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Abstract Here presented is a unified approach to generalized Stirling functions by using

generalized factorial functions, k-Gamma functions, generalized divided difference, and the

unified expression of Stirling numbers defined in [16]. Previous well-known Stirling functions

introduced by Butzer and Hauss [4], Butzer, Kilbas, and Trujilloet [6] and others are included

as particular cases of our generalization. Some basic properties related to our general pattern

such as their recursive relations, generating functions, and asymptotic properties are discussed,

which extend the corresponding results about the Stirling numbers shown in [21] to the defined

Stirling functions.
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1. Introduction

The classical Stirling numbers of the first kind and the second kind, denoted by s(n, k) and

S(n, k), respectively, can be defined via a pair of inverse relations

[z]n =

n
∑

k=0

s(n, k)zk, zn =

n
∑

k=0

S(n, k)[z]k, (1.1)

with the convention s(n, 0) = S(n, 0) = δn,0, the Kronecker symbol, where z ∈ C, n ∈ N0 =

N ∪ {0}, and the falling factorial polynomials [z]n = z(z − 1) · · · (z − n + 1). |s(n, k)| presents

the number of permutations of n elements with k disjoint cycles while S(n, k) gives the number

of ways to partition n elements into k nonempty subsets. The simplest way to compute s(n, k)

is finding the coefficients of the expansion of [z]n.

Another way of introducing classical Stirling numbers is via their exponential generating

functions
(log(1 + x))k

k!
=

∑

n≥k

s(n, k)
xn

n!
,

(ex − 1)k

k!
=

∑

n≥k

S(n, k)
xn

n!
, (1.2)

where |x| < 1 and k ∈ N0. In [23], Jordan said that, “Stirling’s numbers are of the greatest

utility. This however has not been fully recognized.” He also thinks that, “Stirling’s numbers

are as important or even more so than Bernoulli’s numbers.”
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Besides the above two expressions, the Stirling numbers of the second kind has the following

third definition [11, 23], which is equivalent to the above two definitions but makes a more

important rule in computation and generalization.

S(n, k) :=
1

k!
∆kzn

∣

∣

z=0
=

1

k!

k
∑

j=1

(−1)k−j

(

k

j

)

jn

=
1

k!

k
∑

j=1

(−1)j

(

k

j

)

(k − j)n. (1.3)

Expressions (1.1)–(1.3) are starting points in [16] to extend the classical Stirling number pairs

and the Stirling numbers to the our generalized Stirling numbers.

Denote 〈z〉n,α := z(z + α) · · · (z + (n− 1)α) for n = 1, 2, . . ., and 〈z〉0,α = 1, where 〈z〉n,α is

called the generalized factorial of z with increment α. Thus, 〈z〉n,−1 = [z]n is the classical falling

factorial with [z]0 = 1, and 〈z〉n,0 = zn. More properties of 〈z〉n,α are shown in [16]. For the

sake of convenience, we give a brief survey in the following.

With a closed observation, Stirling numbers of two kinds defined in (1.1) can be written as

a unified Newton form:

〈z〉n,−α =

n
∑

k=0

S(n, k, α, β)〈z〉n,−β , (1.4)

with S(n, k, 1, 0) = s(n, k), the Stirling numbers of the first kind and S(n, k, 0, 1) = S(n, k). the

Stirling numbers of the second kind. Inspired by (1.4) and many extensions of classical Stirling

numbers or Stirling number pairs introduced by [3, 7–10, 15, 20, 22, 27, 28, 30, 32, 33], in particu-

lar, [16, 21] define a unified generalized Stirling numbers S(n, k, α, β, r) as follows.

Definition 1.1 Let n ∈ N and α, β, r ∈ R. A generalized Stirling number denoted by

S(n, k, α, β, r) is defined by

〈z〉n,−α =

n
∑

k=0

S(n, k, α, β, r)〈z − r〉k,−β . (1.5)

In particular, if (α, β, r) = (1, 0, 0), S(n, k, 1, 0, 0) is reduced to the unified form of Classical

Stirling numbers defined by (1.4).

From [2], each 〈z〉n,−α does have exactly one such expansion (1.5) for any given z. Since

deg 〈z − r〉k,−β = k for all k, which generates a graded basis for Π ⊂ F → F, the linear spaces

of polynomials in one real (when F = R) or complex (when F = C), in the sense that, for each

n, {〈z − r〉n,−β} is a basis for Πn ⊂ Π, the subspace of all polynomials of degree < n. In other

words, the column map

Wz : F
N
0 → Π : s 7→

∑

k≥0

S(n, k, α, β, r)〈z〉k,−β ,

from the space FN
0 of scalar sequences with finitely many nonzero entries to the space Π is one-to-

one and onto, hence invertible. In particular, for each n ∈ N, the coefficient c(n) in the Newton

form (1.5) for 〈z〉n,−α depends linearly on 〈z〉n,−α, i.e., 〈z〉n,−α 7→ s(n) = (W−1
z 〈z〉n,−α)(n), the

set of S(n, k, α, β, r), is a well-defined linear functional on Π, and vanishes on Π<n−1.
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Similarly to (1.1), from Definition 1.1 a Stirling-type pair {S1, S2} = {S1(n, k), S2(n, k)} ≡

{S(n, k; α, β, r), S(n, k; β, α,−r)} (see also in [21]) can be defined by the inverse relations

〈z〉n,−α =

n
∑

k=0

S1(n, k)〈z − r〉k,−β

〈z〉n,−β =

n
∑

k=0

S2(n, k)〈z + r〉k,−α, (1.6)

where n ∈ N and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3 or C3. Hence, we may call S1

and S2 an (α, β, r) and a (β, α,−r)− pair. Obviously,

S(n, k; 0, 0, 1) =

(

n

k

)

because zn =
∑n

k=0

(

n
k

)

(z − 1)k. In addition, the classical Stirling number pair {s(n, k), S(n, k)}

is the (1, 0, 0)− pair {S1, S2}, namely,

s(n, k) = S1(n, k; 1, 0, 0), S(n, k) = S2(n, k; 1, 0, 0).

For brevity, we will use S(n, k) to denote S(n, k, α, β, r) if there is no need to indicate α, β, and

r explicitly. From (1.5), one may find

S(0, 0) = 1, S(n, n) = 1, S(1, 0) = r, and S(n, 0) = 〈r〉n,−α. (1.7)

Evidently, substituting n = k = 0 into (1.5) yields the first formula of (1.7). Comparing the

coefficients of the highest power terms on the both sides of (1.5), we obtain the second formula of

(1.7). Let n = 1 in (1.5) and noting S(1, 1) = 1, we have the third formula. Finally, substituting

z = r in (1.5), one can establish the last formula of (1.7). The numbers σ(n, k) discussed by

Doubilet et al. in [13] and by Wagner in [34] is k!S(n, k; 0, 1, 0). More special cases of the

generalized Stirling numbers and Stirling-type pairs defined by (1.5) or (1.6) are surveyed in

Table 1 of [16].

The classical falling factorial polynomials [z]n = z(z − 1) · · · (z − n + 1) and classical rising

factorial polynomials [z]n = z(z + 1) · · · (z + n − 1), z ∈ C and n ∈ N, can be unified to the

expression

〈z〉n,±1 := z(z ± 1) · · · (z ± (n − 1)),

using the generalized factorial polynomial expression

〈z〉n,k := z(z + k) · · · (z + (n − 1)k) = 〈z + (n − 1)k〉n,−k (z ∈ C, n ∈ N). (1.8)

Thus 〈z〉n,1 = [z]n and 〈z〉n,−1 = [z]n. In addition, we immediately have the relationship between

[z]n and 〈z〉n,k as

〈z〉n,k = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.9)

Similarly, we obtain

〈z〉n,−k = z(z − k) · · · (z − (n − 1)k) = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.10)
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The history as well as some important basic results of the generalized factorials can be found in

Chapter II of [23], and an application of the generalized factorials in the Lagrange interpolation

is shown on Page 31 of [14].

It is known that the falling factorial polynomials and rising factorial polynomials can be

presented in terms of Gamma functions: [z]n = Γ(z + 1)/Γ(z − n + 1) and [z]n = Γ(z + n)/Γ(z),

and the gamma function Γ(z) can be defined in terms of factorial functions by (see, for example,

[25])

Γ(z) = lim
n→∞

n!nz−1

[z]n
(z ∈ C − kZ−). (1.11)

As an analogy, the k-gamma function Γk, a one parameter deformation of the classical gamma

function, is defined by (see, for example [12])

Γk(z) := lim
n→∞

n!kn(nk)
z
k
−1

〈z〉n,k
(k > 0, z ∈ C − kZ−). (1.12)

[z]n and 〈z〉n,k (k > 0) are also called the Pochhammer symbol and k-Pochhammer symbol,

respectively. Even the parameter k is replaced by other parameters, we still call the corresponding

Pochhammer symbol the k-Pochhammer.

For k > 0, from (1.9), (1.11) and (1.12) (see also [24]) we have

Γk(z) = k(z/k)−1Γ(
z

k
). (1.13)

Since [z]n = Γ(z +n)/Γ(z), [4] extends the classical raising and falling factorial polynomials

to generalized raising and falling functions associated with real number γ by setting

[z]γ :=
Γ(z + γ)

Γ(z)
, [z]γ :=

Γ(z + 1)

Γ(z − γ + 1)
, (1.14)

respectively. We now extend 〈z〉n,k defined by (1.8) to a generalized form associated with γ ∈ C

using the relationship (1.9), namely,

〈z〉γ,k = kγ [z/k]γ, 〈z〉γ,−k = kγ [z/k]γ (z, γ ∈ C, k > 0), (1.15)

which are called the generalized raising and falling factorial functions associated with complex

number γ, respectively. Using (1.13)–(1.15), we establish the following result.

Theorem 1.2 If k > 0 and 〈z〉γ,k is defined by (1.15), then

〈z〉γ,k =
Γk(z + γk)

Γk(z)
, 〈z〉γ,−k =

Γk(z + k)

Γk(z − (γ − 1)k)
. (1.16)

Proof For k > 0

〈z〉γ,k = kγ [
z

k
]γ = kγ Γ( z

k + γ)

Γ( z
k )

=
k

z+γk
k

−1Γ( z
k + γ)

k
z
k
−1Γ( z

k )
,

which implies (1.16) because of (1.13). Similarly, for k > 0,

〈z〉γ,−k = kγ [
z

k
]γ = kγ Γ( z

k + 1)

Γ( z
k − γ + 1)

=
k

z+k
k

−1Γ( z
k + 1)

k
z+k

k
−γ−1Γ( z

k − γ + 1)

=
Γk(z + k)

Γk(z − (γ − 1)k)
. �
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There hold the following recurrence relations of the generalized raising and falling factorial

functions.

Proposition 1.3 If k > 0 and 〈z〉γ,k is defined by (1.15), then there hold

〈z〉γ,k = (z + (γ − 1)k)〈z〉γ−1,k, 〈z〉γ,−k = (z − (γ − 1)k)〈z〉γ−1,−k. (1.17)

Proof It is easy to show that Γk(z + k) = zΓk(z) from (1.13), which is an extension of the

classical formula Γ(z + 1) = zΓ(z). More precisely,

Γk(z + k) = k((z+k)/k)−1Γ(
z + k

k
) = kz/kΓ(

z

k
+ 1)

= kz/k z

k
Γ(

z

k
) = zk(z/k)−1Γ(

z

k
) = zΓk(z).

Hence, from Theorem 1.2 we have

〈z〉γ,k =
Γk(z + γk)

Γk(z)
= (z + (γ − 1)k)

Γk(z + (γ − 1)k)

Γk(z)
= (z + (γ − 1)k)〈z〉γ−1,k.

Similarly, we have

〈z〉γ,−k =
Γk(z + k)

Γk(z − (γ − 1)k)
= (z − (γ − 1)k)

Γk(z + k)

(z − (γ − 1)k)Γk(z − (γ − 1)k)

= (z − (γ − 1)k)
Γk(zk)

Γk(z − (γ − 2)k)
= (z − (γ − 1)k)〈z〉γ−1,−k,

which completes the proof. �

In next section, we use the k-Pochhammer symbol and k-Gamma functions to extend the

generalized Stirling numbers of integer orders to the complex number orders, which are called

the generalized Stirling functions. The convergence and the recurrence relation of the general-

ized Stirling functions as well as their generating functions will also be presented. Finally, in

Section 3 we will give more properties of generalized Stirling numbers and functions using the

generating functions of generalized Stirling function sequences shown in Section 2, which include

the asymptotic expansions of generalized Stirling functions.

2. Generalized Stirling functions

In [16], the author gives an equivalent form of the generalized Stirling numbers S(n, k)

defined by (1.5) by using the generalized difference operator in terms of β (β 6= 0) defined by

∆k
βf = ∆β(∆k−1

β f) (k ≥ 2) and ∆βf(t) := f(t + β) − f(t). (2.1)

It can be seen that ∆k
β〈z〉j,−β|z=0 = βkk!δk,j , where δk,j is the Kronecker delta symbol; i.e.,

δk,j = 1 when k = j and 0 otherwise. Evidently, from (1.10) there holds

∆k
β〈z〉j,−β|z=0 = ∆k

ββj [
t

β
]j |z=0 = βj∆k[t]j |z=0 = βkk!δk,j . (2.2)

Denote the divided difference of f(t) at t + i, i = 0, 1, . . . , k, by f [t, t + 1, . . . , t + k], or

[t, t + 1, . . . , t + k]f(t). Using the well-known forward difference formula, it is easy to check that

1

k!
∆kf(t) = f [t, t + 1, . . . , t + k] = [t, t + 1, . . . , t + k]f(t)
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and
1

βkk!
∆k

βf(t) = f [t, t + β, t + 2β, . . . , t + kβ] = [t, t + β, . . . , t + kβ]f(t).

[16] gives the following definition of the generalized divided differences.

Definition 2.1 We define △k

β
f(t) by

△k

β
f(t) =

{

1
βkk!

∆k
βf(t) = f [t, t + β, . . . , t + kβ] if β 6= 0

1
k!D

kf(t) if β = 0
, (2.3)

where ∆k
βf(t) is shown in (2.1), f [t, t + β, . . . , t + kβ] ≡ [t, t + β, . . . , t + kβ]f is the kth divided

difference of f in terms of {t, t + β, . . . , t + kβ}, and Dkf(t) is the kth derivative of f(t).

From the well-known formula

f [t, t + β, t + 2β, . . . , t + kβ] =
Dkf(ξ)

k!
,

where ξ is between t and t + kβ, it is clear that

Dkf(t) = lim
β→0

1

βk
∆k

βf(t), (2.4)

which shows the generalized divided difference is well defined.

[16] gives a unified expression of the generalized Stirling numbers in terms of the the gener-

alized divided differences.

Theorem 2.2 ([16]) Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) be in R3 or C3.

For the generalized Stirling numbers defined by (1.5), there holds

S(n, k, α, β, r) = △k

β
〈z〉n,−α|z=r

=











1

βkk!
∆k

β〈z〉n,−α|z=r = [r, r + β, . . . , r + kβ]〈z〉n,−α, if β 6= 0;

1

k!
Dk〈z〉n,−α|z=r, if β = 0.

(2.5)

In particular, for the generalized Stirling number pair defined by (1.6), we have the expressions

S1(n, k) ≡ S1(n, k, α, β, r) = △k

β
〈z〉n,−α|z=r

=











1

βkk!
∆k

β〈z〉n,−α|z=r = [r, r + β, . . . , r + kβ]〈z〉n,−α, if β 6= 0;

1

k!
Dk〈z〉n,−α|z=r, if β = 0.

(2.6)

S2(n, k) ≡ S2(n, k, β, α,−r) = △k

α
〈z〉n,−β|z=−r

=











1

αkk!
∆k

α〈z〉n,−β|z=−r = [−r,−r + α, . . . ,−r + kα]〈z〉n,−β, if α 6= 0;

1

k!
Dk〈z〉n,−β|z=−r, if α = 0.

(2.7)

Furthermore, if (α, β, r) = (1, 0, 0), then (2.5) is reduced to the classical Stirling numbers of the

first kind defined by (1.1) with the expression

s(n, k) = S(n, k, 1, 0, 0) =
1

k!
Dk[z]n|z=0.
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If (α, β, r) = (0, 1, 0), then (2.5) is reduced to the classical Stirling numbers of the second kind

shown in (1.3) with the following divided difference expression form:

S(n, k) = S(n, k, 0, 1, 0) = [0, 1, 2, . . . , k]zn|z=0. (2.8)

The following corollary is obvious due to the expansion formula of the divided differences

generated from their definition.

Corollary 2.3 ([16]) Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) be in R3 or C3.

If β 6= 0, for the generalized Stirling numbers defined by (1.5), there holds

S(n, k) ≡ S(n, k, α, β, r) =
1

βkk!

n
∑

j=0

(−1)j

(

k

j

)

〈r + (k − j)β〉n,−α (n 6= 0), (2.9)

and S(0, k) = δ0k.

[16] gives four algorithms for calculating the Stirling numbers and their generalizations based

on their unified expression, which include two comprehensive algorithms using the characteriza-

tion of Riordan arrays shown in [17] and [18].

We now extend the Stirling numbers S(n, k)) expressed by (2.5) to a wider generation form

using the idea of [6]. First, in order to cover as large a function class as possible, we recall the

generalized fractional difference operator ∆η,ǫ
β with an exponential factor, which is introduced in

[6]. More precisely, for η ∈ C, β ∈ R+, ǫ ≥ 0, the generalized fractional difference operator ∆η,ǫ
β

is defined for “sufficient good” functions f by

∆η,ǫ
β f(z) :=

∑

j≥0

(−1)j

(

η

j

)

e(η−j)ǫf(z + (η − j)β) (z ∈ C), (2.10)

where
(

η
j

)

are the general binomial coefficients given by
(

η

j

)

=
[η]j
j!

:=
η(η − 1) · · · (η − j + 1)

j!
(j ∈ N), (2.11)

with [β]0 = 1. Noting the generalized Stirling numbers S(n, k) can be represented by (2.6), or

equivalently,

S(n, k) =
1

βkk!
lim
z→r

∆k
β〈z〉n,−α,

which has an extension shown in (2.9), we now extend (2.9) to a more generalized form shown

in the following definition.

Definition 2.4 The generalized Stirling functions S(γ, η, α, β, r; ǫ) for any complex numbers γ

and η are given by

S(γ, η; ǫ) ≡ S(γ, η, α, β, r; ǫ) :=
1

βηΓ(η + 1)
lim
z→r

∆η,ǫ
β (〈z〉γ,−α) (ǫ ≥ 0), (2.12)

provided the limit exists; or equivalently, by

S(γ, η; ǫ) ≡ S(γ, η, α, β, r; ǫ)

=
1

βηΓ(η + 1)

∑

j≥0

(−1)j

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ,−α (γ 6= 0), (2.13)
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provided the series converges absolutely; and

S(0, η) =
(eǫ − 1)η

βηΓ(η + 1)
. (2.14)

From (2.13), we immediately have

S(γ, 0; ǫ) = 〈r〉γ,−α (γ 6= 0). (2.15)

Now, an explicit expression of S(γ, η; ǫ) can be given by the following result.

Theorem 2.5 If γ ∈ C and either of the conditions η ∈ C (η /∈ Z), ǫ > 0, or η ∈ C (η /∈ Z,

Re(η) > Re(γ)), ǫ = 0 hold, then the generalized Stirling functions S(γ, η; ǫ) can be represented

in the form (2.13) and S(0, η; ǫ) = δη,0. In particular, if γ = n ∈ N0, η = k ∈ N, and ǫ ≥ 0, then

the corresponding generalized Stirling functions S(n, k; ǫ) has the representation (2.13).

Proof First, from equation (1.51) in [31] we have the estimation
∣

∣

∣

∣

(

η

j

)∣

∣

∣

∣

≤
A

jRe(η) + 1
(2.16)

for any η ∈ C, η 6= −1,−2, . . ., and sufficiently large j ∈ N, where A > 0 is a constant. If

η = −m, m ∈ N, then from (2.11),
(

η
j

)

= [η]j/j!, and equation (1.66) in [31] we have

(

η

j

)

=
[−m]j

j!
=

(−m)(−m − 1) · · · (−m − j + 1)

j!

=
(−1)j(m + j − 1)(m + j − 2) · · · (m + 1)m

j!

=
(−1)jΓ(m + j)

(m − 1)!Γ(j + 1)
∼

(−1)j

(m − 1)!j1−m

as j → ∞, which implies (2.16) for β = −m, m ∈ N. Secondly, from the second formula of (1.16)

and expression (1.13), we obtain

〈r + (η − j)β〉γ,−α =
Γα(r + (η − j)β + α)

Γα(r + (η − j)β − (γ − 1)α)

=
α((r+(η−j)β+α)/α)−1Γ( r+(η−j)β+α

α )

α((r+(η−j)β−(γ−1)h)/h)−1Γ(β−j−(γ−1)α
α )

= αγ Γ( r+(η−j)β+α
α )

Γ( r+(η−j)β−(γ−1)α
α )

.

From [5] or [31], we obtain

|〈r + (η − j)β〉γ,−α| ≤ BjRe(γ)

with a certain constant B. Thus,
∣

∣

∣

∣

(−1)j

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ,−α

∣

∣

∣

∣

≤ C
e−ǫj

jRe(η−γ)+1
,

where C = ABeRe(β)ǫ. Hence, the series on the right-hand side of (2.13) is absolutely convergent

if either ǫ > 0 or ǫ = 0 with Re(β) > Re(γ). Similarly, when n ∈ N0, η = k ∈ N, and ǫ ≥ 0,

the corresponding generalized Stirling functions S(n, k; ǫ) has the representation (2.13), which

completes the proof of the theorem. �
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We now present the recurrence relation of the generalized Stirling functions defined by (2.13)

by using the recurrence relations of the generalized raising and falling factorial functions shown

in Proposition 1.3.

Theorem 2.6 There hold the following three results.

(a) For γ ∈ C, η ∈ C (η /∈ Z), and ǫ > 0, the generalized Stirling functions S(γ, η; ǫ) defined

by (2.13) satisfy

S(γ, η; ǫ) = (r + ηβ − (γ − 1)α)S(γ − 1, η; ǫ) + S(γ − 1, η − 1; ǫ). (2.17)

(b) Let γ ∈ C, η ∈ C (η /∈ Z), and Re(η) > Re(γ)). The generalized Stirling functions

S(γ, η) ≡ S(γ, η; 0) satisfy

S(γ, η) = (r + ηβ − (γ − 1)α)S(γ − 1, η) + S(γ − 1, η − 1). (2.18)

(c) For γ ∈ C, k ∈ N, and ǫ ≥ 0, the generalized Stirling functions S(γ, k; ǫ; h) defined by

(2.13) satisfy

S(γ, k; ǫ) = (r + kβ − (γ − 1)α)S(γ − 1, k; ǫ) + S(γ − 1, k − 1; ǫ). (2.19)

In particular,

S(γ, k) = (r + kβ − (γ − 1)α)S(γ − 1, k) + S(γ − 1, k − 1).

Proof In accordance with Theorem 2.5, all terms on both sides of equations (2.17)–(2.19) are

well defined for the given ranges of parameters γ, η, n, and ǫ. From (2.13), we can write the

right-hand side of (2.17) as

(r + ηβ − (γ − 1)α)S(γ − 1, η; ǫ) + S(γ − 1, η − 1; ǫ)

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)

∑

j≥0

(−1)j

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α+

1

βη−1Γ(η)

∑

j≥0

(−1)j

(

η − 1

j

)

e(η−1−j)ǫ〈β − 1 − j〉γ−1,−α

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)
eηǫ〈r + ηβ〉γ−1,−α+

r + ηβ − (γ − 1)α

βηΓ(η + 1)

∑

j≥1

(−1)j

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α+

η

βη−1Γ(η + 1)

∑

j≥1

(−1)j+1

(

η − 1

j − 1

)

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α

=
r + ηβ − (γ − 1)α

βηΓ(η + 1)
eηǫ〈r + ηβ〉γ−1,−α +

1

βηΓ(η + 1)

∑

j≥1

(−1)j

[

(r + ηβ − (γ − 1)α)

(

β

j

)

−

ηβ

(

η − 1

j − 1

)]

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)
eηǫ〈r + ηβ〉γ,−α +

1

βηΓ(η + 1)

∑

j≥1

(−1)j

[

(r + ηβ − (γ − 1)α)

(

η

j

)

−
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jβ

(

η

j

)]

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)
eηǫ〈r + ηβ〉γ,−α+

1

βηΓ(η + 1)

∑

j≥1

(−1)j(r + (η − j)β − (γ − 1)α)

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ−1,−α

=
1

βηΓ(η + 1)

∑

j≥0

(−1)j

(

η

j

)

e(η−j)ǫ〈r + (η − j)β〉γ,−α,

which is the right-hand side of (2.17). In the last step, we used the second recurrence formula of

(1.17) in Proposition 1.3. (2.18) and (2.19) can be proved similarly. �

Clearly, Theorem 6 in [6] is a special case of Theorem 2.6 for α, β = 0. And Theorem 3,

Corollaries 3.1 and 3.2 in [6] are special cases of Theorem 2.6 for α, β = 0 and γ = n ∈ N.

Now we construct the exponential generating function for the generalized Stirling functions

S(n, η; ǫ).

Theorem 2.7 Let z ∈ C, η ∈ C, and ǫ ≥ 0. The generating function for the generalized Stirling

functions S(γ, η; ǫ) defined by (2.13) with γ = n and αβ 6= 0 is

1

Γ(η + 1)
(1 + αz)r/α(

eǫ(1 + αz)β/α − 1

β
)η =

∑

n≥0

S(n, η; ǫ)
zn

n!
(2.20)

for η 6∈ Z and ǫ > 0, and

1

k!
(1 + αz)r/α(

eǫ(1 + αz)β/α − 1

β
)k =

∑

n≥0

S(n, k; ǫ)
zn

n!
(2.21)

for η = k ∈ N0 and ǫ ≥ 0.

Proof Denote the generating function for the generalized Stirling functions S(γ, η; ǫ) defined by

(2.13) with αβ 6= 0 by

xη(z) =
∑

n≥0

S(n, η; ǫ)
zn

n!
. (2.22)

It can be seen that for η 6= 0, xη(z) satisfies the differential equation

(1 + αz)
d

dz
xη(z) − (r + ηβ)xη(z) = xη−1(z) (2.23)

with initial condition

xη(0) = S(0, η; ǫ) =
(eǫ − 1)η

βηΓ(η + 1)
, (2.24)

and

x0(z) = (1 + αz)r/α. (2.25)

Evidently, using (2.17) one may write the left-hand side of (2.22) as

(1 + αz)
d

dz
xη(z) − (r + ηβ)xη(z)
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= (1 + αz)
∑

n≥1

S(n, η; ǫ)
zn−1

(n − 1)!
−

∑

n≥0

(r + ηβ)S(n, η; ǫ)
zn

n!

=
∑

n≥0

zn

n!
(S(n + 1, η; ǫ) − (r + ηβ − nα)S(n, η; ǫ))

=
∑

n≥0

S(n, η − 1; ǫ)
zn

n!
= xη−1(z).

Substituting z = 0 into (2.22) yields

xη(0) = S(0, η; ǫ),

which implies (2.24) by making use of (2.14). Finally, from (2.15) and (1.5) there holds

x0(z) =
∑

n≥0

S(n, 0; ǫ)
zn

n!
=

∑

n≥0

〈r〉n,−α
zn

n!

=
∑

n≥0

αn
[ r

α

]

n

zn

n!
=

∑

n≥0

(

r/α

n

)

(αz)n

n!
,

which implies (2.25).

Denote the left-hand side of Equation (2.20) by yη(z). It can be checked that yη(z) is also

the solution of initial-value problem (2.23) and (2.24) that satisfies (2.25). Indeed,

(1 + αz)
d

dz
yη(z) − (r + ηβ)yη(z)

=
1 + αz

Γ(η + 1)
[r(1 + αz)r/α−1(

eǫ(1 + αz)β/α − 1

β
)η + ηeǫ(1 + αz)r/α+β/α−1

(
eǫ(1 + αz)β/α − 1

β
)η−1] −

r + ηβ

Γ(η + 1)
(1 + αz)r/α(

eǫ(1 + αz)β/α − 1

β
)η

=
1

Γ(η)
(1 + αz)r/α(

eǫ(1 + αz)β/α − 1

β
)η−1 = yη−1(z).

It is easy to see that

y0(z) = (1 + αz)r/α and yk(0) =
(eǫ − 1)η

βηΓ(η + 1)
.

Since the solution of the initial-value problem (2.23)–(2.25) is unique, we have yη(z) = xη(z).

Thus, from the definition (2.22), we obtain (2.20). A similar argument can be used to prove

(2.21). �

Remark 3.1 The condition αβ 6= 0 is not necessary for the left-hand side of (2.20). In fact,

taking r = 0, β = 1, and letting α → 0+, we see that (2.20) yields the generating function for

the generalized Stirling functions of the second kind:

1

Γ(η + 1)
(ez+s − 1)η =

∑

n≥0

S(n, η, 0, 1, 0; ǫ)
zn

n!
,

which was studied in Theorem 4 of [6], and it can be considered as a particular case of our

Theorem 2.7.
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Similarly, taking ǫ, r = 0, α = 1 and letting β → 0+ yields the generating function of the

generalized Stirling functions of the first kind:

1

Γ(η + 1)
(ln(1 + z))η =

∑

n≥0

S(n, η, 1, 0, 0)
zn

n!
.

3. More properties of the generalized Stirling functions

Let us consider the set of formal power series (f.p.s.) F = R[[t; {ck}]] or C[[t; {c}]] (where

c = (c0, c1, c2, . . .) satisfies c0 = 1, ck > 0 for all k = 1, 2, . . .); the order of f(t) ∈ F , f(t) =
∑∞

k=0 fktk/ck, is the minimal number r ∈ N such that fr 6= 0; Fr is the set of formal power series

of order r. It is known that F0 is the set of invertible f.p.s. and F1 is the set of compositionally

invertible f.p.s., that is, the f.p.s.’s f(t) for which the compositional inverse f(t) exists such that

f(f(t)) = f(f(t)) = t. We call the element g ∈ F with the form g(x) =
∑

k≥0
xk

ck
a generalized

power series (GPS) associated with {cn} or, simply, a (c)-GPS, and F the GPS set associated

with {cn}. In particular, when c = (1, 1, . . .), the corresponding F and Fr denote the classical

formal power series and the classical formal power series of order r, respectively.

We now develop a kind of asymptotic expansions for the generalized Stirling functions

S(n, µ, r; ǫ) ≡ S(n, µ, α, β, r; ǫ) and S(n, µ, µr; ǫ) ≡ S(n, µ, α, β, µr; ǫ) and generalized Stirling

numbers S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) and S(n + µ, µ, µr) ≡ S(n + µ, µ, α, β, µr) for large

µ and n with the condition n = 0(µ1/2) (µ → ∞). The asymptotic expansions of Hsu and Shiue

Stirling numbers in [21] and Tsylova Stirling numbers in [33], involving a generalization of Moser

and Wyman’s result [26], are included as particular cases.

The major tool of construction of the asymptotic expansion is the known result about

the asymptotic formula for the coefficients of power-type generating functions involving large

parameters shown in [19]. Let σ(n) be the set of partition of n (n ∈ N), which can be represented

by 1k12k2 · · ·nkn with 1k1 + 2k2 + · · ·nkn = n, kj ≥ 0 (j = 1, 2, . . . , n), and with k = k1 + k2 +

· · ·+ kn expressing the number of the parts of the partition. For given k (1 ≤ k ≤ n), we denote

by σ(n, k) the subset of σ(n) consisting of partitions of n having k parts.

Let φ(z) =
∑

n≥0 anzn be a formal power series over the complex field C in F0, with

a0 = g(0) = 1. For every j (0 ≤ j < n) define

W (n, j) =
∑

σ(n,n−j)

ak1

1 ak2

2 · · · akn
n

k1!k2! · · · kn!
, (3.1)

where the summation is taken over all such partition 1k12k2 · · ·nkn of n that have n − j parts.

We have the following known result (see for instance [19]): For a fixed m ∈ N and for large

µ and n such that n = o(µ1/2) (µ → ∞), we have the asymptotic expansion

1

[µ]n
[zn](φ(z))µ =

m
∑

j=0

W (n, j)

[µ − n + j]j
+ o(

W (n, m)

[µ − n + m]m
), (3.2)

where W (n, j) are given by (3.1). (3.2) is used to derive the Hsu-Shiue Stirling numbers

in [21]. We now generalize (3.2) and the corresponding argument to give asymptotic expan-
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sion formulas of generalized Stirling functions S(n, µ, r; ǫ) ≡ S(n, µ, α, β, r; ǫ), S(n, µ, µr; ǫ) ≡

S(n, µ, α, β, µr; ǫ), S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) and S(n + µ, µ, µr) ≡ S(n + µ, µ, α, β, µr)

for large µ and n with the condition n = 0(µ1/2) as µ → ∞.

Let g(z) =
∑

n≥0 anzn be a formal power series over the complex field C in F0, with

a0 = g(0) 6= 0. We may write

g(z) = a0

∑

n≥0

an

a0
zn.

For a fixed m ∈ N and for large µ and n such that n = o(µ1/2) (µ → ∞). From formulas

(3.1) and (3.2) we have the asymptotic expansion

1

[µ]n
[zn](g(z))µ =

m
∑

j=0

W (n, j)

an−µ−j
0 [µ − n + j]j

+ o(
W (n, m)

am−µ
0 [µ − n + m]m

), (3.3)

where W (n, j) are given by (3.1).

In particular, when n is fixed, the remainder estimate becomes O(µ−m−1).

To apply (3.2) to the generalized Stirling numbers S(γ, η; ǫ) defined by (2.13) with γ = n,

η = µ and αβ 6= 0, let us use (2.21) to take

g(z) = (1 + αz)r/α eǫ(1 + αz)β/α − 1

β
=

∑

n≥0

S(n, 1; ǫ)

n!
zn (3.4)

when ǫ 6= 0, and

ḡ(z) = (1 + αz)r/α (1 + αz)β/α − 1

βz
=

∑

n≥0

S(n + 1, 1)

(n + 1)!
zn (3.5)

when ǫ = 0, so that g(0) = (eǫ − 1)/β (ǫ 6= 0) and ḡ(0) = 1 (ǫ = 0) not being zero in both

cases, where S(n, 1; ǫ) ≡ S(n, 1, α, β, r; ǫ) and S(n+1, 1) ≡ S(n+1, 1, α, β, r), g(0) = (eǫ − 1)/β.

Consequently, from (2.21) we have

(g(z))µ = (1 + αz)µr/α(
eǫ(1 + αz)β/α − 1

β
)µ

= µ!
∑

n≥0

S(n, µ, α, β, µr; ǫ)

n!
zn (3.6)

for ǫ 6= 0, and

(ḡ(z))µ = (1 + αz)µr/α(
(1 + αz)β/α − 1

βz
)µ

= µ!
∑

n≥0

S(n + µ, µ, α, β, µr)

(n + µ)!
zn (3.7)

for ǫ = 0. Therefore, making use of (3.3) yields

S(n, µ, α, β, µr; ǫ)

[µ]n[n]µ

= (
β

eǫ − 1
)n−µ

m
∑

j=0

(
eǫ − 1

β
)j W (n, j)

[µ − n + j]j
+ o((

β

eǫ − 1
)n−µ W (n, m)

[µ − n + m]m
) (3.8)
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for ǫ 6= 0, and

S(n + µ, µ, α, β, µr)

[µ]n[n + µ]µ
=

m
∑

j=0

W (n, j)

[µ − n + j]j
+ o(

W (n, m)

[µ − n + m]m
) (3.9)

for ǫ = 0, where n = o(µ1/2) as µ → ∞ and W (n, j) (j = 0, 1, 2, . . .) are given by (3.1) with aj

being determined by (3.4); namely, for ǫ 6= 0, a0 = (eǫ − 1)/β and

aj = [zj]g(z) =
S(j, 1; ǫ)

j!
, (3.10)

while for ǫ = 0, a0 = 1 and

aj = [zj ]ḡ(z) =
S(j + 1, 1)

(j + 1)!
. (3.11)

The coefficients defined by (3.10) and (3.11) can be evaluated by using the Vandermonde-Chu

formula (see P. 8 in [29] by Riordan and PP. 51, 61, 64, and 227 in [1] by Andrews) as follows.

From (3.4), for j = 1, 2, . . . , we have

[zj]g(z) = [zj](1 + αz)r/α





eǫ − 1

β
+

eǫ

β

∑

k≥1

(

β/α

k

)

(αz)k





= [zj]





eǫ − 1

β

∑

ℓ≥0

(

r/α

ℓ

)

(αz)ℓ +
eǫ

β

∑

ℓ≥0

∑

k≥1

(

r/α

ℓ

)(

β/α

k

)

(αz)ℓ+k





=
eǫ − 1

β
αj

(

r/α

j

)

+
eǫ

β
αj

j
∑

k=1

(

r/α

j − k

)(

β/α

k

)

=
eǫ − 1

j!β
〈r〉j,−α +

eǫ

β
αj

[(

r/α + β/α

j

)

−

(

r/α

j

)]

=
1

j!β
[〈r + β〉j,−α + (eǫ − 2)〈r〉j,−α] .

Similarly, we obtain

[zj]ḡ(z) =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α]

for j = 0, 1, 2, . . . . Hence, we may survey the above into the following theorem.

Theorem 3.1 For ǫ 6= 0, there holds the asymptotic expansion (3.8) of S(n, µ, µr; ǫ) ≡

S(n, µ, α, β, µr; ǫ) for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined by (3.1) with

a0 = (eǫ − 1)/β and

aj =
1

j!β
[〈r + β〉j,−α + (eǫ − 2)〈r〉j,−α] (j = 1, 2, . . .).

For ǫ = 0, there holds the asymptotic expansion (3.9) of S(n + µ, µ, µr) ≡ S(n + µ, µ, α, β, µr)

for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined by (3.1) with

aj =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α] (j = 0, 1, . . .).

Since the formulas (3.8) and (3.9) with W (n, j) and aj presented in (3.1) and Theorem 3.1,

respectively, are algebraic analytic identities, we may replace r by r/µ in the formulas and obtain
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the following corollary.

Corollary 3.2 For ǫ 6= 0, by replacing the quantity r by r/µ, the asymptotic expansion (3.8) is

also applicable to S(n, µ, r; ǫ) ≡ S(n, µ, α, β, r; ǫ) for n with n = o(µ1/2) (µ → ∞), where W (n, j)

is defined by (3.1) with a0 = (eǫ − 1)/β and

aj =
1

j!β
[〈

r

µ
+ β〉j,−α + (eǫ − 2)〈

r

µ
〉j,−α] (j = 1, 2, . . .).

For ǫ = 0, by replacing the quantity r by r/µ, the asymptotic expansion (3.9) is also applicable

to S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined

by (3.1) with

aj =
1

(j + 1)!β
[〈

r

µ
+ β〉j+1,−α − 〈

r

µ
〉j+1,−α] (j = 0, 1, . . .).
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