(x)D on a given function f is given by [22, Equation (4)]

eλq(x)Df(x) = f [F−1
q (λ+ Fq(x))], (61)
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where

Fq(x) =

∫ x dζ

q(ζ)
(62)

and F−1
q is its inverse. Note that for q(x) = 1 one obtains Fq(x) = x and, consequently,

eλDf(x) = f(x + λ). As another example, consider q(x) = x. It follows that Fq(x) = ln(x)
as well as F−1

q (x) = ex, yielding eλxDf(x) = f(eλx). Now, we turn to q(x) = xm with m ≥ 2

an integer. It follows that Fq(x) = −x−(m−1)

m−1
and F−1

q (x) = m−1

√

− 1
(m−1)x

. Inserting this into

(61) yields, after some rearranging,

eλx
mDf(x) = f

(

x
m−1
√

1− (m− 1)λxm−1

)

, (63)

which is mentioned in [21, Equation (35)] and was already known to the Reverend Charles
Graves in the early 1850s [29]! Inserting this into (60) gives the final result

∑

n≥0

λn

n!
T (m)
n (x) = e

x

[

{1−(m−1)λxm−1}−
1

m−1−1

]

, (64)

which can also be found in [21, Equation (38)] (with ℓ = 0). To derive this result we
could have used, alternatively, the connection (45) to generalized Bell polynomials. It was
shown in [44, Corollary 4.1] that the exponential generating function of the generalized Bell
polynomials is given for s ∈ R \ {0, 1} by

∑

n≥0

µn

n!
Bs;h|n(x) = e

{

1−(1−hsµ)
s−1
s

}

x
h(s−1) . (65)

Using (45), one finds

∑

n≥0

λn

n!
T (m)
n (x) =

∑

n≥0

(λxm−1)n

n!
Bm−1

m
;m|n(x).

On the right-hand side of the last equation, one can use (65) since m−1
m

6= 0, 1 for m ≥ 2 and
obtain exactly (64).

Let us now turn to Touchard polynomials of order −m with m ∈ N. Here we have the
following result.

Theorem 34. The exponential generating function of the Touchard polynomials of negative
order −m is given by

∑

n≥0

λn

n!
T (−m)
n (x) = e

x

[

{1+(m+1)λx−(m+1)} 1
m+1−1

]

= e
m+1
√

xm+1+(m+1)λ−x. (66)
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Proof. In this case, one has the connection (53) to generalized Bell polynomials, implying

∑

n≥0

λn

n!
T (−m)
n (x) =

∑

n≥0

1

n!

(

λ

xm+1

)n

Bm+1
m

;−m|n(x).

Applying (65) to the right-hand side (with µ = λ
xm+1 , s =

m+1
m

and h = −m) yields the first
asserted equation. The second equation follows easily.

Let us discuss briefly the preceding result from the operational point of view. Here
we have to consider eλx

−mDf(x) so that q(x) = x−m. It follows that Fq(x) = xm+1

m+1
and

F−1
q (x) = m+1

√

(m+ 1)x. Inserting this into (61) yields, after some rearranging,

eλx
−mDf(x) = f( m+1

√

xm+1 + (m+ 1)λ). (67)

Using this, it follows in analogy to the case m ≥ 2 from the definition of T
(−m)
n (x) in (50)

that
∑

n≥0

λn

n!
T (−m)
n (x) = e−xeλx

−mDex = e
m+1
√

xm+1+(m+1)λ−x,

and the expression on the right-hand side equals the one given in (66).

Corollary 35. One has the operational rule

eλx
−1Df(x) = f(

√
x2 + 2λ).

The exponential generating function of the Touchard polynomials of order −1 is given by

∑

n≥0

λn

n!
T (−1)
n (x) = e

√
x2+2λ−x. (68)

Proof. The first assertion follows from (67), while the second follows from (66).

Remark 36. For the Touchard polynomials of order −1, we can use another relation to obtain
(68). For this, we recall the connection to Bessel polynomials established in Theorem 30,

i.e., T
(−1)
n (x) = x−nyn−1(− 1

x
). Let us define the related polynomials fn(x) := xnyn−1(

1
x
).

Carlitz has shown [13, Equation (2.5)] that one has for the fn(x) the exponential generating
function

∑

n≥0

λn

n!
fn(x) = ex{1−

√
1−2λ}.

Using the relation T
(−1)
n (x) =

(

− 1
x2

)n
fn(−x), one therefore finds

∑

n≥0

λn

n!
T (−1)
n (x) =

∑

n≥0

1

n!

(

− λ

x2

)n

fn(−x) = e
−x

{

1−
√

1+2 λ

x2

}

,

showing (68).
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7 The q-analogue of the generalized Stirling numbers

The main motivation for the definition of the generalized Stirling numbers came from the
combinatorial aspects of two variables U, V satisfying the commutation relation

UV = V U + hV s.

Clearly, the case s = 0 corresponds to the Weyl algebra UV = V U + h, see (1). The com-
mutation relation of the Weyl algebra has been q-deformed by postulating the commutation
relation

UV = qV U + h, (69)

i.e., the commutator [U, V ] ≡ UV − V U = h has been replaced by the q-commutator
[U, V ]q ≡ UV − qV U = h. In the following, we assume again h ∈ C \ {0}. Let s ∈ R. We
consider variables U, V satisfying the commutation relation

UV = qV U + hV s (70)

(we assume a generic q ∈ C, but for the calculations it is only important that q is central in
the algebra generated by U, V ). This commutation relation is the q-analogue of (4).

If q is generic and x is a complex number or an indeterminate, then define the q-basic
number [x]q by

[x]q :=
1− qx

1− q
.

When x = n is a non-negative integer, then [n]q is also given by 1 + q + · · ·+ qn−1 if n ≥ 1,
with [0]q := 0. The associated factorial is given by [n]q! := [n]q[n − 1]q · · · [2]q[1]q if n ≥ 1,
with [0]q! := 1. Furthermore, the q-binomial coefficient (or Gaussian binomial coefficient) is
defined by

[

n
k

]

q

=
[n]q!

[n− k]q![k]q!

if 0 ≤ k ≤ n, and is zero if k < 0 or if k > n ≥ 0. In the ring of polynomials in the q-variable
x, one can introduce the Jackson-derivative Dq by

Dqw(x) :=
w(qx)− w(x)

(q − 1)x
, (71)

and it is a simple consequence that

Dqx
n = [n]qx

n−1. (72)

7.1 Definition of the q-analogue of Ss;h(n, k) and first results

The following lemma was already derived in [41] and can be shown by a simple induction.

Lemma 37. [41, Lemma 4.2] Let U and V be variables satisfying (70). Then the following
identity holds true for all k ∈ N:

UV k = qkV kU + h[k]qV
s+k−1. (73)
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In close analogy to the case q = 1 considered in (5), we define the corresponding q-
deformed generalized Stirling numbers Ss;h(n, k|q) as normal ordering coefficients of (V U)n,
i.e.,

(V U)n =
n
∑

k=0

Ss;h(n, k|q)V s(n−k)+kUk, (74)

where U and V satisfy (70). The corresponding q-deformed generalized Bell numbers are
defined in analogy to the conventional case by

Bs;h(n|q) :=
n
∑

k=0

Ss;h(n, k|q). (75)

Example 38. The case s = 0 and h = 1 corresponds to the q-deformed Weyl algebra
(69) and one has a representation by operators V 7→ X and U 7→ Dq, where Dq is the
Jackson-derivative defined in (71). It is well-known (see, e.g., [15, Equation (42)]) that

(XDq)
n =

n
∑

k=0

Sq(n, k)X
kDk

q , (76)

where Sq(n, k) are the q-deformed Stirling numbers of the second kind satisfying [50, Equa-
tion (1.14)]

[x]nq =
n
∑

k=0

Sq(n, k)[x]
k
q ,

with [x]kq = [x]q[x− 1]q · · · [x− k+ 1]q, as well as the recursion relation [50, Equation (1.15)]

Sq(n+ 1, k) = qk−1Sq(n, k − 1) + [k]qSq(n, k).

Sometimes also the numbers S̃q(n, k) = q−(
k
2)Sq(n, k) are considered which arose in the work

of Carlitz [12] and Gould [28]. Comparing (74) and (76), we obtain

S0;1(n, k|q) = Sq(n, k), (77)

in analogy to the case q = 1 mentioned in (8).

Example 39. The case s = 2 and h = −1 corresponds to the q-meromorphic Weyl algebra
introduced by Diaz and Pariguan [24], where one has the commutation relation

UV = qV U − V 2.

Clearly, for q = 1, the above commutation relation reduces to the one of the meromorphic
Weyl algebra given in (16). According to [24, Theorem 5], one has a representation by
operators1 V 7→ X−1 and U 7→ Dq := q−1Dq−1 . Let us check this. Using the q-Leibniz rule
Dq(fg) = Dq(f)g + Iq(f)Dq(g), where Iq(f)(x) = f(qx), we find

Dq(x
−1f(x)) = q−1Dq−1(x−1f(x))

= q−1
(

Dq−1(x−1)f(x) + (q−1x)−1Dq−1(f(x))
)

= −x−2f(x) + qx−1
Dq(f(x)),

1Note that Diaz and Pariguan [24] consider the commutation relation UV = qV U + V 2 which implies an
additional sign in the representation.
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where we have used in the last line Dq−1(x−1) = −qx−2. Thus,

DqX
−1 = qX−1

Dq − (X−1)2,

as was to be verified. According to (74), the corresponding q-meromorphic Stirling numbers
S2;−1(n, k|q) are defined by

(X−1
Dq)

n =
n
∑

k=0

S2;−1(n, k|q)(X−1)2n−k
D

k
q .

This relation reduces for q = 1 to (27).

The first few instances of the q-deformed generalized Stirling numbers can be determined
directly from their definition. Clearly, (V U)1 = V U , so Ss;h(1, 1|q) = 1 (and, consequently,
Bs;h(1|q) = 1). The first interesting case is n = 2. Directly from the commutation relation
and using (70), one finds

(V U)2 = V UV U = V {qV U + hV s}U = qV 2U2 + hV s+1U,

implying Ss;h(2, 1|q) = h,Ss;h(2, 2|q) = q (and, consequently, Bs;h(2|q) = q + h). The next
instance n = 3 is slightly more tedious, but completely analogous,

(V U)3 = V U{qV 2U2 + hV s+1U}
= qV {UV 2}U2 + hV {UV s+1}U
= qV {q2V 2U + h[2]qV

s+1}U2 + hV {qs+1V s+1U + h[s+ 1]qV
2s}U

= q3V 3U3 + hq{[2]q + qs}V s+2U2 + h2[s+ 1]qV
2s+1U,

where we have used in the third line (73). This implies

Ss;h(3, 1|q) = h2[s+ 1]q, Ss;h(3, 2|q) = hq{[2]q + qs}, Ss;h(3, 3|q) = q3,

and, consequently, Bs;h(3|q) = h2[s+ 1]q + hq{[2]q + qs}+ q3.
As in the case q = 1, one can determine the recursion relation of the q-deformed gener-

alized Stirling numbers.

Theorem 40. The numbers Ss;h(n, k|q) defined by (74) satisfy the recursion relation

Ss;h(n+ 1, k|q) = qs(n+1−k)+k−1
Ss;h(n, k − 1|q) + h[s(n− k) + k]qSs;h(n, k|q) (78)

for all n ≥ 0 and k ≥ 1, with Ss;h(n, 0|q) = δn,0 and Ss;h(0, k|q) = δ0,k for all n, k ∈ N0.

Proof. Starting from (74), one has (V U)n+1 =
∑n+1

k=1 Ss;h(n+ 1, k|q)V s(n+1−k)+kUk. On the
other hand, one has

(V U)n+1

=
n
∑

k=1

Ss;h(n, k|q)V UV s(n−k)+kUk

=
n
∑

k=1

Ss;h(n, k|q)V {qs(n−k)+kV s(n−k)+kU + h [s(n− k) + k]q V
s(n−k)+k−1+s}Uk

=
n+1
∑

k=1

Ss;h(n, k|q){qs(n−k)+kV s(n−k)+k+1Uk+1 + h [s(n− k) + k]q V
s(n+1−k)+kUk},
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where we have used (73) in the second line. Comparing coefficients yields the assertion.

Recursion (78) for Ss;h(n, k|q) is the q-analogue of the recursion (6) for Ss;h(n, k). The
following corollary can be derived directly from (78).

Corollary 41. The q-deformed generalized Stirling numbers satisfy the relation

Ss;h(n, k|q) = hn−k
Ss;1(n, k|q). (79)

Let us consider some special choices of the parameters s and h.

Example 42. Let s = 0 and h = 1. It follows from (78) that

S0;1(n+ 1, k|q) = qk−1
S0;1(n, k − 1|q) + [k]qS0;1(n, k|q),

which is the recursion relation of the conventional q-Stirling numbers of the second kind, see
Example 38. Thus, S0;1(n, k|q) ≡ Sq(n, k).

Example 43. Let s = 1 and h = −1. It follows from (78) that

S1;−1(n+ 1, k|q) = qnS1;−1(n, k − 1|q)− [n]qS1;−1(n, k|q).

Gould defined in [28] the q-Stirling numbers of the first kind s̃q(n, k) (building on the treat-

ment of Carlitz [12]). In our context, the slight variant sq(n, k) = q−(
n
2)s̃q(n, k) is more

convenient since then one has in analogy to the undeformed case the relation

[x]nq =
n
∑

k=0

sq(n, k)[x]
k
q .

The recursion relation for these q-Stirling numbers of the first kind sq(n, k) is given by

sq(n+ 1, k) = q−nsq(n, k − 1)− q−n[n]qsq(n, k),

from which one can show, using the recursions, that sq(n, k) = qk−n
S1;−1(n, k|1/q). Thus,

S1;−1(n, k|q) =
(

1

q

)n−k

s 1
q
(n, k). (80)

Using (79), one obtains for arbitrary h 6= 0 the relation

S1;h(n, k|q) =
(

−h
q

)n−k

s 1
q
(n, k).

Using (78), it is possible to determine an explicit formula for Ss;h(n, k|q) for arbitrary
s 6= 1 and h 6= 0. To do so, we will need the following result.
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Theorem 44. [39, Theorem 1.1] Suppose (ai)i≥0 and (bi)i≥0 are sequences of complex num-
bers where the bi are distinct. Let {u(n, k)}n,k≥0 be the array defined by the recurrence

u(n+ 1, k) = u(n, k − 1) + (an + bk)u(n, k) (81)

for all n ≥ 0 and k ≥ 1, subject to the boundary conditions u(n, 0) =
∏n−1

i=0 (ai + b0) and
u(0, k) = δ0,k for all n, k ≥ 0. Then one has

u(n, k) =
k
∑

j=0





∏n−1
i=0 (bj + ai)

∏k
i=0
i 6=j

(bj − bi)



 , ∀ n, k ≥ 0. (82)

We now derive an explicit formula forSs;h(n, k|q) in the case s 6= 1. An explicit expression
for Ss;h(n, k|q) when s = 1 can be found in Example 43.

Theorem 45. If s 6= 1 and h 6= 0 are arbitrary, then

Ss;h(n, k|q) = hn−kqs(
n
2)−(s−1)(k2)−(n−k)

k
∑

j=0





∏n−1
i=0 ([si]1/q − [(s− 1)j]1/q)

∏k
i=0
i 6=j

([(s− 1)i]1/q − [(s− 1)j]1/q)



 , (83)

for all n ≥ k ≥ 1.

Proof. Let an,k = Ss;h(n, k|q). Multiplying (78) by q(s−1)(k2)−s(n+1
2 ), and letting

bn,k = q(s−1)(k2)−s(n2)an,k,

gives the recurrence
bn+1,k = bn,k−1 + hq−sn[sn− (s− 1)k]qbn,k,

which may be rewritten as

bn+1,k = bn,k−1 +
h

q
([sn]1/q − [(s− 1)k]1/q)bn,k. (84)

Applying Theorem 44 with

ai =
h[si]1/q
q

and bi = −h[(s− 1)i]1/q
q

,

and observing that s 6= 1, h 6= 0 implies that the bi are all distinct, gives

bn,k =

(

h

q

)n−k k
∑

j=0





∏n−1
i=0 ([si]1/q − [(s− 1)j]1/q)

∏k
i=0
i 6=j

([(s− 1)i]1/q − [(s− 1)j]1/q)



 . (85)

Noting an,k = qs(
n
2)−(s−1)(k2)bn,k gives the requested formula (83).
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Remark 46. If s 6= 0, 1 and h 6= 0, then (83) reduces for q = 1 to (47):

Ss;h(n, k|q) |q=1 = hn−k

k
∑

j=0





∏n−1
i=0 [s(i− j) + j]

∏k
i=0
i 6=j

[(s− 1)(i− j)]



 =
hn−ksn

(1− s)k

k
∑

j=0

(

∏n−1
i=0 [i− j + j

s
]

(−1)k−jj!(k − j)!

)

=
hn−ksnn!

(1− s)kk!

k
∑

j=0

(−1)k−j

(

k

j

)(

n+ j
s
− j − 1

n

)

= Ss;h(n, k).

Recall from Theorem 10 that in the case q = 1 one has the dual pair

{S−1;1(n, k),S2;−1(n, k)}

corresponding to Bessel numbers (of second and first kinds, respectively). Thus, the cor-
responding q-analogues might be interesting objects. One obtains from (78) the recursion
relations

S−1;1(n+ 1, k|q) = q2k−n−2
S−1;1(n, k − 1|q) + [2k − n]qS−1;1(n, k|q) (86)

and
S2;−1(n+ 1, k|q) = q2n−k+1

S2;−1(n, k − 1|q)− [2n− k]qS2;−1(n, k|q). (87)

We may give the following explicit formulas. If n is a positive integer, then let [2n]q!! =
[2n]q[2n− 2]q · · · [2]q and [2n− 1]q!! = [2n− 1]q[2n− 3]q · · · [1]q.

Proposition 47. If n ≥ k ≥ 1, then

S−1;1(n, k|q) = qk(k−1)[n]q!
k
∑

j=⌊n+1
2

⌋

(−1)k−j qj(j+1−2k)

[2j]q!![2k − 2j]q!!

[

2j
n

]

q

(88)

and

S2;−1(n, k|q) =
(−1)n−k

[k]q!

k
∑

j=1
j odd

(−1)
j−1
2 q

j2−1
4

+k−j[j]q!![2n− 2− j]q!!

[

k
j

]

q

. (89)

Proof. Let cn,k = S−1;1(n, k|q). Applying (83) when s = −1 and h = 1, and observing the
fact [−i]1/q = −q[i]q, gives

cn,k = qk(k−1)−(n2)
k
∑

j=0





∏n−1
i=0 ([2j]q − [i]q)

∏k
i=0
i 6=j

([2j]q − [2i]q)



 .

Noting [r]q − [s]q = qs[r − s]q, and rearranging factors, we obtain the requested formula for
cn,k.

Let dn,k = S2;−1(n, k|q). Applying (83) in the case when s = 2 and h = −1, gives

dn,k = qn(n−1)−(k2)−(n−k)
k
∑

j=0





∏n−1
i=0 ([j]1/q − [2i]1/q)
∏k

i=0
i 6=j

([j]1/q − [i]1/q)



 ,
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which may be rewritten as

dn,k =
(−1)n−kqn(n−1)−(k2)

[k]1/q!

k
∑

j=1
j odd

(−1)
j−1
2

(

1

q

)
j2−1

4
+(j+1)(n−k)

[j]1/q!![2n− 2− j]1/q!!

[

k
j

]

1/q

.

(90)
Using the facts

[j]1/q!! =

(

1

q

)
j2−1

4

[j]q!!

when j is odd and
[

k
j

]

1/q

=
1

qj(k−j)

[

k
j

]

q

,

and simplifying, yields the requested formula for dn,k.

Dulucq introduced in [25] q-analogues of the Bessel polynomials yn(x; q) in a combinato-
rial fashion and he gave the following expression generalizing (20).

Theorem 48. [25, Theorem 2.3] The q-analogue of the Bessel polynomial is given by

yn(x; q) =
n
∑

k=0

[

n+ k
n− k

]

q

[2k − 1]q!!q
(n−k

2 )xk. (91)

Furthermore, one has the recursion relation [25, Theorem 2.2]

yn+1(x; q) = [2n+ 1]qxyn(x; q) + q2n−1yn−1(x; q), (92)

with the initial values y0(x; q) = 1 and y1(x; q) = 1 + x.

Recall from Section 3 that the Bessel numbers of the first kind are defined by b(n, k) =
(−1)n−ka(n, k), where a(n, k) is the coefficient of xn−k in yn−1(x). Thus, we define in a
similar fashion the q-deformed Bessel number of the first kind b(n, k|q) to be (−1)n−k times
the coefficient of xn−k in yn−1(x; q). Thus,

b(n, k|q) = (−1)n−kq(
k−1
2 )
[

2n− k − 1
k − 1

]

q

[2(n− k)− 1]q!!. (93)

Using

[2(n− k)− 1]q!! =
[2(n− k)− 1]q!

[2(n− k)− 2]q!!
,

this can be written, equivalently, as

b(n, k|q) = (−1)n−kq(
k−1
2 ) [2n− k − 1]q!

[k − 1]q![2n− 2k]q!!
. (94)

It is the q-analogue to (21).
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Proposition 49. The q-deformed Bessel numbers of the first kind satisfy the recursion
relation

b(n+ 1, k|q) = qk−2b(n, k − 1|q)− qk−1[2n− k]qb(n, k|q). (95)

Proof. From (94), we obtain

b(n+ 1, k|q) = (−1)n+1−kq(
k−1
2 ) [2n− k + 1]q!

[k − 1]q![2n− 2k + 2]q!!

= −(−1)n−kq(
k−1
2 ) [2n− k − 1]q![2n− k]q[2n− k + 1]q

[k − 1]q![2n− 2k]q!![2n− 2k + 2]q
.

Using [2n− k + 1]q = [k − 1]q + qk−1[2n− 2k + 2]q, this gives

b(n+ 1, k|q) = −(−1)n−kq(
k−1
2 ) [2n− k − 1]q![2n− k]q

[k − 1]q![2n− 2k]q!!

(

[k − 1]q
[2n− 2k + 2]q

+ qk−1

)

= (−1)n−k+1q(
k−2
2 )+k−2 [2n− k]q!

[k − 2]q![2n− 2k + 2]q!!
− qk−1[2n− k]qb(n, k|q)

= qk−2b(n, k − 1|q)− qk−1[2n− k]qb(n, k|q),

as was to be shown.

Note that the recursion relation of the q-Bessel numbers of the first kind b(n, k|q) looks
similar to the one for S2;−1(n, k|q) given in (87), with only the powers of q differing, and we
seek a direct connection between these two numbers. Solving recurrence (95) in another way,
and equating the expression that results with the one in (94), yields the following q-identity
which seems to be new in the q = 1 case as well.

Corollary 50. If n ≥ k ≥ 1, then

[k]q[2n− k − 1]q!

[2n− 2k]q!!
=

k
∑

j=1
j odd

(−1)
j−1
2 q

j2−1
4

+(j−1)(n−k)[j]q!![2n− 2− j]q!!

[

k
j

]

q

. (96)

Proof. Let bn,k = b(n, k|q). Dividing both sides of (95) by q(
k−1
2 ), and letting cn,k =

q−(
k−1
2 )bn,k, gives the recurrence

cn+1,k = cn,k−1 −
1

q
([2n]q − [k]q)cn,k.

Applying Theorem 44 with

ai = − [2i]q
q

and bi =
[i]q
q

gives

cn,k = qk−n

k
∑

j=0





∏n−1
i=0 ([j]q − [2i]q)
∏k

i=0
i 6=j

([j]q − [i]q)



 ,
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which may be rewritten as

cn,k =
(−1)n−k

[k]q!

k
∑

j=1
j odd

(−1)
j−1
2 q

j2−1
4

+(j−1)(n−k)[j]q!![2n− 2− j]q!!

[

k
j

]

q

.

Noting bn,k = q(
k−1
2 )cn,k, equating the resulting expression for bn,k with the one given in (94),

and rearranging factors gives (96).

We can now state the relation between S2;−1(n, k|q) and the q-deformed Bessel numbers
b(n, k|q). It is the q-analogue of (22).

Proposition 51. The q-meromorphic Stirling numbers can be expressed by (1/q)-deformed
Bessel numbers of the first kind, i.e.,

S2;−1(n, k|q) = q(n−1)2(q−1)n−kb(n, k|q−1). (97)

Proof. It remains to collect several results already shown above. Recall from the proof of
Proposition 47 that S2;−1(n, k|q) is given by (90). Thus, denoting q̃ = 1/q, we have

S2;−1(n, k|q) = q̃(
k
2)−n(n−1) (−1)n−k

[k]q̃!

k
∑

j=1
j odd

(−1)
j−1
2 q̃

j2−1
4

+(j+1)(n−k)[j]q̃!![2n− 2− j]q̃!!

[

k
j

]

q̃

.

The sum on the right-hand side equals - apart from a factor q̃2(n−k) - precisely the sum on
the right-hand side of identity (96), where q is replaced by q̃, so that we obtain

S2;−1(n, k|q) = q̃(
k
2)−n(n−1) (−1)n−k

[k]q̃!
q̃2(n−k) [k]q̃[2n− k − 1]q̃!

[2n− 2k]q̃!!
.

This can be written as

S2;−1(n, k|q) = q̃(
k
2)−n(n−1)−(k−1

2 )q̃2(n−k)

(

(−1)n−kq̃(
k−1
2 ) [2n− k − 1]q̃!

[k − 1]q̃![2n− 2k]q̃!!

)

.

By (94), the term enclosed by parentheses equals b(n, k|q̃). Simplifying the exponent of q̃
and recalling q̃ = 1/q yields the assertion.

Let us consider for n ∈ N the associated q-meromorphic Bell polynomial

B2;−1|n(x; q) :=
n
∑

k=1

S2;−1(n, k|q)xk.

Using Proposition 51, this can be written as

B2;−1|n(x; q) = q(n−1)2−n

n
∑

k=1

b(n, k|q−1)(qx)k. (98)
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Exactly as in the case q = 1 (see the proof of Theorem 30), we have for the q-analogue of
the Bessel polynomials the relation

yn−1(−
1

x
; q) = x−n

n
∑

k=1

b(n, k|q)xk.

Considering 1/q instead of q, and then qx instead of x, yields

(qx)nyn−1(−
1

qx
;
1

q
) =

n
∑

k=1

b(n, k|q−1)(qx)k. (99)

Is is now straightforward to show the following q-analogue of Proposition 32.

Proposition 52. The n-th q-meromorphic Bell polynomial B2;−1|n(x; q) can be expressed by
(1/q)-deformed Bessel polynomials, i.e.,

B2;−1|n(x; q) = q(n−1)2xnyn−1(−
1

qx
;
1

q
). (100)

In particular, the corresponding q-meromorphic Bell numbers are given by

B2;−1(n|q) = q(n−1)2yn−1(−
1

q
;
1

q
).

Proof. Inserting (99) into (98) yields

B2;−1|n(x; q) = q(n−1)2−n(qx)nyn−1(−
1

qx
;
1

q
),

showing the first asserted equation. The second equation follows from

B2;−1(n|q) = B2;−1|n(1; q).

Recall that the q-deformed Lah numbers Lq(n, k), see [27], are given by

Lq(n, k) = qk(k−1) [n]q!

[k]q!

[

n− 1
k − 1

]

q

and satisfy the recursion relation

Lq(n+ 1, k) = qn+k−1Lq(n, k − 1) + [n+ k]qLq(n, k). (101)

From (78), one obtains for the choices s = 1/2 and h = 2 the recursion relation

S 1
2
;2(n+ 1, k|q) = q

n+k−1
2 S 1

2
;2(n, k − 1|q) + 2

[

n+ k

2

]

q

S 1
2
;2(n, k|q), (102)
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which is very similar to (101). In fact, using

[x

2

]

q
=

[x]√q

[2]√q

,

we can introduce q̃ =
√
q and get

S 1
2
;2(n+ 1, k|q) = q̃n+k−1

S 1
2
;2(n, k − 1|q) + 2

[2]q̃
[n+ k]q̃ S 1

2
;2(n, k|q).

Thus, we can easily show the following.

Proposition 53. The q-deformed generalized Stirling numbers S 1
2
;2(n, k|q) can be expressed

by
√
q-deformed Lah numbers, i.e.,

S 1
2
;2(n, k|q) =

(

2

1 +
√
q

)n−k

L√
q(n, k). (103)

Proof. Let us introduce T (n, k) := ( 2
1+

√
q
)n−kL√

q(n, k). It follows that

T (n+ 1, k)

=

(

2

1 +
√
q

)n+1−k

L√
q(n+ 1, k)

=

(

2

1 +
√
q

)n−(k−1)√
qn+k−1L√

q(n, k − 1) +

(

2

1 +
√
q

)n−k+1

[n+ k]√qL√
q(n, k)

=
√
qn+k−1T (n, k − 1) +

(

2

1 +
√
q

)

[n+ k]√qT (n, k),

for all n ≥ 0 and k ≥ 1. Thus, T (n, k) satisfies the same recursion relation as S 1
2
;2(n, k|q).

Since T (n, 0) = δn,0 and T (0, k) = δ0,k for all n, k ∈ N0, the initial values also coincide,
completing the proof.

Before closing this section, let us collect the results for the cases we have considered
explicitly in the following table.

(s, h) Ss;h(n, k|q) Comment

(0, 1) Sq(n, k) q-deformed Stirling numbers of the second kind (77)

(1,−1) (1/q)n−ks1/q(n, k) (1/q)-deformed Stirling numbers of the first kind (80)

(2,−1) q(n−1)2(1/q)n−kb(n, k|q−1) (1/q)-deformed Bessel numbers of the first kind (97)

(1
2
, 2) (2/(1 +

√
q))n−kL√

q(n, k)
√
q-deformed Lah numbers (103)

7.2 A comparison with the literature

The Stirling numbers introduced by Hsu and Shiue in [34] have been generalized in different
directions. Let us first mention the q-analogue introduced by Corcino, Hsu and Tan [20] and
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considered further in [18]. Introducing an exponential factorial of t with base a by

[t|a]n :=
n−1
∏

j=0

(t− aj),

with [t|a]0 = 1 and [t|a]1 = t− 1, a pair of exponential-type Stirling numbers

{S1[n, k], S2[n, k]} ≡ {S1[n, k; a, b, c], S2[n, k; b, a,−c]}

was introduced in [20] by the inverse relations

[t|a]n =
n
∑

k=0

S1[n, k][t− c|b]k

and

[t|b]n =
n
∑

k=0

S2[n, k][t+ c|a]k.

To obtain a kind of q-analogue, one may set a = qα, b = qβ and c = qγ − 1. Then the
resulting q-Stirling numbers σ1[n, k] may be introduced via

σ1[n, k] ≡ σ1[n, k;α, β, γ]q := S1[n, k; qα, qβ, qγ − 1](q − 1)n−k, (104)

with σ1[0, 0] = 1, where the case α = 0 or β = 0 is treated as the limit α → 0 or β → 0
whenever the limit exists; the case σ2[n, k] is similar. It has been shown, see [20, Proposition
6], that

lim
q→1

σ1[n, k;α, β, γ]q = S(n, k;α, β, γ).

Thus, the numbers σ1[n, k;α, β, γ]q are indeed a q-generalization of the generalized Stirling
numbers S(n, k;α, β, γ) due to Hsu and Shiue. They satisfy the recursion relation [20,
Proposition 8]

σ1[n+ 1, k;α, β, γ]q = σ1[n, k − 1;α, β, γ]q + ([kβ]q − [nα]q − [γ]q)σ
1[n, k;α, β, γ]q. (105)

Comparing this relation with the one for the q-deformed generalized Stirling numbers

Ss;h(n, k|q)

shows the following proposition.

Proposition 54. The q-deformed generalized Stirling numbers Ss;h(n, k|q) do not coincide
with the q-generalized Stirling numbers σ1[n, k;α, β, γ]q of Corcino, Hsu and Tan.

The generalized Stirling numbers S(n, k;α, β, r) were generalized in a slightly different
fashion by Remmel and Wachs [55], see also [7]. Remmel and Wachs presented two natural
ways to give p, q-analogues of these generalized Stirling numbers. Before presenting their
results, let us recall that the p, q-analogue of a real number x is given by

[x]p,q =
px − qx

p− q
,
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and the factorials [n]p,q! and binomial coefficients are defined in the natural fashion. Note
that choosing p = 1 gives the q-numbers considered above,

[x]1,q =
1− qx

1− q
= [x]q.

Now, the first type of generalization Remmel and Wachs introduced consists in replacing
(t − r) by ([t]p,q − [r]p,q) in (9) and (10). For example, they defined S1,p,q

n,k (α, β, r) in [55,
Equation (19)] by

([t]p,q − [r]p,q)([t]p,q − [r + α]p,q) · · · ([t]p,q − [r + (n− 1)α]p,q)

=
n
∑

k=0

S1,p,q
n,k (α, β, r)([t]p,q)([t]p,q − [β]p,q) · · · ([t]p,q − [(k − 1)β]p,q),

and, similarly, for S2,p,q
n,k (α, β, r). Furthermore, they showed the recursion relation [55, Equa-

tion (22)]

S1,p,q
n+1,k(α, β, r) = S1,p,q

n,k−1(α, β, r) + ([kβ]p,q − [nα− r]p,q)S
1,p,q
n,k (α, β, r), (106)

with S1,p,q
0,0 (α, β, r) = 1 and S1,p,q

n,k (α, β, r) = 0 if k < 0 or k > n.

Proposition 55. The q-generalized Stirling numbers σ1[n, k;α, β, γ]q of Corcino, Hsu and
Tan coincide for γ = 0 with the type-I p, q-generalized Stirling numbers S1,p,q

n,k (α, β, r) for
r = 0 and p = 1, i.e.,

σ1[n, k;α, β, 0]q = S1,1,q
n,k (α, β, 0).

Proof. Comparing the respective recursion relations (105) (for γ = 0) and (106) (for r = 0
and p = 1), we see that they are equal.

From our point of view, more interesting is the type-II p, q-analogue S̃1,p,q
n,k (α, β, r), which

Remmel and Wachs introduced by replacing (t−r) by [t−r]p,q in (9) and (10). More precisely
(see the discussion in [55, Page 6]), they defined S̃1,p,q

n,k (α, β, r) in [55, Equation (41)] as the
solution of the recursion relation

S̃1,p,q
n+1,k(α, β, r) = q(k−1)β−nα−rS̃1,p,q

n,k−1(α, β, r) + pt−kβ[kβ − nα− r]p,qS̃
1,p,q
n,k (α, β, r), (107)

with the initial conditions S̃1,p,q
0,0 (α, β, r) = 1 and S̃1,p,q

n,k (α, β, r) = 0 if k < 0 or k > n, and
showed that the numbers so defined satisfy [55, Equation (38)]

[t− r]p,q[t− r − α]p,q · · · [t− r − (n− 1)α]p,q

=
n
∑

k=0

S̃1,p,q
n,k (α, β, r)[t]p,q[t− β]p,q · · · [t− (k − 1)β]p,q. (108)

A similar result holds for S̃2,p,q
n,k (α, β, r). As Remmel and Wachs noted, the variable t is an

extra parameter and one should write S̃1,p,q
n,k (α, β, r, t) instead of S̃1,p,q

n,k (α, β, r) to specify the
dependence on t. However, since we are interested in the case p = 1, the parameter t will
play no role for us.

Now, we can show the q-analogue of Theorem 2.
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Theorem 56. The q-deformed generalized Stirling numbers Ss;h(n, k|q̃) are given by the

type-II p, q-analogue S̃1,p,q
n,k (α, β, r) of Remmel and Wachs for p = 1 and q = q̃

1
h , where the

parameters are chosen as α = −hs, β = h(1− s) and r = 0, i.e.,

Ss;h(n, k|q) =
(

h

[h]
q
1
h

)n−k

S̃1,1,q
1
h

n,k (−hs, h(1− s), 0). (109)

In particular, for h = 1 one has the identification

Ss;1(n, k|q) = S̃1,1,q
n,k (−s, 1− s, 0). (110)

Proof. Considering (107) for p = 1 with the choice of parameters α = −hs, β = h(1− s) and
r = 0 yields the recursion relation

S̃1,1,q
n+1,k(−hs, h(1− s), 0) = qh[s(n−k+1)+k−1]S̃1,1,q

n,k−1(−hs, h(1− s), 0)

+[h{s(n− k) + k}]qS̃1,1,q
n,k (−hs, h(1− s), 0),

which equals for h = 1 the one for Ss;1(n, k|q) given in (78), showing (110). Now, let us
assume h 6= 1. Recalling that we can write for any x,

[hx]q = [h]q[x]qh ,

the above recursion relation can be written with q̃ := qh and T (n, k) := S̃1,1,q
n,k (−hs, h(1−s), 0)

as
T (n+ 1, k) = q̃s(n−k+1)+k−1T (n, k − 1) + [h]q[s(n− k) + k]q̃T (n, k).

To get rid of the factor [h]q, we define

U(n, k) :=

(

h

[h]q

)n−k

T (n, k),

and obtain for U(n, k) the recursion relation

U(n+ 1, k) = q̃s(n−k+1)+k−1U(n, k − 1) + h[s(n− k) + k]q̃U(n, k).

Comparing this with (78), we see that U(n, k) satisfies the same recursion relation as
Ss;h(n, k|q̃) and, therefore, they are equal, upon comparing initial values. Thus, we have

Ss;h(n, k|q̃) = U(n, k) =

(

h

[h]q

)n−k

T (n, k) =

(

h

[h]q

)n−k

S̃1,1,q
n,k (−hs, h(1− s), 0).

Considering Ss;h(n, k|q) instead of Ss;h(n, k|q̃) yields the assertion.

Example 57. Let us consider s = 1/2 and h = 2. The identification (109) reduces in this
case to

S 1
2
;2(n, k|q) =

(

2

[2]√q

)n−k

S̃
1,1,

√
q

n,k (−1, 1, 0).

Using [2]√q = 1 +
√
q as well as Proposition 53, we find that

S̃
1,1,

√
q

n,k (−1, 1, 0) = L√
q(n, k),

which is the q-analogue of the relation S(n, k;−1, 1, 0) = L(n, k) discussed in Example 7.
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Corollary 58. The q-deformed generalized Stirling numbers Ss;1(n, k|q) can be written as
connection coefficients

[t]q[t+ s]q · · · [t+ (n− 1)s]q =
n
∑

k=0

Ss;1(n, k|q)[t]q[t+ (s− 1)]q · · · [t+ (k− 1)(s− 1)]q. (111)

Proof. Using the identification of Ss;1(n, k|q) with S̃1,1,q
n,k (−s, 1− s, 0) according to (110), the

asserted equation is just equation (108) for S̃1,1,q
n,k (−s, 1− s, 0).

Introducing the notation

[t](r,s)q := [t]q[t+ s]q · · · [t+ (r − 1)s]q,

we can write (111) briefly in the form

[t](n,s)q =
n
∑

k=0

Ss;1(n, k|q)[t](k,s−1)
q ,

which is the q-analogue of the corresponding identity for the case q = 1, see [44, Theorem
5.8].

8 Conclusion

In the present paper, we considered further the generalized Stirling numbers Ss;h(n, k) as
well as the corresponding Bell numbers Bs;h(n) introduced and discussed by the present
authors in [41, 42, 44, 45]. As a first point, it was shown that Ss;h(n, k) corresponds to the
particular case S(n, k;−hs, h(1− s), 0) of the three-parameter family of generalized Stirling
numbers introduced earlier by Hsu and Shiue [34]. From this, we obtained immediately that
the arrays of numbers Ss;h(n, k) and S1−s;−h(n, k) form a dual pair of inverse arrays, thereby
giving orthogonality relations. Furthermore, using a recent result of Corcino and Corcino
[19], this also shows that the family of generalized Bell polynomials Bs;h|n(x) is convex for
h ≥ 0 and 0 ≤ s ≤ 1 (with x > 0). The special case s = 0 and h = 1 corresponds to the
conventional Weyl algebra and is well-known. Th e case s = 2 and h = −1 corresponds
to the meromorphic Weyl algebra introduced by Diaz and Pariguan [23] and was already
briefly considered in [45]. In the present paper, this case was treated explicitly and the
connection to Bessel numbers and Bessel polynomials was established. For the dual case
s = −1 and h = 1, a similar connection to Hermite polynomials was shown. The generalized
Stirling and Bell numbers were also shown to be very closely connected to the Touchard
polynomials of higher order introduced recently by Dattoli et al. [21]. This allowed us to
derive some properties of the Touchard polynomials of higher order rather quickly and led to
the introduction of Touchard polynomials of negative order, for which similar properties were
shown. In particular, the Touchard polynomials of order −1 can be expressed through Bessel
polynomials. As a final aspect, certain natural q-analogues Ss;h(n, k|q) of the generalized
Stirling numbe rs were introduced by modifying the underlying commutation relation and
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first properties were shown, e.g., the recursion relation. It was also shown that these numbers
are not given by the q-analogue of the generalized Stirling numbers due to Hsu and Shiue
introduced by Corcino, Hsu and Tan [20], but rather as a special case of the type-II p, q-
analogue of the generalized Stirling numbers introduced by Remmel and Wachs [55]. Several
special choices for the parameters s and h were considered explicitly, in particular, the case
s = 2 and h = −1 corresponding to the q-meromorphic Weyl algebra introduced by Diaz
and Pariguan [24].

Let us point out a few other aspects which warrant further study. Clearly, there are many
properties of the generalized Stirling and Bell numbers to be unearthed (e.g., unimodality,
congruence properties). Also, it would be nice to find new connections to well-known combi-
natorial numbers and polynomials. As a next point, we would like to mention the Touchard
polynomials of higher or negative order for which most of their properties are not yet known.
Finally, the q-analogue Ss;h(n, k|q) (as well as the associated Bell numbers) should be con-
sidered in more depth. For example, it would be nice to exhibit more special cases explicitly,
to determine the parameters of dual pairs (thereby also obtaining orthogonality relations),
and to find q-analogues of other identities satisfied by Ss;h(n, k).
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[16] L. Comtet, Advanced Combinatorics, Reidel, 1974.

[17] R. B. Corcino, Some theorems on generalized Stirling numbers, Ars Combin. 60 (2001)
273–286.

[18] R. B. Corcino and C. Barientos, Some theorems on the q-analogue of the generalized
Stirling numbers, Bull. Malays. Math. Sci. Soc. 34 (2011) 487–501.

[19] R. B. Corcino and C. B. Corcino, On generalized Bell polynomials, Discrete Dyn. Nat.
Soc. 2011 (2011), Article 623456.

[20] R. B. Corcino, L. C. Hsu and E. L. Tan, A q-analogue of generalized Stirling numbers,
Fibonacci Quart. 44 (2006) 154–166.

[21] G. Dattoli, B. Germano, M. R. Martinelli and P. E. Ricci, Touchard like polynomials
and generalized Stirling numbers, Appl. Math. Comput. 12 (2012) 6661–6665.

[22] G. Dattoli, P. E. Ricci and D. Sacchetti, Generalized shift operators and pseudo-
polynomials of fractional order, Appl. Math. Comput. 141 (2003) 215–224.

[23] R. Diaz and E. Pariguan, Quantum symmetric functions, Comm. Algebra 33 (2005)
1947–1978.

[24] R. Diaz and E. Pariguan, On the q-meromorphic Weyl algebra, São Paulo J. Math. Sci.
3 (2009) 281–296.

[25] S. Dulucq, Un q-analogue des polynomes de Bessel, Sém. Lothar. Combin. 28 (1992),
Article B28i.

[26] H.-Y. Fan and N.-Q. Jiang, Operator formulas involving generalized Stirling number
derived by virtue of normal ordering of vacuum projector, Commun. Theor. Phys. 54
(2010) 651–653.

43



[27] A. M. Garsia and J. Remmel, A combinatorial interpretation of q-derangement numbers
and q-Laguerre numbers, European J. Combin. 1 (1980) 47–59.

[28] H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28 (1961)
281–289.

[29] C. Graves, On a generalization of the symbolic statement of Taylor’s Theorem, Proc.
Roy. Ir. Acad. 5 (1850-1853) 285–287.
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[48] Ž. Mijajlović and Z. Marković, Some recurrence formulas related to the differential
operator θD, Facta Univ. Ser. Math. Inform. 13 (1998) 7–17.

[49] V. V. Mikhailov, Normal ordering and generalized Stirling numbers, J. Phys. A 18

(1985) 231–235.

[50] S. C. Milne, A q-analog of restricted growth functions, Dobinski’s equality, and Charlier
polynomials, Trans. Amer. Math. Soc. 245 (1978) 89–118.

[51] M. Mohammad-Noori, Some remarks about the derivation operator and generalized
Stirling numbers, Ars Combin. 100 (2011) 177–192.

[52] T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, Proc.
Sympos. Pure Math. 19 (1971) 167–176.

[53] A. M. Navon, Combinatorics and fermion algebra, Il Nuovo Cimento 16 (1973) 324–330.

[54] J. Pitman, A lattice path model for the Bessel polynomials, Technical Report No. 551
(1999).

[55] J. B. Remmel and M. Wachs, Rook theory, generalized Stirling numbers and (p, q)-
analogues, Electron. J. Combin. 11 (2004) #P84.

[56] S. Roman, Operational formulas, Linear Multilinear Algebra 12 (1982) 1–20.

[57] S. Roman, The Umbral Calculus, Dover, 2005.

[58] G.-C. Rota, Finite Operator Calculus, Academic Press, 1975.

[59] H. F. Scherk, De evolvenda functiones (yd.yd.yd...ydX/dxn) disquisitiones nonullae an-
alyticae, PhD thesis, Berlin 1823. Publicly available from Göttinger Digitalisierungszen-
trum (GDZ).

[60] M. Schork, On the combinatorics of normal ordering bosonic operators and deformations
of it, J. Phys. A 36 (2003) 4651–4665.

45



[61] M. Schork, Normal ordering q-bosons and combinatorics, Phys. Lett. A 355 (2006)
293–297.
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