

Discrete Mathematics 256 (2002) 743-758

www.elsevier.com/locate/disc

Nouvelles statistiques de partitions pour les q-nombres de Stirling de seconde espèce

Gérald Ksavrelof*, Jiang Zeng

Institut Girard Desarques, Université Claude Bernard (Lyon 1), 69622 Villeurbanne Cedex, France

Received 2 October 2000; received in revised form 6 April 2001; accepted 28 May 2001

Abstract

Steingrimsson (Preprint, 1999) has recently introduced a partition analogue of Foata-Zeilberger's mak statistic for permutations and conjectured that its generating function is equal to the classical q-Stirling numbers of second kind. In this paper, we prove a generalization of Steingrímsson's Conjecture 12.

Résumé

Steingrímsson (Preprint, 1999) a récemment introduit un analogue en partitions de la statistique mak de Foata-Zeilberger pour les permutations et conjecturé que leur fonction génératrice est égale aux q-nombres de Stirling de seconde espèce. Dans cet article nous démontrons une généralisation de la Conjecture 12 de Steingrímsson. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Partition; q-Stirling numbers; Mahonian statistics

1. Introduction

Les q-nombres de Stirling de seconde espèce, notés $S_a(n,k)$, sont définis par la relation de récurrence:

$$S_q(n,k) = \begin{cases} q^{k-1} S_q(n-1,k-1) + [k]_q S_q(n-1,k) & \text{si } 1 \le k \le n, \\ \delta_{nk} & \text{si } n = 0 \text{ ou } k = 0, \end{cases}$$
(1)

0012-365X/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(02)00345-X

^{*} Corresponding author.

E-mail addresses: ksavrelo@desargues.univ-lyon1.fr (G. Ksavrelof), zeng@desargues.univ-lyon1.fr (J. Zeng).

où $[k]_q = 1 + q + \dots + q^{k-1}$ pour tout entier $k \ge 1$. Carlitz [1] et Gould [7] ont étudié pour la première fois ces nombres sous la forme $\tilde{S}_q(n,k) = q^{-(\frac{k}{2})}S_q(n,k)$. Dans les dernières années, beaucoups d'auteurs ont cherché des interprétations des q-nombres de Stirling $\tilde{S}_q(n,k)$ et $S_q(n,k)$ dans différents modèles tels que les partitions, fonctions à croissance restreinte [10–14], placement de tours [9,6], 0-1 tableaux [8,2] et juggling patterns [3].

Une partition en k blocs de $[n] = \{1, 2, ..., n\}$ sera noté $\pi = B_1 - \cdots - B_k$, où $B_1, ..., B_k$ sont les blocs classés par *ordre croissant* de leurs plus petits éléments. On note \mathcal{P}_n^k l'ensemble des partitions en k blocs de [n]. Etant donnée une partition π de [n], on répartit les entiers de [n] en quatre types de la manière suivante:

- un *ouvrant* est le plus petit élément d'un bloc de π ,
- un fermant est le plus grand élément d'un bloc de π ,
- un passant est un élément ni ouvrant ni fermant d'un bloc de π non réduit à un seul élément,
- \bullet un singleton est l'élément d'un bloc de π qui n'a qu'un seul élément.

L'ensemble des ouvrants, fermants, passants et singletons de π sera noté respectivement par $\mathcal{O}(\pi)$, $\mathcal{F}(\pi)$, $\mathcal{P}(\pi)$ et $\mathcal{S}(\pi)$. Il est évident que $\mathcal{S}(\pi) = \mathcal{O}(\pi) \cap \mathcal{F}(\pi)$.

Rappelons qu'un mot $w \in [k]^n$ est une fonction à croissance restreinte s'il satisfait les conditions suivantes:

$$w_1 = 1$$
 et $w_i \le \max\{w_i: 1 \le i < i\} + 1$ pour tout $i \in [n]$.

A toute partition $\pi = B_1 - \cdots - B_k \in \mathcal{P}_n^k$ on peut associer une *fonction à croissance* restreinte $w(\pi) = w_1 w_2 \dots w_n$ où w_i est l'indice du bloc de π contenant l'entier i pour $i \in [n]$.

Exemple. Si
$$\pi = 148 - 2 - 379 - 56$$
, alors $\mathcal{O}(\pi) = \{1, 2, 3, 5\}$, $\mathscr{F}(\pi) = \{8, 2, 9, 6\}$, $P(\pi) = \{4, 7\}$ et $S(\pi) = \{2\}$ et $w(\pi) = 123144313$.

Suivant Steingrímsson [11] on définit les huit statistiques coordonnées sur \mathscr{P}_n^k comme suit:

$$ros_{i}(\pi) = \#\{j \in \mathcal{O}(\pi) \mid i > j, w_{j} > w_{i}\},\$$

$$rob_{i}(\pi) = \#\{j \in \mathcal{O}(\pi) \mid i < j, w_{j} > w_{i}\},\$$

$$rcs_{i}(\pi) = \#\{j \in \mathcal{F}(\pi) \mid i > j, w_{j} > w_{i}\},\$$

$$rcb_{i}(\pi) = \#\{j \in \mathcal{F}(\pi) \mid i < j, w_{j} > w_{i}\},\$$

$$los_{i}(\pi) = \#\{j \in \mathcal{O}(\pi) \mid i > j, w_{j} < w_{i}\},\$$

$$lob_{i}(\pi) = \#\{j \in \mathcal{O}(\pi) \mid i < j, w_{j} < w_{i}\},\$$

$$lcs_i(\pi) = \#\{j \in \mathcal{F}(\pi) \mid i > j, w_j < w_i\},\$$

$$lcb_i(\pi) = \#\{j \in \mathcal{F}(\pi) \mid i < j, w_i < w_i\}.$$

On définit ensuite les huit statistiques ros, rob, rcs, rcb, lob, los, lcs et lcb comme la somme de leurs coordonnées, par exemple, $ros(\pi) = \sum_i ros_i(\pi)$.

Remarque. ros est l'abréviation en anglais pour "right, opener, smaller", de même lcb est celle pour "left, closer, bigger", etc (voir [11]). Certaines de ces statistiques ont été introduites dans la litérature sous différentes formes, comme les statistiques lb, ls, rb et rs de [13, section 2], les statistiques I^M et I^m de [9, section 4] et la statistique inv de [10, section 4]. Plus exactement, on a les relations suivantes:

$$ros = lb = I^M = inv,$$
 $lcb = rs,$

$$los = ls = I^m$$
, $rcb = rb$.

D'autre part on voit facilement que la statistique $lob(\pi) \equiv 0$ si les blocs de π sont classés par ordre croissant de leurs plus petits éléments. Elle ne sera utile que si les blocs de π sont classés dans un ordre arbitraire.

Inspiré par la statistique mak de Foata et Zeilberger [5] sur les permutations, Steingrímsson [11] a introduit les analogues en partitions suivants:

Définition 1. Pour tout $\pi \in \mathscr{P}_n^k$, on pose

$$\max(\pi) = \cos(\pi) + \log(\pi), \qquad \max'(\pi) = n(k-1) - [\log(\pi) + \log(\pi)],$$

$$\operatorname{mak}'(\pi) = \operatorname{lob}(\pi) + \operatorname{rcb}(\pi), \qquad \operatorname{lmak}(\pi) = n(k-1) - [\operatorname{los}(\pi) + \operatorname{rcs}(\pi)].$$

Donnons un exemple de calculs des statistiques précédemment définies.

Exemple. Soit $\pi = 148 - 29 - 37 - 56$, alors on a:

On en déduit donc d'après la définition:

$$mak(\pi) = 8 + 1 = 9$$
, $lmak'(\pi) = 27 - (11 + 7) = 9$,

$$mak'(\pi) = 0 + 10 = 10$$
, $lmak(\pi) = 27 - (12 + 5) = 10$.

Les q-nombres de Stirling ont été obtenus pour la première fois comme fonction génératrice dans [9], en termes de statistiques I^M et I^m . Puis, quatre variantes de ces statistiques ont été introduites dans [13]. Celles-ci ont été ensuite étendues aux huit variantes dans [11], vraisemblablement épuisant toutes les possibilités d'exploiter l'indice d'inversion d'une partition. Toutes ces extensions ont été obtenues par modifications triviales de définitions; or, l'étude des distributions conjointes, comme dans [13], ou celle des statistiques mélangées, comme dans [11], montre que ces extensions méritent d'être étudiées.

On pourrait distinguer deux types de statistiques sur \mathscr{P}_n^k : celles dont la vérification de la récurrence (1) est facile et celles dont la vérification de la récurrence (1) est difficile [13]. Par exemple, il est facile (voir [9]) de vérifier que $\sum_{\pi \in \mathscr{P}_n^k} q^{\log(\pi)}$ satisfait (1). D'autre part, il existe des statistiques ayant pour fonction génératrice $S_q(n,k)$, mais la récurrence (1) s'avère plus difficile à vérifier (voir [13]). Dans cet article nous étudions quelques nouvelles statistiques du dernier type sur \mathscr{P}_n^k ayant pour fonction génératrice $S_q(n,k)$. En effet, cet article a été motivé par la conjecture suivante de Steingrímsson [11, Conjecture 12]:

Conjecture 1 (Steingrímsson [11]). Les quatre statistiques mak, lmak, mak' et lmak' ont pour fonction génératrice sur \mathcal{P}_n^k les q-nombres de Stirling $S_q(n,k)$, c'est-à-dire,

$$\sum_{\pi \in \mathscr{P}_n}^k q^{\operatorname{mak}(\pi)} = \sum_{\pi \in \mathscr{P}_n^k} q^{\operatorname{mak}'(\pi)} = \sum_{\pi \in \mathscr{P}_n^k} q^{\operatorname{lmak}'(\pi)} = \sum_{\pi \in \mathscr{P}_n^k} q^{\operatorname{lmak}(\pi)} = S_q(n, k).$$

Il se trouve que la statistique mak' est égale à la statistique rb de Wachs et White [13], qui avaient établis, parmi d'autres, le résultat suivant:

$$\sum_{\pi \in \mathscr{P}^k} q^{\operatorname{mak}'(\pi)} = S_q(n, k). \tag{2}$$

En s'appuyant sur le résultat (2) de Wachs et White, on pourrait démontrer la conjecture de Steingrímsson ci-dessus à partir des deux théorèmes suivants:

Théoréme 1. Il existe une involution φ sur \mathscr{P}_n^k telle que pour tout $\pi \in \mathscr{P}_n^k$, on a $\operatorname{mak}(\pi) = \operatorname{mak}'(\varphi(\pi))$.

Théorème 2. Pour tout $\pi \in \mathscr{P}_n^k$ on a

$$mak(\pi) = lmak'(\pi), \quad mak'(\pi) = lmak(\pi).$$

En fait, l'approche que nous proposons dans cet article est indépendante du résultat (2) de Wachs et White et a permis de trouver une nouvelle statistque mak_l généralisant mak.

Définition 2. Soit $\pi = B_1 - \cdots - B_k \in \mathscr{P}_n^k$ et $w(\pi) = w_1 \dots w_n$. Pour tout $b \in [n]$ on pose $\operatorname{reb}(b,\pi) = \#\{a \mid w_a > w_b \text{ et } a > b\}$. Pour tout $l \in [k]$ on désigne respectivement par $p(B_l)$

et $g(B_l)$ le plus petit et le plus grand élément de B_l , et on définit

$$\operatorname{mak}_{l}(\pi) = \operatorname{mak}(\pi) - \operatorname{reb}(q(B_{l}), \pi) + k - l.$$

On remarque que lorsque l = k on retrouve la mak ordinaire, i.e. $mak_k = mak$.

Exemple. Soit $\pi = 148 - 2 - 379 - 56$, alors on a $g(B_1) = 8$, $g(B_2) = 2$, $g(B_3) = 9$ et $g(B_4) = 6$. Ainsi:

$$reb(g(B_1), \pi) = 1 \Rightarrow mak_1(\pi) = 11,$$

$$reb(g(B_2), \pi) = 5 \Rightarrow mak_2(\pi) = 6,$$

$$reb(g(B_3), \pi) = 0 \Rightarrow mak_3(\pi) = 10,$$

$$reb(g(B_4), \pi) = 0 \Rightarrow mak_4(\pi) = 9.$$

Le théorème suivant généralise la conjecture de Steingrímsson sur la statistique mak.

Théorème 3. Pour $1 \le l \le k$, on a

$$\sum_{\pi \in \mathscr{P}_n^k} q^{\max_l(\pi)} = S_q(n,k).$$

Nous donnons les démonstrations de ces trois théorèmes respectivement dans les trois sections suivantes et terminons l'article avec quelques remarques sur les problèmes ouverts.

2. Preuve du théorème 1

Nous avons besoin de quelques définitions supplémentaires. Pour tout ensemble fini d'entiers B et entier i, on note $B(\leq i)$ la restriction de B sur [i], qui est soit complet, si l'ensemble B est inclus dans [i], soit incomplet, si une partie non vide de B est dans [i] et l'autre partie non vide dans $[n] \setminus [i]$, soit vide si $B \cap [i] = \emptyset$.

Définition 3. Soit $\pi = B_1 - B_2 - \dots - B_k$ une partition de \mathscr{P}_n^k et $T_0 = \emptyset$. Pour $i = 1, \dots, n$, on définit la i^e trace de π comme la partition T_i de [i]:

$$T_i = B_1(\leqslant i) - B_2(\leqslant i) - \cdots - B_k(\leqslant i).$$

On note le nombre de blocs incomplets dans T_{i-1} par $l_i(\pi)$, et le nombre de blocs incomplets situés à gauche du bloc contenant i dans T_i par $\gamma_i(\pi) - 1$.

Exemple. Si $\pi = 148 - 2 - 379 - 56$, alors les traces, $l_i(\pi)$ et $\gamma_i(\pi)$ sont donnés par:

$$T_1 = 1 \cdot$$
 $I_1 = 0 \ \gamma_1 = 1$
 $T_2 = 1 \cdot -2$ $I_2 = 1 \ \gamma_2 = 2$
 $T_3 = 1 \cdot -2 - 3 \cdot$ $I_3 = 1 \ \gamma_3 = 2$
 $T_4 = 1 \ 4 \cdot -2 - 3 \cdot -5 \cdot$ $I_4 = 2 \ \gamma_4 = 1$
 $T_5 = 1 \ 4 \cdot -2 - 3 \cdot -5 \cdot$ $I_5 = 2 \ \gamma_5 = 3$
 $T_6 = 1 \ 4 \cdot -2 - 3 \cdot -5 \cdot$ $I_6 = 3 \ \gamma_6 = 3$
 $T_7 = 1 \ 4 \cdot -2 - 3 \ 7 \cdot -5 \cdot 6$ $I_7 = 2 \ \gamma_7 = 2$
 $T_8 = 1 \ 4 \ 8 - 2 - 3 \ 7 \cdot -5 \cdot 6$ $I_8 = 2 \ \gamma_8 = 1$
 $T_9 = 1 \ 4 \ 8 - 2 - 3 \ 7 \ 9 - 5 \cdot 6 \ I_9 = 1 \ \gamma_9 = 1$

où on ajoute un point dans chaque bloc incomplet.

Il est clair qu'une partition est entièrement déterminée par ses traces successives $T_1, T_2, ..., T_n$ ou par la suite $(l_1, \gamma_1), ..., (l_n, \gamma_n)$. D'autre part, pour tout $i \in [n]$ on voit que

$$k = \begin{cases} l_i + \#\{a \in \mathcal{O} \mid a > i\} + \#\{a \in \mathcal{F} \mid a < i\}, & \text{si } i \in \mathcal{P} \cup \mathcal{F}_s, \\ 1 + l_i + \#\{a \in \mathcal{O} \mid a > i\} + \#\{a \in \mathcal{F} \mid a < i\}, & \text{si } i \in \mathcal{O}_s \cup \mathcal{S}. \end{cases}$$
(3)

D'où on tire en sommant sur tous les i:

$$nk = \#\mathcal{O} + \sum_{i=1}^{n} (l_i + \#\{a \in \mathcal{O} \mid a > i\} + \#\{a \in \mathcal{F} \mid a < i\}). \tag{4}$$

Lemme 1. Soit $\pi \in \mathcal{P}_n^k$ une partition fixée, on pose $\mathcal{O} = \mathcal{O}(\pi)$, $\mathcal{F}_s = \mathcal{F}(\pi) \setminus \mathcal{S}(\pi)$, $\mathcal{P} = \mathcal{P}(\pi)$, $l_i = l_i(\pi)$ et $\gamma_i = \gamma_i(\pi)$. Alors on a les identités suivantes:

$$\operatorname{mak}(\pi) = \sum_{i \in \mathscr{R} \cup \mathscr{P}} (l_i - \gamma_i) + \sum_{i=1}^n \#\{a \in \mathscr{F} \mid a < i\},\tag{5}$$

$$\max'(\pi) = \sum_{i \in \mathcal{R} \setminus \mathcal{P}} (k - \gamma_i) + \sum_{i \in \mathcal{O}} (k - 1 - l_i) - \sum_{i=1}^n \#\{a \in \mathcal{F} \mid a < i\},\tag{6}$$

$$\sum_{i \in \mathscr{F}_s} l_i = \sum_{i \in \mathscr{O}_s} (l_i + 1). \tag{7}$$

Preuve. Pout tout $i \in [n]$, comme $lcs_i(\pi)$ est le nombre de blocs complets à gauche du bloc contenant i dans la i^e -trace de π , on a $lcs_i(\pi) = \#\{a \in \mathscr{F}(\pi) \mid a < i\}$; d'autre part, $ros_i(\pi)$ est le nombre de blocs (complets ou incomplets) à droite du bloc contenant i dans la i^e -trace de π , ainsi $ros_i(\pi) = l_i - \gamma_i$ si $i \in \mathscr{F}_s \cup \mathscr{P}$ et $ros_i(\pi) = 0$ si $i \in \mathscr{O}$.

D'où la première égalité. De même, comme $\operatorname{rcb}_i(\pi)$ comptent non seulement les blocs incomplets à droite du bloc contenant i dans T_i , c'est à dire $l_i - \gamma_i$ si $i \in \mathscr{F}_s \cup \mathscr{P}$ et 0 sinon, mais aussi les blocs qui ne sont pas encore créés, soit

$$k - l_i - \#\{a \in \mathscr{F} \mid a < i\}$$
 si $i \in \mathscr{F}_s \cup \mathscr{P}$,

$$k - l_i - \#\{a \in \mathscr{F} \mid a < i\} - 1$$
 si $i \in \mathcal{O}$.

En sommant sur i on obtient la seconde égalité. Enfin, on remarque qu'il y a autant de fermants que d'ouvrants dans π , et $\forall i \in [n], \ l_i \geqslant 0$ et $l_{i+1} = l_i + 1$ (resp. $l_{i+1} = l_i - 1$) si $i \in \mathcal{O}_s$ (resp. si $i \in \mathcal{F}_s$). On va construire une bijection de \mathcal{O}_s dans \mathcal{F}_s telle que si $a \mapsto a'$, alors $l_a + 1 = l_{a'}$. Ce qui démontre clairement la troisième égalité. En effet, soit $\mathcal{O}_s = \{a_1, \ldots, a_r\}$ tel que $a_1 < a_2 < \cdots < a_r$. Comme $l_{a_1} = 0$ et $l_g = 1$, où g est le plus grand fermant de π , on définit a'_1 comme le plus petit fermant tel que $l_{a_1} + 1 = l_{a'_1}$. Supposons ainsi définis les i-1 fermants a'_1, \ldots, a'_{i-1} associés avec les i premiers ouvrants a_1, \ldots, a_{i-1} respectivement. A a_i on associe le plus petit fermant, soit a'_i , dans $\mathcal{F}_s \setminus \{a'_1, \ldots, a'_{i-1}\}$ tel que $l_{a_i} + 1 = l_{a'_i}$. \square

Grâce à la notion de trace, on est maintenant en mesure de décrire une involution $\varphi: \mathscr{P}_n^k \to \mathscr{P}_n^k$ définie par l'algorithme suivant:

1. Etant donnée une partition π de [n], on partage l'ensemble [n] en quatre parties $\mathscr{S}(\pi)$, $\mathscr{O}_s(\pi) = \mathscr{O}(\pi) \setminus \mathscr{S}(\pi)$, $\mathscr{F}_s(\pi) = \mathscr{F}(\pi) \setminus \mathscr{S}(\pi)$ et $\mathscr{P}(\pi)$, et on calcule les γ_i pour tout $i \in [n]$. Notons f (resp. p) la suite croissante des éléments de $\mathscr{F}_s(\pi)$ (resp. $\mathscr{P}(\pi)$). On forme alors les deux matrices:

$$\begin{pmatrix} f \\ \gamma \end{pmatrix} = \begin{pmatrix} f_1 & f_2 & \dots & f_r \\ \gamma_{f_1} & \gamma_{f_2} & \dots & \gamma_{f_r} \end{pmatrix}, \quad \begin{pmatrix} p \\ \gamma \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & \dots & p_s \\ \gamma_{p_1} & \gamma_{p_2} & \dots & \gamma_{p_s} \end{pmatrix}.$$

2. On commence par définir les quatre ensembles correspondants de π' :

$$\mathcal{S}' = \{n+1-i \mid i \in \mathcal{S}(\pi)\}, \quad \mathcal{O}'_s = \{n+1-i \mid i \in \mathcal{F}_s(\pi)\},$$

$$\mathcal{F}'_s = \{n+1-i \mid i \in \mathcal{O}_s(\pi)\}, \quad \mathcal{P}' = \{n+1-i \mid i \in \mathcal{P}(\pi)\}.$$
(8)

On note que

$$\mathcal{O}' = \mathcal{O}'_s \cup \mathcal{S}'$$
 et $\mathcal{F}' = \mathcal{F}_s \cup \mathcal{S}'$

Soient f' et p' les suites croissantes des éléments de \mathscr{F}_s' et \mathscr{P}' , formons les deux matrices:

$$\begin{pmatrix} f' \\ \gamma' \end{pmatrix} = \begin{pmatrix} f'_1 & f'_2 & \dots & f'_r \\ \gamma_{f_1} & \gamma_{f_2} & \dots & \gamma_{f_r} \end{pmatrix}, \quad \begin{pmatrix} p' \\ \gamma' \end{pmatrix} = \begin{pmatrix} p'_1 & p'_2 & \dots & p'_s \\ \gamma_{p_s} & \gamma_{p_{s-1}} & \dots & \gamma_{p_1} \end{pmatrix}.$$

3. On commence par construire une partition π_0 de \mathcal{O}' , dont les blocs sont tous des singletons. Un singleton $\{i\}$ est dit complet (resp. incomplet) si $i \in \mathcal{S}'$ (resp. sinon).

Soit

$$\pi_0 = B_1 - B_2 - \cdots - B_k$$
.

Supposons ensuite que $x_1, x_2, ..., x_{n-k}$ est le *réarrangement croissant* des éléments de $\mathscr{F}_s' \cup \mathscr{P}'$. Pour j = 1, ..., n-k on construit π_j en insérant x_j dans l'un des blocs de π_{j-1} de sorte que $\gamma'_{x_j} = \gamma_{x_j}(\pi_j)$. Rappelons qu'un bloc de π_j est considéré complet s'il débute avec un élément de \mathscr{O}' et termine avec un élément de \mathscr{F}' .

4. Définissons $\varphi(\pi) = \pi' = \pi_{n-k}$, alors $\mathscr{S}(\pi') = \mathscr{S}'$, $\mathscr{O}_s(\pi') = \mathscr{O}_s'$, $\mathscr{F}_s(\pi') = \mathscr{F}_s'$, $\mathscr{P}(\pi') = \mathscr{P}'$.

On vérifie que φ est une involution sur \mathscr{P}_n^k telle que $\mathscr{F}_s(\varphi(\pi)) = \{n+1-i \mid i \in \mathscr{O}_s(\pi)\}.$

Exemple. Prenons la partition $\pi = 148 - 2 - 379 - 56$, alors

$$\mathcal{O}_s = \{1, 3, 5\}, \quad \mathscr{F}_s = \{8, 9, 6\}, \quad \mathscr{P} = \{4, 7\}, \quad \mathscr{S} = \{2\}.$$

On en déduit donc $\mathscr{F}'_s = \{9,7,5\}, \ \mathscr{O}'_s = \{2,1,4\}, \ \mathscr{P}' = \{6,3\} \ \text{et} \ \mathscr{S}' = \{8\}.$ Ainsi on a

$$\begin{pmatrix} f \\ \gamma \end{pmatrix} = \begin{pmatrix} 6 & 8 & 9 \\ 3 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} p \\ \gamma \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ 1 & 2 \end{pmatrix},$$

et puis

$$\begin{pmatrix} f' \\ \gamma' \end{pmatrix} = \begin{pmatrix} 5 & 7 & 9 \\ 3 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} p' \\ \gamma' \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 2 & 1 \end{pmatrix}.$$

On obtient d'abord les k=4 blocs (complets ou incomplets) formés des éléments de \emptyset' :

$$\pi_0 = 1 \cdot -2 \cdot -4 \cdot -8$$
.

On insère successivement les éléments i de $\mathscr{F}'_s \cup \mathscr{P}'$ en tenant compte de γ_i et on obtient

$$\pi_1 = 1 \cdot -2 \ 3 \cdot -4 \cdot -8$$

$$\pi_2 = 1 \cdot -2 \ 3 \cdot -4 \ 5 - 8$$

$$\pi_3 = 1 \ 6 \cdot -2 \ 3 \cdot -4 \ 5 - 8$$

$$\pi_4 = 1 \ 6 \ 7 - 2 \ 3 \cdot -4 \ 5 - 8$$

$$\pi_5 = 1 6 7 - 2 3 9 - 4 5 - 8$$
.

D'où $\pi' = \pi_5 = 167 - 239 - 45 - 8$. On vérifie que $(\pi')' = \pi$.

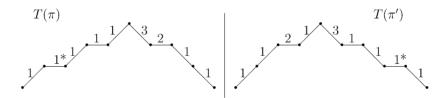
Remarque. On pourrait décrire l'involution φ dans le modèle des *chemins de Motzkin valués* [4]. En effet à chaque partition $\pi \in \mathscr{P}_n^k$, on peut associer un chemin $T(\pi)$ définie comme suit:

- A chaque élément de \mathcal{O}_s (resp. \mathscr{S}), on associe un pas nord-est (resp. est) étiqueté 1 (resp. 1^*).
- A chaque élément $i \in \mathcal{F}_s$ (resp. \mathcal{P}), on associe un pas sud-est (resp. est) étiqueté γ_i .

La correspondance $\pi \to \varphi(\pi) = \pi'$ se présente alors comme une symmétrie par rapport à l'axe des ordonnées des chemins correspondants où l'étiquettage de $T(\pi')$ est le suivant:

- Les pas "est" gardent la même valeur.
- Les pas "nord-est" reste étiquetés 1.
- On étiquette les pas "sud-est" en reprenant les étiquettes des pas "sud-est" de $T(\pi)$ dans le même ordre.

Exemple. Soit $\pi = 148 - 2 - 379 - 56$ alors:



A partir du chemin $T(\pi)$ on retrouve alors la partition $\varphi(\pi) = 167 - 239 - 45 - 8$. Reste à montrer que $\max'(\varphi(\pi)) = \max(\pi)$, ce qui, en vertu du lemme 1, équivaut à:

$$\sum_{i \in \mathscr{F}_i \cup \mathscr{P}} (l_i - \gamma_i) + \sum_{i=1}^n \#\{a \in \mathscr{F} \mid a < i\}$$

$$= \sum_{i \in \mathscr{F}_i \cup \mathscr{P}'} (k - \gamma_i') + \sum_{i \in \mathscr{O}'} (k - l_i' - 1) - \sum_{i=1}^n \#\{a \in \mathscr{F}' \mid a < i\}. \tag{9}$$

Or la construction de $\varphi(\pi)$ exige que les suites $(\gamma_i)_{i \in \mathscr{F}_{s'}}$ et $(\gamma_i)_{i \in \mathscr{F}_{s'}}$ soient respectivement des réarrangements de $(\gamma_i)_{i \in \mathscr{F}_{s}}$ et $(\gamma_i)_{i \in \mathscr{F}_{s}}$. Ainsi, compte tenu des définitions (8) de \mathscr{F}' , \mathscr{O}' , \mathscr{P}' , \mathscr{F}' , \mathscr{F}'_{s} et \mathscr{O}'_{s} , l'identité (9) peut s'écrire comme suit:

$$\sum_{i \in \mathscr{F}_{i} \cup \mathscr{F}} l_{i} + \sum_{i=1}^{n} (\#\{a \in \mathscr{F} \mid a < i\} + \#\{a \in \mathscr{O} \mid a > i\}) = nk - \sum_{i \in \mathscr{O}'} (l'_{i} + 1).$$

En appliquant l'équation (4), on voit que l'égalité ci-dessus équivaut à:

$$\sum_{i \in \mathcal{O}} (l_i + 1) = \sum_{i \in \mathcal{O}'} (l_i' + 1). \tag{10}$$

Remarquant que $j \in \mathcal{O}'$ si et seulement si $\bar{j} = n + 1 - j \in \mathcal{F}$, on déduit de (3) que

$$\begin{split} l_i' &= k - 1 - \#\{a \in \mathcal{C}' \mid a > i\} - \#\{a \in \mathcal{F}' \mid a < i\} \\ &= k - 1 - \#\{\bar{b} \in \mathcal{F} \mid \bar{b} < \bar{i}\} - \#\{\bar{b} \in \mathcal{C} \mid \bar{b} > \bar{i}\}. \end{split}$$

Ce qui montre que $l'_i = l_{\bar{i}}$ si $i \in \mathcal{S}'$ et $l'_i = l_{\bar{i}} + 1$ si $i \in F_s'$. Il en résulte que l'identité (10) équivaut à (7). Ce qu'il fallait démontrer.

3. Preuve du théorème 2

On commence par quelques définitions et notations. Pour être cohérent avec les notations de Steingrímmson [11], on utilise réspectivement les abréviations de *right element smaller*, *right element bigger* et *left element bigger* pour les statistiques res, reb et leb.

Définition 4. Soit $\pi = B_1 - \cdots - B_k$ une partition de \mathscr{P}_n^k et $b \in B_j$ fixé. On définit d'abord, pour tout i > j, $\operatorname{res}(b, B_i) = \#\{a \in B_i \mid b > a\}$, $\operatorname{reb}(b, B_i) = \#\{a \in B_i \mid b < a\}$, et pour tout i < j, $\operatorname{leb}(b, B_i) = \#\{a \in B_i \mid b < a\}$; et puis

$$\operatorname{res}(b,\pi) = \sum_{i>j} \operatorname{res}(b,B_i), \quad \operatorname{reb}(b,\pi) = \sum_{i>j} \operatorname{reb}(b,B_i), \quad \operatorname{leb}(b,\pi) = \sum_{i< j} \operatorname{leb}(b,B_i).$$

Enfin on note b_i le cardinal de B_i pour tout $i \in [k]$ et pose

$$\operatorname{leb}(\mathcal{O}, \pi) = \sum_{b \in \mathcal{O}(\pi)} \operatorname{leb}(b, \pi), \qquad \operatorname{res}(\mathscr{F}, \pi) = \sum_{b \in \mathscr{F}(\pi)} \operatorname{res}(b, \pi).$$

Proposition 1. Pour toute partition $\pi \in \mathscr{P}_n^k$, on a

$$\operatorname{mak}(\pi) = \operatorname{lmak}'(\pi) = \operatorname{los}(\pi) - \operatorname{res}(\mathscr{F}, \pi) + \operatorname{leb}(\mathscr{O}, \pi),$$

$$\operatorname{mak}'(\pi) = \operatorname{lmak}(\pi) = n(k-1) - \log(\pi) - \operatorname{leb}(\mathcal{F}, \pi).$$

Preuve. Soit $\pi = B_1 - \cdots - B_k \in P_n^k$, en utilisant les notations de la définition 4, on peut réécrire les statistiques $lcs(\pi)$ et $ros(\pi)$ de la façon suivante:

$$lcs(\pi) = \sum_{i=1}^{k-1} \sum_{j>i} (b_j - res(g(B_i), B_j)),$$

$$ros(\pi) = \sum_{i=2}^{k} \sum_{j < i} leb(p(B_i), B_j).$$

Ainsi, la statistique $mak(\pi)$ peut s'écrire:

$$\max(\pi) = \sum_{i=1}^{k-1} \sum_{j>i} (b_j - \operatorname{res}(g(B_i), B_j)) + \sum_{i=2}^{k} \sum_{j

$$= \sum_{j=2}^{k} (j-1)b_j - \sum_{b \in \mathscr{F}(\pi)} \operatorname{res}(b, \pi) + \sum_{b \in \mathscr{C}(\pi)} \operatorname{leb}(b, \pi)$$

$$= \log(\pi) - \operatorname{res}(\mathscr{F}, \pi) + \operatorname{leb}(\mathscr{O}, \pi).$$$$

D'autre part, on a:

$$lcb(\pi) = \sum_{i=1}^{k-1} \sum_{j>i} res(g(B_i), B_j) = res(\mathscr{F}, \pi),$$

$$rob(\pi) = \sum_{i=2}^{k} \sum_{j$$

Et donc la statistique lmak' peut s'écrire:

$$\operatorname{lmak}'(\pi) = \left[n(k-1) - \sum_{i=1}^{k} (k-i)b_i \right] - \operatorname{res}(\mathscr{F}, \pi) + \operatorname{leb}(\mathscr{O}, \pi)$$

$$= \left[\sum_{i=1}^{k} (k-1)b_i - \sum_{i=1}^{k} (k-i)b_i \right] - \operatorname{res}(\mathscr{F}, \pi) + \operatorname{leb}(\mathscr{O}, \pi)$$

$$= \operatorname{los}(\pi) - \operatorname{res}(\mathscr{F}, \pi) + \operatorname{leb}(\mathscr{O}, \pi).$$

D'où la première identité. La seconde identité peut être vérifiée de façon analogue.

4. Preuve du théorème 3

Dans tout ce qui suit on suppose que \mathcal{O} est un sous-ensemble fixé de [n] à k+1 éléments avec $1 \in \mathcal{O}$. Soit $\mathscr{P}_n^{k+1}(\mathcal{O})$ l'ensemble des partitions de \mathscr{P}_n^{k+1} ayant pour l'ensemble des ouvrants \mathcal{O} .

Lemme 2. La statistique los + leb est constante sur $P_n^{k+1}(\mathcal{O})$. Plus précisément, pour toute partition $\pi \in P_n^{k+1}(\mathcal{O})$, on a

$$\log(\pi) + \operatorname{leb}(\mathcal{O}, \pi) = \sum_{x \in \mathcal{O}, x \neq 1} (n - x + 1).$$

Preuve. Soit $\pi_0 = B_1 - \cdots - B_{k+1}$ la partition de $P_n^{k+1}(\mathcal{O})$, telle que tout non-ouvrant a soit le plus à droite possible, c'est-à-dire, $a \in B_j$ tel que $p(B_j) < a$ et $a < p(B_{j+1})$. Alors toutes les autres partitions π de $P_n^{k+1}(\mathcal{O})$ s'obtiennent à partir de π_0 par déplacements successifs des non-ouvrants vers la gauche. Or lorsque l'on déplace une lettre vers la gauche (de i blocs), $\log(\pi_0)$ diminue de i, et $\log(\mathcal{O}, \pi_0)$ augmente de i. Ainsi on montre que los i leb est constant sur l'ensemble i leb i suffit donc de calculer cette statistique pour i leb constant sur l'ensemble i les i les le réarrangement croissant des éléments de i le lors pour tout i le nombre d'éléments qui sont plus grand que i et dans un bloc à droite de i est i le nombre d'éléments qui sont plus résultat. i

Pour tout $i \in [k+1]$ et $\pi \in \mathcal{P}_n^{k+1}$ on pose

$$\operatorname{stat}_{i}(\pi) = k - \operatorname{res}(\mathcal{F}, \pi) - \operatorname{reb}(g(B_{i}), \pi). \tag{11}$$

Lemme 3. Pour tout $i \in [k]$, il existe une bijection φ_i sur $\mathscr{P}_n^{k+1}(\mathcal{O})$ telle que:

$$\operatorname{stat}_{i}(\pi) = \operatorname{stat}_{i+1}(\varphi_{i}(\pi)) - 1. \tag{12}$$

Preuve. Soit $\pi = B_1 - \cdots - B_{k+1} \in \mathcal{P}_n^{k+1}(\mathcal{O})$. On définit $\pi' = \varphi_i(\pi) = B_1' - \cdots - B_{k+1}'$ comme suit: $B_j' = B_j$ pour tout $j \neq i, i+1$,

$$B_i' = \begin{cases} B_i \setminus \{a \in B_i \mid a > g(B_{i+1})\} \cup \{g(B_{i+1})\} & \text{si } b_{i+1} > 1, \\ B_i \setminus \{a \in B_i \mid a > g(B_{i+1})\} & \text{si } b_{i+1} = 1, \end{cases}$$

et

$$B'_{i+1} = \begin{cases} B_{i+1} \setminus \{g(B_{i+1})\} \cup \{a \in B_i \mid a > g(B_{i+1})\} & \text{si } b_{i+1} > 1, \\ B_{i+1} \cup \{a \in B_i \mid a > g(B_{i+1})\} & \text{si } b_{i+1} = 1. \end{cases}$$

On peut construire de manière analogue l'application inverse φ_i^{-1} . Donc φ_i est une bijection. Il reste à vérifier l'équation (12). On distingue trois cas suivants:

- 1. Si $b_{i+1} = 1$ et $g(B_i) < g(B_{i+1})$, alors $\pi' = \pi$.
- 2. Si $b_{i+1} = 1$ et $g(B_i) > g(B_{i+1})$ (et donc $b_i > 1$), alors il est évident que $\operatorname{res}(\mathscr{F}, \pi') = \operatorname{res}(\mathscr{F}, \pi) 1$, et $\operatorname{reb}(g(B'_{i+1}), \pi') = \operatorname{reb}(g(B_i), \pi)$.
- 3. Si $b_{i+1} > 1$, on a reb $(g(B'_{i+1}), \pi') = b_{i+2} + \dots + b_{k+1} \operatorname{res}(g(B'_{i+1}), \pi')$, et res (\mathscr{F}, π) res $(g(B_i), \pi) + b_{i+1} 1 + \operatorname{res}(g(B'_{i+1}), \pi')$.

Il est clair que l'égalité (12) a lieu dans les deux premiers cas; pour le dernier cas, l'égalité (12) découle du fait que $\operatorname{res}(g(B_i), \pi) + \operatorname{reb}(g(B_i), \pi) = b_{i+1} + \cdots + b_{k+1}$. \square

Exemple. Prenons i = 3, k = 3, n = 9, $\mathcal{O} = \{1, 2, 3, 5\}$ et fixons $B_1 = \{1, 4, 8\}$ et $B_2 = \{2\}$. Posons $\pi_0 = 148 - 2 - 3 - 5679$ et $\pi_i = \varphi_i(\pi_{i-1})$ pour $j \ge 1$, alors l'application

de φ_i donne successivement:

partition	$stat_{i+1} - 1$	$stat_i$
$\pi_0 = 148 - 2 - 3 - 5679$	_3	-6
$\pi_1 = 148 - 2 - 39 - 567$	-6	-5
$\pi_2 = 148 - 2 - 37 - 569$	-5	-5
$\pi_3 = 148 - 2 - 379 - 56$	-5	-4
$\pi_4 = 148 - 2 - 36 - 579$	-4	-5
$\pi_5 = 148 - 2 - 369 - 57$	-5	-4
$\pi_6 = 148 - 2 - 367 - 59$	-4	-4
$\pi_7 = 148 - 2 - 3679 - 5$	-4	-3
On constate que $\pi_{j+8} = \pi_j$	pour $j \ge 0$.	

Lemme 4. Pour tout $i \in \{1, ..., k\}$ on a

$$\sum_{\pi \in P_n^{k+1}} q^{\max(\pi) + k - \operatorname{reb}(g(B_{i+1}), \pi)} = q^i \sum_{\pi \in P_n^{k+1}} q^{\max(\pi)}.$$
(13)

Preuve. On montre d'abord par récurrence décroissante sur i l'identité suivante:

$$q^{i} \sum_{\pi \in P_{n-1}^{k+1}(\mathscr{O})} q^{-\operatorname{res}(\mathscr{F},\pi)} = \sum_{\pi \in P_{n-1}^{k+1}(\mathscr{O})} q^{\operatorname{stat}_{i+1}(\pi)}.$$
(14)

Pour i = k le résultat est vrai car reb $(g(B_{i+1})) = 0$. Supposons le résultat vrai à l'ordre i, alors

$$q^{i-1} \sum_{\pi \in P_{n-1}^{k+1}(\mathscr{O})} q^{-\mathrm{res}(\mathscr{F},\pi)} = \sum_{\pi \in P_{n-1}^{k+1}(\mathscr{O})} q^{\mathrm{stat}_{i+1}(\pi)-1}.$$

Or le lemme 2 implique

$$\sum_{\pi \in P^{k+1}_{n-1}(\mathscr{O})} q^{\operatorname{stat}_{i+1}(\pi)-1} = \sum_{\pi \in P^{k+1}_{n-1}(\mathscr{O})} q^{\operatorname{stat}_i(\pi)}.$$

Ce qui nous permet de conclure. Multipliant maintenant les deux membres de (14) par $q^{\sum_{x\in \ell, x\neq 1}(n-x+1)}$, on déduit du lemme 4:

$$q^i \sum_{\pi \in P^{k+1}_{n-1}(\mathscr{O})} q^{\operatorname{leb}(\mathscr{O},\pi) + \operatorname{los}(\pi) - \operatorname{res}(\mathscr{F},\pi)} = \sum_{\pi \in P^{k+1}_{n-1}(\mathscr{O})} q^{\operatorname{stat}_{i+1}(\pi) + \operatorname{leb}(\mathscr{O},\pi) + \operatorname{los}(\pi)}.$$

Compte tenu de (11) et la proposition 1, on obtient (13) en sommant sur tous les ouvrants \emptyset possibles. \square

On est maintenant en mesure de démontrer que la fonction génératrice de mak_l sur \mathscr{P}_n^k vérifie la relation de récurrence (1). On démontre d'abord ce résultat pour mak sur \mathscr{P}_n^k . Il est clair que c'est vrai pour n=1. Etant donnée une partition $\pi \in \mathscr{P}_n^{k+1}$, on note

 π' la partition obtenue en supprimant n. On distingue alors deux cas selon que n est un singleton ou non.

1. n est un singleton. Alors $\pi' \in P_{n-1}^k$ et on vérifie sans peine que

$$\log(\pi) = \log(\pi') + k,$$

$$leb(\mathcal{O},\pi) = leb(\mathcal{O},\pi'),$$

$$res(\mathcal{F}, \pi) = res(\mathcal{F}, \pi').$$

Ainsi $mak(\pi) = mak(\pi') + k$. D'où on déduit la fonction génératrice correspondante:

$$q^k \sum_{\pi' \in \mathscr{P}_{p-1}^k} q^{\max(\pi')}.$$

2. n n'est pas un singleton. Alors $\pi' \in P_{n-1}^{k+1}$. Supposons que n soit dans le $i^{\text{ème}}$ bloc de π . Alors

$$\log(\pi) = \log(\pi') + i - 1,$$

$$leb(\mathcal{O}, \pi) = leb(\mathcal{O}, \pi') + k + 1 - i$$
,

$$\operatorname{res}(\mathscr{F},\pi) = \operatorname{res}(\mathscr{F},\pi') - \operatorname{res}(q(B_i),\pi) + b_{i+1} + \cdots + b_{k+1}.$$

Ainsi, en vertu de la proposition 1, on a

$$mak(\pi) = mak(\pi') + k - reb(q(B_i), \pi).$$

On en déduit donc, d'après le lemme 4, la fonction génératrice correspondante:

$$\sum_{i=0}^{k} \sum_{\pi \in \mathcal{P}_{n-1}^{k+1}} q^{\max(\pi)+k-\text{reb}(g(B_{i+1}),\pi)} = [k]_q \sum_{\pi \in \mathcal{P}_{n-1}^{k+1}} q^{\max(\pi)}.$$

En récapitulant les deux cas précédants, on a:

$$\sum_{\pi \in P_n^{k+1}} q^{\max(\pi)} = q^k \sum_{\pi \in P_{n-1}^k} q^{\max(\pi)} + [k]_q \sum_{\pi \in P_{n-1}^{k+1}} q^{\max(\pi)}.$$

Ce qui est exactement la relation de récurrence (1) pour les q-nombres de Stirling $S_q(n,k)$. Donc la fonction génératrice de mak sur \mathscr{P}_n^k est $S_q(n,k)$. Enfin, pour tout $l \in [k]$, l'équation (13) équivaut à:

$$\sum_{\pi \in P_n^k} q^{\operatorname{mak}(\pi)} = \sum_{\pi \in P_n^k} q^{k-l+\operatorname{mak}(\pi)-\operatorname{reb}(g(B_l),\pi)}.$$

Ce qui montre que mak et mak_l sont équidistribuées sur \mathscr{P}_n^k .

5. Remarques sur les partitions ordonnées

Une k-partition ordonnée de [n] est une suite (B_1, B_2, \ldots, B_k) de k sous-ensembles de [n] telle que $\pi = B_{\sigma(1)} - B_{\sigma(2)} - \cdots - B_{\sigma(k)}$ soit une partition de \mathscr{P}_n^k pour une permutation σ de [k]. Notons \mathscr{OP}_n^k l'ensemble des k-partitions ordonnées de [n]. Il est évident que le cardinal de \mathscr{OP}_n^k est $k!S_1(n,k)$. Il s'agit de trouver des statistiques Euler-mahoniennes sur \mathscr{OP}_n^k , i.e., leurs fonctions génératrices sur \mathscr{OP}_n^k sont égales à $[k]_q!S_q(n,k)$. Certaines de ces statistiques peuvent être obtenues à partir d'un résultat de Wachs [12]. Steingrímsson [11] en a proposé d'autres.

Définition 5. Soit $\pi = B_1 - \cdots - B_k \in \mathcal{OP}_n^k$, on définit un ordre partiel sur les blocs comme suit: $B_i > B_j$ si toutes les lettres de B_i sont plus grandes que celles de B_j . On dit que i est un indice de descente si $B_i > B_{i+1}$. On définit alors $\operatorname{bmaj}(\pi)$ comme la somme de tous les indices de descentes de π ; et $\operatorname{binv}(\pi)$ comme le nombre de couples (i,j) tel que i < j et $B_i > B_i$.

Steingrímsson [11, Conjecture 13] a conjecturé que si l'on ajoute à bmaj ou binv, l'une des statistiques de la définition 1, on obtient une statistique Euler-mahonienne, c'est à dire:

Conjecture 2 (Steingrimsson). Les statistiques suivantes sont Euler-mahoniennes:

```
mak + bmaj, mak' + bmaj, lmak' + bmaj, lmak + bmaj, mak + binv, lmak' + binv, lmak' + binv, lmak + binv.
```

On remarque que la démonstration de la proposition 1 s'étend *mutatis mutandis* au cas des partitions de OP_n^k , on peut alors réduire cette conjecture de moitié, i.e., dans la conjecture ci-dessus, il n'y a que quatre statistiques distinctes. Plus précisément on a le résultat suivant:

Proposition 2. On a les égalités suivantes:

```
mak + bmaj = lmak' + bmaj, mak' + bmaj = lmak + bmaj, mak + binv = lmak' + binv, mak' + binv = lmak + binv.
```

Remerciements. Les auteurs tiennent à remercier les deux arbitres anonymes pour leurs lectures attentives sur une version antérieure, permettant d'améliorer la rédaction de cet article.

References

- [1] L. Carlitz, On abelian fields, Trans. Amer. Math. Soc. 35 (1933) 122-136.
- [2] A. De Médicis, P. Leroux, A unified combinatorial approach for *q*-(and *p*, *q*-) Stirling numbers, J. Statist. Plann. Inference 34 (1993) 89–105.

- [3] R. Ehrenborg, M. Readdy, Juggling and applications to *q*-analogues, Discrete Math. (Special Issue on Algebraic Combin.) 157 (1996) 107–125.
- [4] Ph. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 41 (1982) 125-161.
- [5] D. Foata, D. Zeilberger, Denert's permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math. 83 (1990) 31–59.
- [6] A. Garsia, J.B. Remmel, Q-counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A 41 (1986) 246–275.
- [7] H.W. Gould, The q-stirling numbers of the first and second kinds, Duke Math. J. 28 (1961) 281-289.
- [8] P. Leroux, Reduced matrices and q-log-concavity properties of q-stirling numbers, J. Combin. Theory Ser. A 54 (1990) 64–84.
- [9] S. Milne, Restricted growth functions, rank row matching of partition lattices, and *q*-stirling numbers, Adv. in Math. 43 (1982) 173–196.
- [10] B. Sagan, A maj statistics for set partitions, European J. Combin. 12 (1991) 69-79.
- [11] E. Steingrímsson, Statistics on ordered partitions of sets, preprint, 1999.
- [12] M. Wachs, σ -restricted growth functions and p,q-stirling numbers, J. Combin. Theory Ser. A 68 (1994) 470–480.
- [13] M. Wachs, D. White, p,q-stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991) 27–46.
- [14] D. White, Interpolating set partition statistics, J. Combin. Theory Ser. A 68 (1994) 262-295.