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Abstract

Here presented is a unified approach to Stirling numbers and their general-

izations as well as generalized Stirling functions by using generalized factorial

functions, k-Gamma functions, and generalized divided difference. Previous

well-known extensions of Stirling numbers due to Riordan, Carlitz, Howard,

Charalambides-Koutras, Gould-Hopper, Hsu-Shiue, Tsylova Todorov, Ahuja-

Enneking, and Stirling functions introduced by Butzer and Hauss, Butzer,

Kilbas, and Trujilloet and others are included as particular cases of our gen-

eralization. Some basic properties related to our general pattern such as their

recursive relations and generating functions are discussed. Three algorithms

for calculating the Stirling numbers based on our generalization are also given,

which include a comprehensive algorithm using the characterization of Riordan

arrays.
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Key Words and Phrases: Stirling numbers of the first kind, Stirling numbers

of the second kind, factorial polynomials, generalized factorial, divided differ-
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1 Introduction

The classical Stirling numbers of the first kind and the second kind, denoted by
s(n, k) and S(n, k), respectively, can be defined via a pair of inverse relations

[z]n =

n
∑

k=0

s(n, k)zk, zn =

n
∑

k=0

S(n, k)[z]k, (1.1)

∗This paper was presented in the International Conference on Asymptotics and Special Func-

tions, City University of Hong Kong, 30 May - 03 June, 2011
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with the convention s(n, 0) = S(n, 0) = δn,0, the Kronecker symbol, where z ∈ C,
n ∈ N0 = N∪{0}, and the falling factorial polynomials [z]n = z(z−1) · · · (z−n+1).
|s(n, k)| presents the number of permutations of n elements with k disjoint cycles
while S(n, k) gives the number of ways to partition n elements into k nonempty sub-
sets. The simplest way to compute s(n, k) is finding the coefficients of the expansion
of [z]n. [20] gives a simple way to evaluate S(n, k) using Horner’s method.

Another way of introducing classical Stirling numbers is via their exponential
generating functions

(log(1 + x))k

k!
=
∑

n≥k

s(n, k)
xn

n!
,

(ex − 1)k

k!
=
∑

n≥k

S(n, k)
xn

n!
, (1.2)

where |x| < 1 and k ∈ N0. In [26], Jordan said that, “Stirling’s numbers are of the
greatest utility. This however has not been fully recognized.” He also thinks that,
“Stirling’s numbers are as important or even more so than Bernoulli’s numbers.”

Besides the above two expressions, the Stirling numbers of the second kind has
the following third definition (see [13] and [26]), which is equivalent to the above two
definitions but makes a more important rule in computation and generalization.

S(n, k) :=
1

k!
∆kzn

∣

∣

z=0
=

1

k!

k
∑

j=1

(−1)k−j

(

k

j

)

jn

=
1

k!

k
∑

j=1

(−1)j
(

k

j

)

(k − j)n. (1.3)

Expressions (1.1) - (1.3) will be our starting points to extend the classical Stirling
number pair and the Stirling numbers.

Denote 〈z〉n,α := z(z+α) · · · (z+(n−1)α) for n = 1, 2, . . ., and 〈z〉0,α = 1, where
〈z〉n,α is called the generalized factorial of z with increment α. Thus, 〈z〉n,−1 = [z]n
is the classical falling factorial with [z]0 = 1, and 〈z〉n,0 = zn. More properties of
〈z〉n,α will be presented below.

With a closed observation, Stirling numbers of two kinds defined in (1.1) can be
written as a unified Newton form:

〈z〉n,−α =
n
∑

k=0

S(n, k, α, β)〈z〉n,−β, (1.4)

with S(n, k, 1, 0) = s(n, k), the Stirling numbers of the first kind and S(n, k, 0, 1) =
S(n, k). the Stirling numbers of the second kind. Inspired by (1.4) and many exten-
sions of classical Stirling numbers or Stirling number pairs introduced by [8], [23],
[46], [24], etc. We may define a unified generalized Stirling numbers S(n, k, α, β, r)
as follows.

Definition 1.1 Let n ∈ N and α, β, r ∈ R. A generalized Stirling number denoted
by S(n, k, α, β, r) is defined by
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〈z〉n,−α =
n
∑

k=0

S(n, k, α, β, r)〈z − r〉k,−β . (1.5)

In particular, if (α, β, r) = (1, 0, 0), S(n, k, 1, 0, 0) is reduced to the unified form of
Classical Stirling numbers defined by (1.4).

Each 〈z〉n,−α does have exactly one such expansion (1.5) for any given z. Since
deg 〈z − r〉k,−β = k for all k, which generates a graded basis for Π ⊂ F → F, the
linear spaces of polynomials in one real (when F = R) or complex (when F = C), in
the sense that, for each n, {〈z − r〉n,−β} is a basis for Πn ⊂ Π, the subspace of all
polynomials of degree < n. In other wards, the column map

Wz : FN
0 → Π : s 7→

∑

k≥0

S(n, k, α, β, r)〈z〉k,−β ,

from the space FN
0 of scalar sequences with finitely many nonzero entries to the

space Π is one-to-one and onto, hence invertible. In particular, for each n ∈ N, the
coefficient c(n) in the Newton form (1.5) for 〈z〉n,−α depends linearly on 〈z〉n,−α,
i.e., 〈z〉n,−α 7→ s(n) = (W−1

z 〈z〉n,−α)(n), the set of S(n, k, α, β, r), is a well-defined
linear functional on Π, and vanishes on Π<n−1.

Similarly to (1.1), from Definition 1.1 a Stirling-type pair {S1, S2} = {S1(n, k),
S2(n, k)} ≡ {S(n, k; α, β, r), S(n, k;β, α,−r)} (see also in [24]) can be defined by
the inverse relations

〈z〉n,−α =

n
∑

k=0

S1(n, k)〈z − r〉k,−β

〈z〉n,−β =

n
∑

k=0

S2(n, k)〈z + r〉k,−α, (1.6)

where n ∈ N and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3 or C3. Hence, we
may call S1 and S2 an (α, β, r) and a (β, α,−r)− pair. Obviously,

S(n, k; 0, 0, 1) =

(

n

k

)

because zn =
∑n

k=0

(

n
k

)

(z − 1)k. In addition, the classical Stirling number pair
{s(n, k), S(n, k)} is the (1, 0, 0)− pair {S1, S2}, namely,

s(n, k) = S1(n, k; 1, 0, 0) S(n, k) = S2(n, k; 1, 0, 0).

For brevity, we will use S(n, k) to denote S(n, k, α, β, r) if there is no need to indicate
α, β, and r explicitly. From (1.5), one may find

S(0, 0) = 1, S(n, n) = 1, S(1, 0) = r, and S(n, 0) = 〈r〉n,−α. (1.7)

Evidently, substituting n = k = 0 into (1.5) yields the first formula of (1.7). Com-
paring the coefficients of the highest power terms on the both sides of (1.5), we
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obtain the second formula of (1.7). Let n = 1 in (1.5) and noting S(1, 1) = 1, we
have the third formula. Finally, substituting z = r in (1.5), one can establish the
last formula of (1.7). The numbers σ(n, k) discussed by Doubilet et al. in [16] and
by Wagner in [47] is k!S(n, k; 0, 1, 0). More special cases of the generalized Stirling
numbers and Stirling-type pairs defined by (1.5) or (1.6) are surveyed below in Table
1.

(α, β, r) dual of (α, β, r) S(n, k) pairs Name of Stirling numbers

(−1, 1, 0) (1,−1, 0)
n!
(

n−1
k−1

)

/k!

(−1)n−kn!
(

n−1
k−1

)

/k!
Lah number pair[25]

(−1, 0, 0) (0,−1, 0)
|s(n, k)|

(−1)n−kS(n, k)
signless Stirling numbers[37]

(1, θ, 0)(θ 6= 0) (θ, 1, 0)
S(n, k, 1, θ, 0)
S(n, k, θ, 1, 0)

Carlitz′s degenerate Stirling
number pair[7]

(1, 0,−λ) (0, 1, λ)
S(n, k, 1, 0,−λ)
S(n, k, 0, 1, λ)

Carlitz′s weighted Stirling
number pair[8]

(1, θ,−λ) (θ, 1, λ)
S(n, k, 1, θ,−λ)
S(n, k, θ, 1, λ)

Howard′s weighted degenerate
Stirling number pair[23]

(0, 1,−a+ b) (1, 0,−b+ a)
S(n, k, 0, 1,−a+ b)
S(n, k, 1, 0,−b+ a)

Gould−Hopper′s non− central Lah
number pair[18]

(1/s, 1,−a+ b) (1, 1/s,−b+ a)
S(n, k, 1/s, 1,−a+ b)
S(n, k, 1, 1/s,−b+ a)

Charalambides−Koutras′s non−
central C number pair[9, 10]

(1, 0, b− a) (0, 1, a− b)
S(n, k, 1, 0, b− a)
S(n, k, 0, 1, a− b)

Riordan′s non− central Stirling
number pair[34]

(α, β, 0) (β, α, 0)
Aαβ(r,m)
Bαβ(r,m)

Tsylova′s Stirling number pair[46]

(α, β, r) (β, α,−r)
S(n, k, α, β, r)
S(n, k, β, α,−r)

Hsu− Shiue′s Stirling
number pair[24]

(1, x, 0) – ank(x) Todorov′s Stirling numbers[45]

(−1/r, 1, 0) – B(n, r, k)
Ahuja− Enneking′s associated
Lah numbers[31]

(−1, 0, r) – S(n− r, k − r,−1, 0, r) Broder′s r − Stirling numbers[3]

Table 1. Some generalized Stirling Numbers and Stirling Number pairs

The classical falling factorial polynomials [z]n = z(z − 1) · · · (z − n + 1) and
classical rising factorial polynomials [z]n = z(z+1) · · · (z+n− 1), z ∈ C and n ∈ N,
can be unified to the expression

〈z〉n,±1 := z(z ± 1) · · · (z ± (n− 1)),

using the generalized factorial polynomial expression
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〈z〉n,k := z(z + k) · · · (z + (n− 1)k) = 〈z + (n− 1)k〉n,−k (z ∈ C, n ∈ N). (1.8)

Thus 〈z〉n,1 = [z]n and 〈z〉n,−1 = [z]n. In addition, we immediately have the rela-
tionship between [z]n and 〈z〉n,k as

〈z〉n,k = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.9)

Similarly, we obtain

〈z〉n,−k = z(z − k) · · · (z − (n− 1)k) = kn[z/k]n (z ∈ C, n ∈ N, k > 0). (1.10)

The history as well as some important basic results of the generalized factorials can
be found in Chapter II of [26], and an application of the generalized factorials in the
Lagrange interpolation is shown on Page 31 of [17].

It is known that the falling factorial polynomials and rising factorial polynomials
can be presented in terms of Gamma functions: [z]n = Γ(z + 1)/Γ(z − n + 1) and
[z]n = Γ(z + n)/Γ(z), and the gamma function Γ(z) can be defined in terms of
factorial functions by (see, for example, [29])

Γ(z) = lim
n→∞

n!nz−1

[z]n
(z ∈ C− kZ−). (1.11)

As an analogy, the k-gamma function Γk, a one parameter deformation of the clas-
sical gamma function, is defined by (see, for example [15])

Γk(z) := lim
n→∞

n!kn(nk)
z

k
−1

〈z〉n,k
(k > 0, z ∈ C− kZ−). (1.12)

[z]n and 〈z〉n,k (k > 0) are also called the Pochhammer symbol and k-Pochhammer
symbol, respectively. Even the parameter k is replaced by other parameters, we still
call the corresponding Pochhammer symbol the k-Pochhammer.

For k > 0, from (1.9), (1.11) and (1.12) (see also [27]) we have

Γk(z) = k(z/k)−1Γ
(z

k

)

. (1.13)

Since [z]n = Γ(z + n)/Γ(z), [4] extends the classical raising and falling factorial
polynomials to generalized raising and falling functions associated with real number
γ by setting

[z]γ :=
Γ(z + γ)

Γ(z)
[z]γ :=

Γ(z + 1)

Γ(z − γ + 1)
, (1.14)

respectively. We now extend 〈z〉n,k defined by (1.8) to a generalized form associated
with γ ∈ C using the relationship (1.9), namely,

〈z〉γ,k = kγ [z/k]γ, 〈z〉γ,−k = kγ [z/k]γ (z ∈ C, γ ∈ C, k > 0), (1.15)
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which are called the generalized raising and falling factorial functions associated
with complex number γ, respectively. Using (1.13)-(1.15), we establish the following
result.

Theorem 1.2 If k > 0 and 〈z〉γ,k is defined by (1.15), then

〈z〉γ,k =
Γk(z + γk)

Γk(z)
〈z〉γ,−k =

Γk(z + k)

Γk(z − (γ − 1)k)
. (1.16)

There hold the following recurrence relations of the generalized raising and falling
factorial functions.

Proposition 1.3 If k > 0 and 〈z〉γ,k is defined by (1.15), then there hold

〈z〉γ,k = (z + (γ − 1)k)〈z〉γ−1,k, 〈z〉γ,−k = (z − (γ − 1)k)〈z〉γ−1,−k. (1.17)

In next section, we will present the unified expression and some properties of the
generalized Stirling numbers of integer orders. Two algorithms based on the unified
expression will be given. Then, we use the k-Pochhammer symbol and k-Gamma
functions to extend the classical Stirling numbers of integer orders to the complex
number orders in Section 3, which are called the generalized Stirling functions. The
convergence and the recurrence relation of the generalized Stirling functions as well
as their generating functions will also be presented. Finally, in Section 4 we will
give more properties of generalized Stirling numbers and functions using the gen-
erating functions of generalized Stirling numbers shown in Section 3, which include
the asymptotic expansions of generalized Stirling numbers and functions and the se-
quence characterizations of the Riordan arrays of generalized Stirling numbers. The
third algorithm of the computation of the generalized Stirling numbers, including the
classical Stirling numbers as a special case, will be shown using the characterizations
of their Riordan arrays.

2 Expressions of generalized Stirling numbers

First, we give an equivalent form of the generalized Stirling numbers S(n, k) defined
by (1.5) by using the generalized difference operator in terms of β (β 6= 0) defined
by

∆k
βf = ∆β(∆

k−1
β f) (k ≥ 2) and ∆βf(t) := f(t+ β) − f(t). (2.1)

It can be seen that ∆k
β〈z〉j,−β

∣

∣

∣

z=0
= βkk!δk,j , where δk,j is the Kronecker delta

symbol; i.e., δk,j = 1 when k = j and 0 otherwise. Evidently, from (1.10) there holds

∆k
β〈z〉j,−β

∣

∣

z=0
= ∆k

ββ
j

[

t

β

]

j

∣

∣

∣

∣

∣

z=0

= βj∆k[t]j
∣

∣

z=0
= βkk!δk,j . (2.2)

Denote the divided difference of f(t) at t+i, i = 0, 1, . . . , k, by f [t, t+1, . . . , t+k],
or [t, t+1, . . . , t+k]f(t). Using the well-known forward difference formula, it is easy
to check that
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1

k!
∆kf(t) = f [t, t+ 1, . . . , t+ k] = [t, t+ 1, . . . , t+ k]f(t)

and

1

βkk!
∆k

βf(t) = f [t, t+ β, t+ 2β, . . . , t+ kβ] = [t, t+ β, . . . , t+ kβ]f(t).

We now give the following definition of the generalized divided differences.

Definition 2.1 We define △k

β
f(t) by

△k

β
f(t) =

{ 1
βkk!

∆k
βf(t) = f [t, t+ β, . . . , t+ kβ] if β 6= 0

1
k!D

kf(t) if β = 0
, (2.3)

where ∆k
βf(t) is shown in (2.1), f [t, t+ β, . . . , t+ kβ] ≡ [t, t+ β, . . . , t+ kβ]f is the

kth divided difference of f in terms of {t, t+ β, . . . , t + kβ}, and Dkf(t) is the kth
derivative of f(t).

From the well-known formula

f [t, t+ β, t+ 2β, . . . , t+ kβ] =
Dkf(ξ)

k!
,

where ξ is between t and t+ kβ, it is clear that

Dkf(t) = lim
β→0

1

βk
∆k

βf(t), (2.4)

which shows the generalized divided difference is well defined.

We now give a unified expression of the generalized Stirling numbers in terms of
the the generalized divided differences.

Theorem 2.2 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3

or C3. For the generalized Stirling numbers defined by (1.5), there holds

S(n, k, α, β, r) = △k

β
〈z〉n,−α

∣

∣

∣

z=r

=

{

1
βkk! ∆

k
β〈z〉n,−α

∣

∣

∣

z=r
= [r, r + β, . . . , r + kβ]〈z〉n,−α if β 6= 0

1
k! D

k〈z〉n,−α

∣

∣

z=r
if β = 0.

(2.5)

In particular, for the generalized Stirling number pair defined by (1.6), we have the
expressions
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S1(n, k) ≡ S1(n, k, α, β, r) = △k

β
〈z〉n,−α

∣

∣

∣

z=r

=

{

1
βkk!

∆k
β〈z〉n,−α

∣

∣

∣

z=r
= [r, r + β, . . . , r + kβ]〈z〉n,−α, if β 6= 0

1
k!D

k〈z〉n,−α

∣

∣

z=r
, if β = 0

(2.6)

S2(n, k) ≡ S2(n, k, β, α,−r) = △k

α
〈z〉n,−β

∣

∣

∣

z=−r

=

{

1
αkk! ∆

k
α〈z〉n,−β

∣

∣

z=−r
= [−r,−r + α, . . . ,−r + kα]〈z〉n,−β , if α 6= 0

1
k!D

k〈z〉n,−β

∣

∣

z=−r
, if α = 0

(2.7)

Furthermore, if (α, β, r) = (1, 0, 0), then (2.5) is reduced to the classical Stirling
numbers of the first kind defined by (1.1) with the expression

s(n, k) = S(n, k, 1, 0, 0) =
1

k!
Dk[z]n

∣

∣

z=0
.

If (α, β, r) = (0, 1, 0), then (2.5) is reduced to the classical Stirling numbers of the
second kind shown in (1.3) with the following divided difference expression form:

S(n, k) = S(n, k, 0, 1, 0) = [0, 1, 2, . . . , k]zn|z=0 . (2.8)

The following corollary is obvious due to the expansion formula of the divided
differences generated from their definition.

Corollary 2.3 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) is in R3

or C3. If β 6= 0, for the generalized Stirling numbers defined by (1.5), there holds

S(n, k) ≡ S(n, k, α, β, r) =
1

βkk!

n
∑

j=0

(−1)j
(

k

j

)

〈r + (k − j)β〉n,−α (n 6= 0), (2.9)

and S(0, k) = δ0k.

Remark 2.1 It can be seen from (2.9) that

S(n, 0) ≡ S(n, 0, α, β, r) = 〈r〉n,−α, (2.10)

which is independent of β and has been shown in (1.7). The difference is deriving
(2.10) from (2.9) needs (α, r) 6= (0, 0) when β = 0. However, we have seen from
(1.7) that the condition is not necessary. Another way to derive (2.10) using the
characterization of the Riordan arrays of the generalized Stirling numbers will be
presented in the Algorithm 4.5 in Section 4.

Remark 2.2 If αβ 6= 0, by taking the nth forward differences in terms of α and β
on the both sides of two equations of (1.6), respectively, one may obtain identities
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n!αn =

n
∑

k=0

S1(n, k) ∆n
α〈z − r〉k,−β |z=0

n!βn =
n
∑

k=0

S2(n, k) ∆n
β〈z + r〉k,−α

∣

∣

z=0
.

The above two identities can be unified to be one:

n!αn =

n
∑

k=0

S(n, k, α, β, r)∆n
α〈z − r〉k,−β |z=0 .

When α = 0, the above identity turns to

n! =

n
∑

k=0

S(n, k, 0, β, r) Dn〈z − r〉k,−β |z=0 .

Remarker 2.3There exists another expression of the divided difference △k

β
〈z〉n,−α

∣

∣

∣

z=r
in terms of Peano kernel of B-spline. Assume that the set τ := {t, t+ β, . . . , t+ kβ}
lies in the interval [a, b]. Then on the interval, we have Taylor’s identity

〈z〉n,−α =
∑

j<k

(z − a)j

j!
Dj〈z〉n,−α

∣

∣

z=a
+

∫ b

a

(x− y)k−1
+

(k − 1)!
〈y〉n,−αdy.

If β > 0, then △k

β
is a weighted sum of values of derivatives of order < k, hence

commutes with the integral in the above Taylor’s expansion, which annihilates any
polynomial of degree < k. Therefore,

△k

β
〈z〉n,−α

∣

∣

∣

z=r
=

∫ b

a

M(y|τ)

k!
〈y〉n,−αdy,

where

M(y|τ) := k[r, r + β, . . . , r + kβ](· − y)k−1
+

is the Curry-Schoenberg B-spline (see [14]) with the knot set τ and normalized to
have integral 1. In particular,

S(n, n, α, β, r) = △k

β
〈z〉n,−α

∣

∣

∣

z=r
=

∫ b

a

M(y|r, r + β, . . . , r + nβ)dy = 1.

We now present two algorithms for calculating generalized Stirling numbers. If
β 6= 0, we denote

△j

β
f(t+ ℓβ) := f [t, t+ ℓβ, t+ (ℓ + 1)β, . . . , t+ jβ] (2.11)

Thus, from (2.5) in Theorem 2.2, based on the recursive definition of the divided
difference with respect to β (see Definition 2.1)
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△j

β
f(t+ ℓβ) =

1

jβ
(△j−1

β
f(t+ (ℓ + 1)β)−△j−1

β
f(t+ ℓβ)), (2.12)

we obtain an algorithm shown below.

Algorithm 2.4 This algorithm of evaluating the generalized Stirling numbers is
based on the construction of the following lower triangle array by using (2.11) and
(2.12).

〈z〉n,−α|z=r

〈z + β〉n,−α|z=r △
β
〈z〉n,−α

∣

∣

∣

z=r

〈z + 2β〉n,−α|z=r △
β
〈z + β〉n,−α

∣

∣

∣

z=r
△2

β
〈z〉n,−α

∣

∣

∣

z=r
...

...
...

. . .

〈z + kβ〉n,−α|z=r △
β
〈z + (k − 1)β〉n,−α

∣

∣

∣

z=r
△2

β
〈z + (k − 2)β〉n,−α

∣

∣

∣

z=r
· · · △k

β
〈z〉n,−α

∣

∣

∣

z=r

Table 2. The generalized Stirling numbers

Thus, the diagonal of the above lower triangle array gives S(n, i, α, β, r) = △i

β
〈z〉n,−α

∣

∣

∣

z=r
for i = 0, 1, . . . , k.

Example 2.1 We now use Algorithm 2.4 shown in Table 2 to evaluate the classical
Stirling numbers of the second kind S(4, k) = S(4, k, 0, 1, 0) (k = 1, 2, 3, 4), which
are re-expressed by (2.8). Thus,

0
1 1
24 = 16 15 7
34 = 81 65 25 6
44 = 256 175 55 10 1

From the diagonal of the above lower triangular matrix, we may read S(4, 0) = 0,
S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, and S(4, 4) = 1. Meanwhile, the subdiagonal
gives S(5, 1) = 1, S(5, 2) = 15, S(5, 3) = 25, and S(5, 4) = 10.

Example 2.2 For the Howard’s weighted degenerate Stirling numbers S(4, k) =
S(4, k, 1, 1,−1), a similar argument of Example 2.1 yields

〈z〉4,−1|z=−1 = 24

〈z + 1〉4,−1|z=−1 = 0 −24

〈z + 2〉4,−1|z=−1 = 0 0 12

〈z + 3〉4,−1|z=−1 = 0 0 0 −4

〈z + 4〉4,−1|z=−1 = 0 0 0 0 1

Thus, S(4, 0) = 24, S(4, 1) = −24, S(4, 2) = 12, S(4, 3) = −4, and S(4, 4) = 1.
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Example 2.3 For the Howard’s weighted degenerate Stirling numbers S(4, k) =
S(4, k, 1, 2,−1), using Algorithm 2.4, we obtain S(4, 0) = 24, S(4, 1) = −12, S(4, 2) =
3, S(4, 3) = 2, and S(4, 4) = 1 reading from the following table.

〈z〉4,−1|z=−1 = 24

〈z + 2〉4,−1|z=−1 = 0 −12

〈z + 4〉4,−1|z=−1 = 0 0 3

〈z + 6〉4,−1|z=−1 = 120 60 15 2

〈z + 8〉4,−1|z=−1 = 840 360 75 10 1

Remark 2.4 Obviously, Algorithm 2.4 is not limited to the case of β 6= 0 since

when β = 0, △k

β
〈z〉n,−α

∣

∣

∣

z=r
(k = 0, 1, . . . , n) on the diagonal of the lower triangle

matrix in Table 1 are simply the 1/k! multiply of the derivatives Dk〈z〉n,−α

∣

∣

z=r
(see

Theorem 2.2).
Another algorithm based on the Horner’s method can be established using a

modified argument in the computation of the classical Stirling numbers of the second
kind shown in [20]. More precisely, we have the following algorithm.

Algorithm 2.5 First, we may write the generalized Stirling numbers S(n, k) =
S(n, k, α, β, r) defined by (1.5) (see Definition 1.1) as

〈z〉n,−α =

n
∑

k=0

S(n, k)〈z − r〉k,−β

= S(n, 0) + (z − r)(S(n, 1) + (z − r − β)(S(n, 2) + (z − r − 2β)(S(n, 3) + · · ·

(z − r − (n− 1)β)S(n, n)))). (2.13)

Secondly, Use synthetic division to obtain 〈z〉n,−α/(z− r), a polynomial of degree ≤
n−1, with the remainder S(n, 0). Then, evaluate (〈z〉n,−α/(z−r)−S(n, 0))/(z−r−β)
to find the quotient polynomial of degree ≤ n − 2 as well as the remainder S(n, 1).
Continue this process until a polynomial of degree ≤ 1 left, which is S(n, n−1)+(z−
r − (n− 1)β)S(n, n). A equivalent description of the above process can be presented
as follows. Use Horner’s method to find

f(r) ≡ 〈z〉n,−α = S(n, 0) + (z − r)f1(z), deg f1(z) ≤ n− 1,

where the remainder is S(n, 0)). Then, use Horner’s method again to evaluate

f1(z) = S(n, 1) + (z − r − β)f2(z), deq f2(z) ≤ d− 2,

which generates the remainder S(n, 1). Continue the process and finally obtain

fn−1 = S(n, n− 1) + (z − r − (n− 1)β)S(n, n).

In short, we obtain S(n, 0) = 〈z〉n,−α|z=r, S(n, 1) = (〈z〉n,−α − S(n, 0))/(z − r)|z=r+β,
etc.

Algorithm 2.5 can be demonstrated by the following examples.
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Example 2.4 For the classical Stirling numbers of the second kind in the case of
n = 5 and (α, β, r) = (0, 1, 0), from expansion (2.13) we have

z5 = S(5, 0)+z(S(5, 1)+(z−1)(S(5, 2)+(z−2)(S(5, 3)+(z−3)(S(5, 4)+(z−4)S(5, 5))))),

which implies S(5, 0) = 0 and

z4 = S(5, 1) + (z − 1)(S(4, 2) + (z − 2)(S(4, 3) + (z − 3)(S(4, 4) + (z − 4)S(5, 5)))).

Thus, we may use the following division to evaluate S(5, k) (k = 1, 2, 3, 4, 5).

1 1 0 0 0 0

1 1 1 1

2 1 1 1 1 1

2 6 14

3 1 3 7 15

3 18

4 1 6 25

4

1 10

Hence, S(5, 1) = 1, S(5, 2) = 15, S(5, 3) = 25, S(5, 4) = 10, and S(5, 5) = 1.
From (2.13) we also immediately know that S(n, n) = 1 because it is the co-

efficient of zn on the right-hand side while the coefficient on the left-hand side is
1.

Let {tj}
n
j=1 be a strictly increasing n-sequence, and let σ = {σ(j)}kj=1 be any

strictly increasing integer sequence in [1, n]. There holds the following well-known
refinement formula of divided difference (see, for example, [2])

f [t, t− tσ(1), . . . , t− tσ(k)] =

σ(k)−k)
∑

j=σ(1)−1

c(j)f [t, tj+1, . . . , t− tj+k],

where c(j) = ct,σ > 0. Using this refinement formula one may obtain the refinement
formula of the generalized Stirling numbers defined by (1.5).

Proposition 2.6 Let n, k ∈ N0 and the parameter triple (α, β, r) 6= (0, 0, 0) is in
R3 or C3. Then there holds refinement formula,
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△(βσ(1:k)) 〈z〉n,−α|z=r =

σ(k)−k)
∑

j=σ(1)−1

c(j)△(βj+1:j+k) 〈z〉n,−α|z=r ,

where

△(βℓ:j)f := f [t, t+ ℓβ, t+ (ℓ + 1)β, . . . , t+ jβ]

3 Generalized Stirling functions

We now extend the Stirling numbers S(n, k)) expressed by (2.5) to a more wider
generation form using the idea of [6]. First, in order to cover as large a function
class as possible, we recall that the generalized fractional difference operator ∆η,ǫ

β

with an exponential factor, which is introduced in [6]. More precisely, for η ∈ C,
β ∈ R+, ǫ ≥ 0, the generalized fractional difference operator ∆η,ǫ

β is defined for
“sufficient good” functions f by

∆η,ǫ
β f(z) :=

∑

j≥0

(−1)j
(

η

j

)

e(η−j)ǫf(z + (η − j)β) (z ∈ C), (3.1)

where
(

η
j

)

are the general binomial coefficients given by

(

η

j

)

=
[η]j
j!

:=
η(η − 1) · · · (η − j + 1)

j!
(j ∈ N), (3.2)

with [β]0 = 1. Noting the generalized Stirling numbers S(n, k) can be represented
by (2.6), or equivalently,

S(n, k) =
1

βkk!
lim
z→r

∆k
β〈z〉n,−α,

which has an extension shown in (2.9). We now extend (2.9) to a more generalized
form shown in the following definition.

Definition 3.1 The generalized Stirling functions, S(γ, η, α, β, r; ǫ) for any complex
numbers γ and η are given by

S(γ, η; ǫ) ≡ S(γ, η, α, β, r; ǫ) :=
1

βηΓ(η + 1)
lim
z→r

∆η,ǫ
β (〈z〉γ,−α) (ǫ ≥ 0), (3.3)

provided the limit exists; or equivalently, by

S(γ, η; ǫ) ≡ S(γ, η, α, β, r; ǫ) =
1

βηΓ(η + 1)

∑

j≥0

(−1)j
(

η

j

)

e(η−j)ǫ〈r+(η−j)β〉γ,−α (γ 6= 0),

(3.4)
provided the series converges absolutely. and

S(0, η) =
(eǫ − 1)η

βηΓ(η + 1)
. (3.5)
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From (3.4), we immediately have

S(γ, 0; ǫ) = 〈r〉γ,−α (γ 6= 0). (3.6)

Now, an explicit expression of S(γ, η; ǫ) can be given by the following result.

Theorem 3.2 If γ ∈ C and either of the conditions η ∈ C (η /∈ Z), ǫ > 0, or
η ∈ C (η /∈ Z, Re(η) > Re(γ)), ǫ = 0 hold, then the generalized Stirling functions
S(γ, η; ǫ) can be represented in the form (3.4) and S(0, η; ǫ) = δη,0. In particular,
if γ = n ∈ N0, η = k ∈ N, and ǫ ≥ 0, then the corresponding generalized Stirling
functions S(n, k; ǫ) has the representation (3.4).

We now present the recurrence relation of the generalized Stirling functions de-
fined by (3.4) by using the recurrence relations of the generalized raising and falling
factorial functions shown in Proposition 1.3.

Theorem 3.3 There hold the following three results.
(a) For γ ∈ C, η ∈ C (η /∈ Z), and ǫ > 0, the generalized Stirling functions

S(γ, η; ǫ) defined by (3.4) satisfy

S(γ, η; ǫ) = (r + ηβ − (γ − 1)α)S(γ − 1, η; ǫ) + S(γ − 1, η − 1; ǫ). (3.7)

(b) Let γ ∈ C, η ∈ C (η /∈ Z), and Re(η) > Re(γ)). The generalized Stirling
functions S(γ, η) ≡ S(γ, η; 0) satisfy

S(γ, η) = (r + ηβ − (γ − 1)α)S(γ − 1, η) + S(γ − 1, η − 1). (3.8)

(c) For γ ∈ C, k ∈ N, and ǫ ≥ 0, the generalized Stirling functions S(γ, k; ǫ;h)
defined by (3.4) satisfy

S(γ, k; ǫ) = (r + kβ − (γ − 1)α)S(γ − 1, k; ǫ) + S(γ − 1, k − 1; ǫ). (3.9)

In particular,

S(γ, k) = (r + kβ − (γ − 1)α)S(γ − 1, k) + S(γ − 1, k − 1).

Clearly, Theorem 6 in [6] is a special case of Theorem 3.3 for α, β = 0. And
Theorem 3, Corollaries 3.1 and 3.2 in [6] are special cases of Theorem 3.3 for α, β = 0
and γ = n ∈ N.

Now we construct the exponential generating function for the generalized Stirling
functions S(n, η; ǫ).

Theorem 3.4 Let z ∈ C, η ∈ C, and ǫ ≥ 0. The generating function for the
generalized Stirling functions S(γ, η; ǫ) defined by (3.4) with γ = n and αβ 6= 0 is

1

Γ(η + 1)
(1 + αz)r/α

(

eǫ(1 + αz)β/α − 1

β

)η

=
∑

n≥0

S(n, η; ǫ)
zn

n!
(3.10)

for η 6∈ Z and ǫ > 0, and
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1

k!
(1 + αz)r/α

(

eǫ(1 + αz)β/α − 1

β

)k

=
∑

n≥0

S(n, k; ǫ)
zn

n!
(3.11)

for η = k ∈ N0 and ǫ ≥ 0.

Remark 3.1 The condition αβ 6= 0 is not necessary for the left-hand side of (3.10).
In fact, taking r = 0, β = 1, and letting α → 0+, we see that (3.10) yields the
generating function for the generalized Stirling functions of the second kind:

1

Γ(η + 1)
(ez+s − 1)η =

∑

n≥0

S(n, η, 0, 1, 0; ǫ)
zn

n!
,

which was studied in Theorem 4 of [6], and it can be considered as a particular case
of our Theorem 3.4.

Similarly, taking ǫ, r = 0, α = 1 and letting β → 0+ yields the generating function
of the generalized Stirling functions of the first kind:

1

Γ(η + 1)
(ln(1 + z))η =

∑

n≥0

S(n, η, 1, 0, 0)
zn

n!
.

4 More properties of the generalized Stirling func-

tions and numbers

let us consider the set of formal power series (f.p.s.) F = R[[t; {ck}]] or C[[t; {c}]]
(where c = (c0, c1, c2, . . .) satisfies c0 = 1, ck > 0 for all k = 1, 2, . . .); the order of
f(t) ∈ F, f(t) =

∑∞

k=0 fkt
k/ck, is the minimal number r ∈ N such that fr 6= 0; Fr is

the set of formal power series of order r. It is known that F0 is the set of invertible
f.p.s. and F1 is the set of compositionally invertible f.p.s., that is, the f.p.s.’s f(t) for
which the compositional inverse f(t) exists such that f(f(t)) = f(f(t)) = t. We call

the element g ∈ F with the form g(x) =
∑

k≥0
xk

ck
a generalized power series (GPS)

associated with {cn} or, simply, a (c)-GPS, and F the GPS set associated with {cn}.
In particular, when c = (1, 1, . . .), the corresponding F and Fr denote the classical
formal power series and the classical formal power series of order r, respectively.

We now develop a kind of asymptotic expansions for the generalized Stirling
functions S(n, µ, r; ǫ) ≡ S(n, µ, α, β, r; ǫ) and S(n, µ, µr; ǫ) ≡ S(n, µ, α, β, µr; ǫ) and
generalized Stirling numbers S(n+µ, µ, r) ≡ S(n+µ, µ, α, β, r) and S(n+µ, µ, µr) ≡
S(n+µ, µ, α, β, µr) for large µ and n with the condition n = 0(µ1/2) (µ → ∞). The
asymptotic expansions of Hsu and Shiue Stirling numbers in [24] and Tsylova Stirling
numbers in [46], involving a generalization of Moser and Wyman’s result [30], are
included as particular cases.

The major tool of construction of the asymptotic expansion is the known result
about the asymptotic formula for the coefficients of power-type generating functions
involving large parameters shown in [22]. Let σ(n) be the set of partition of n
(n ∈ N), which can be represented by 1k12k2 · · ·nkn with 1k1 + 2k2 + · · ·nkn = n,
kj ≥ 0 (j = 1, 2, . . . , n), and with k = k1 + k2 + · · · + kn expressing the number of
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the parts of the partition. For given k (1 ≤ k ≤ n), we denote by σ(n, k) the subset
of σ(n) consisting of partitions of n having k parts.

Let φ(z) =
∑

n≥0 anz
n be a formal power series over the complex field C in F0,

with a0 = g(0) = 1. For every j (0 ≤ j < n) define

W (n, j) =
∑

σ(n,n−j)

ak1

1 ak2

2 · · ·akn

n

k1!k2! · · · kn!
, (4.1)

where the summation is taken over all such partition 1k12k2 · · ·nkn of n that have
n− j parts. We have the following known result (see for instance [23]):

For a fixed m ∈ N and for large µ and n such that n = o(µ1/2) (µ → ∞), we
have the asymptotic expansion

1

[µ]n
[zn](φ(z))µ =

m
∑

j=0

W (n, j)

[µ− n+ j]j
+ o

(

W (n,m)

[µ− n+m]m

)

, (4.2)

where W (n, j) are given by (4.1). (4.2) is used to derive the Hsu-Shiue Stirling num-
bers in [24]. We now generalize (4.2) and the corresponding argument to give asymp-
totic expansion formulas of generalized Stirling functions S(n, µ, r; ǫ) ≡ S(n, µ, α, β,
r; ǫ), S(n, µ, µr; ǫ) ≡ S(n, µ, α, β, µr; ǫ), S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) and
S(n+µ, µ, µr) ≡ S(n+µ, µ, α, β, µr) for large µ and n with the condition n = 0(µ1/2)
as µ → ∞.

Let g(z) =
∑

n≥0 anz
n be a formal power series over the complex field C in F0,

with a0 = g(0) 6= 0. We may write

g(z) = a0
∑

n≥0

an
a0

zn.

For a fixed m ∈ N and for large µ and n such that n = o(µ1/2) (µ → ∞), From
formulas (4.1) and (4.2) we have the asymptotic expansion

1

[µ]n
[zn](g(z))µ =

m
∑

j=0

W (n, j)

an−µ−j
0 [µ− n+ j]j

+ o

(

W (n,m)

am−µ
0 [µ− n+m]m

)

, (4.3)

where W (n, j) are given by (4.1). In particular, when n is fixed, the remainder
estimate becomes O(µ−m−1).

To apply (4.2) to the generalized Stirling numbers S(γ, η; ǫ) defined by (3.4) with
γ = n, η = µ and αβ 6= 0, let us use (3.11) to take

g(z) = (1 + αz)r/α
eǫ(1 + αz)β/α − 1

β
=
∑

n≥0

S(n, 1; ǫ)

n!
zn (4.4)

when ǫ 6= 0, and

ḡ(z) = (1 + αz)r/α
(1 + αz)β/α − 1

βz
=
∑

n≥0

S(n+ 1, 1)

(n+ 1)!
zn (4.5)
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when ǫ = 0, so that g(0) = (eǫ − 1)/β (ǫ 6= 0) and ḡ(0) = 1 (ǫ = 0) not being zero in
both cases, where S(n, 1; ǫ) ≡ S(n, 1, α, β, r; ǫ) and S(n+ 1, 1) ≡ S(n+ 1, 1, α, β, r),
g(0) = (eǫ − 1)/β. Consequently, from (3.11) we have

(g(z))µ = (1 + αz)µr/α
(

eǫ(1 + αz)β/α − 1

β

)µ

= µ!
∑

n≥0

S(n, µ, α, β, µr; ǫ)

n!
zn (4.6)

for ǫ 6= 0, and

(ḡ(z))µ = (1 + αz)µr/α
(

(1 + αz)β/α − 1

βz

)µ

= µ!
∑

n≥0

S(n+ µ, µ, α, β, µr)

(n+ µ)!
zn (4.7)

for ǫ = 0. Therefore, making use of (4.3) yields

S(n, µ, α, β, µr; ǫ)

[µ]n[n]µ

=

(

β

eǫ − 1

)n−µ m
∑

j=0

(

eǫ − 1

β

)j
W (n, j)

[µ− n+ j]j
+ o

(

(

β

eǫ − 1

)n−µ
W (n,m)

[µ− n+m]m

)

(4.8)

for ǫ 6= 0, and

S(n+ µ, µ, α, β, µr)

[µ]n[n+ µ]µ
=

m
∑

j=0

W (n, j)

[µ− n+ j]j
+ o

(

W (n,m)

[µ− n+m]m

)

(4.9)

for ǫ = 0, where n = o(µ1/2) as µ → ∞ and W (n, j) (j = 0, 1, 2, . . .) are given by
(4.1) with aj being determined by (4.4); namely, for ǫ 6= 0, a0 = (eǫ − 1)/β and

aj = [zj]g(z) =
S(j, 1; ǫ)

j!
, (4.10)

while for ǫ = 0, a0 = 1 and

aj = [zj ]ḡ(z) =
S(j + 1, 1)

(j + 1)!
. (4.11)

The coefficients defined by (4.10) and (4.11) can be evaluated by using the Vandermonde-
Chu formula as follows. From (4.4), for j = 1, 2, . . . , we have
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[zj ]g(z) = [zj](1 + αz)r/α





eǫ − 1

β
+

eǫ

β

∑

k≥1

(

β/α

k

)

(αz)k





= [zj ]





eǫ − 1

β

∑

ℓ≥0

(

r/α

ℓ

)

(αz)ℓ +
eǫ

β

∑

ℓ≥0

∑

k≥1

(

r/α

ℓ

)(

β/α

k

)

(αz)ℓ+k





=
eǫ − 1

β
αj

(

r/α

j

)

+
eǫ

β
αj

j
∑

k=1

(

r/α

j − k

)(

β/α

k

)

=
eǫ − 1

j!β
〈r〉j,−α +

eǫ

β
αj

[(

r/α+ β/α

j

)

−

(

r/α

j

)]

=
1

j!β
[〈r + β〉j,−α + (eǫ − 2)〈r〉j,−α] .

Here, the classical Vandermonde-Chu convolution formula we used above, regarded
as “perhaps the most widely used combinatorial identity” (see P. 8 in [35] by Riordan
and PP. 51, 61, 64, and 227 in [1] by Andrews), which can be written as

n
∑

k=0

(

x

k

)(

y

n− k

)

=

(

x+ y

n

)

(x, y ∈ R, n ∈ N0).

Similarly, we obtain

[zj]ḡ(z) =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α]

for j = 0, 1, 2, . . . . Hence, we may survey the above into the following theorem.

Theorem 4.1 For ǫ 6= 0, there holds the asymptotic expansion (4.8) of S(n, µ, µr; ǫ) ≡
S(n, µ, α, β, µr; ǫ) for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined by (4.1)
with a0 = (eǫ − 1)/β and

aj =
1

j!β
[〈r + β〉j,−α + (eǫ − 2)〈r〉j,−α] (j = 1, 2, . . .).

For ǫ = 0, there holds the asymptotic expansion (4.9) of S(n + µ, µ, µr) ≡ S(n +
µ, µ, α, β, µr) for n with n = o(µ1/2) (µ → ∞), where W (n, j) is defined by (4.1)
with

aj =
1

(j + 1)!β
[〈r + β〉j+1,−α − 〈r〉j+1,−α] j = 0, 1, . . . .

Since the formulas (4.8) and (4.9) with W (n, j) and aj presented in (4.1) and
Theorem 4.1, respectively, are algebraic analytic identities, we may replace r by r/µ
in the formulas and obtain the following corollary.
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Corollary 4.2 For ǫ 6= 0, by replacing the quantity r by r/µ, the asymptotic expan-
sion (4.8) is also applicable to S(n, µ, r; ǫ) ≡ S(n, µ, α, β, r; ǫ) for n with n = o(µ1/2)
(µ → ∞), where W (n, j) is defined by (4.1) with a0 = (eǫ − 1)/β and

aj =
1

j!β

[

〈

r

µ
+ β

〉

j,−α

+ (eǫ − 2)

〈

r

µ

〉

j,−α

]

(j = 1, 2, . . .).

For ǫ = 0, by replacing the quantity r by r/µ, the asymptotic expansion (4.9) is also
applicable to S(n + µ, µ, r) ≡ S(n + µ, µ, α, β, r) for n with n = o(µ1/2) (µ → ∞),
where W (n, j) is defined by (4.1) with

aj =
1

(j + 1)!β

[

〈

r

µ
+ β

〉

j+1,−α

−

〈

r

µ

〉

j+1,−α

]

j = 0, 1, . . . .

In the recent literature, special emphasis has been given to the concept of Riordan
arrays, which are a generalization of the well-known Pascal triangle. Riordan arrays
are infinite, lower triangular matrices defined by the generating function of their
columns. They form a group, called the Riordan group (see Shapiro et al. [42]).
Some of the main results on the Riordan group and its application to combinatorial
sums and identities can be found in Sprugnoli [43, 44], on subgroups of the Riordan
group in Peart and Woan [33] and Shapiro [39], on some characterizations of Riordan
matrices in Rogers [36], Merlini et al. [28] and He et al. [21], and on many interesting
related results in Cheon et al. [11, 12], He et al. [19], Nkwanta [32], Shapiro [40, 41],
and so forth. We now generalize the Riordan arrays associated with classical power
series to those associated with (c)-GPS, where c = {ck = k!}k≥0. The Riordan
arrays associated with other (c)-GPS can be found in author’s later paper. More
precisely, let c = {ck = k!}k≥0. The (c)-Riordan array generated by d(t) ∈ F0 and
h(t) ∈ F1 with respect to {ck}k≥0 is an infinite complex matrix [dn,k]0≤k≤n, whose
bivariate generating function has the form

F (t, x) =
∑

n,k

dn,k
tn

n!
xk = d(t)exh(t), (4.12)

which is called a Sheffer type Riordan array.
Thus, the (n, k) entry of (c)-Riordan array [dn,k] is

dn,k =

[

tn

n!

]

d(t)
(h(t))k

k!
= [tn]

n!

k!
d(t)(h(t))k (4.13)

for all 0 ≤ k ≤ n and dn,k = 0 otherwise. It is easy to see that a lower triangular
array [dn,k] is a (c)-Riordan array if and only if the array (k!dn,k/n!) is a (1)-Riordan
array, i.e., a classical Riordan array. Evidently, [dn,k] = (d(t), h(t)) can be written
as

[dn,k] = D[[tn]d(t)(h(t))k ]n≥k≥0D
−1, (4.14)

where D = diag(1, 1, 2!, . . .).
Rogers [36] introduced the concept of the A-sequence for the classical Riordan

arrays; Merlini et al. [28] introduced the related concept of the Z-sequence and
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showed that these two concepts, together with the element d0,0, completely charac-
terize a proper classical Riordan array. In [21], Sprugnoli and the author consider
the characterization of Riordan arrays, their multiplications, and their inverses by
means of the A- and Z-sequences.

In [36], Rogers states that for every proper Riordan array D = (d(t), h(t)) there
exists a sequence A = (ak)k∈N such that for every n, k ∈ N we have:

[tn+1]d(t)(h(t))k+1

= a0[t
n]d(t)(h(t))k + a1[t

n]d(t)(h(t))k+1 + a2[t
n]d(t)(h(t))k+2 + · · ·

=

∞
∑

j=0

aj [t
n]d(t)(h(t))k+j (4.15)

where the sum is actually finite since dn,k = 0, ∀k > n. We can reformulate it to
the generalized (c)-Riordan array as follows.

Theorem 4.3 An infinite lower triangular array D = (dn,k)n,k∈N
= (d(t), h(t)) is a

(c)-Riordan array if and only if a sequence A = (a0 6= 0, a1, a2, . . .) exists such that
for every n, k ∈ N relation

ck+1

cn+1
dn+1,k+1 =

c0
cn

a0dn,k +
c1
cn

a1dn,k+1 +
c2
cn

a2dn,k+2 + · · · =

∞
∑

j=0

ck+j

cn
ajdn,k+j

(4.16)
holds. In addition, the generating function A(t) of A− sequence is uniquely deter-
mined by tA(h(t)) = h(t).

We now use Theorem 4.3 to establish a new recursive relationship of generalized
Stirling numbers. From expression (3.11) in Theorem 3.4 with ǫ = 0 and αβ 6= 0,
we have the generating function of the generalized Stirling numbers shown below:

1

k!
(1 + αz)r/α

(

(1 + αz)β/α − 1

β

)k

=
∑

n≥0

S(n, k)
zn

n!
. (4.17)

Theorem 4.4 Let αβ 6= 0. The A− sequence (an)n∈N0
of the Riordan array of the

generalized Stirling number array [dn,k = k!S(n, k)/n!]0≤k≤n satisfies

a0 = 1, an = −
1

α

n
∑

k=1

an−k
〈α〉k+1,−β

(k + 1)!
(4.18)

for all n ≥ 1.

To find the fist column of the array [dn,k]0≤k≤n, we consider (4.17) for k = 0 and
have

(1 + αz)r/α =
∑

n≥0

S(n, 0)

n!
zn.

On the other hand,
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(1 + αz)r/α =
∑

n≥0

(

r/α

n

)

(αz)n.

Comparing the right-hand sides of the last two equations, we obtain

S(n, 0) ≡ S(n, 0, α, β, r) = n!

(

r/α

n

)

αa = 〈r〉n,−α. (4.19)

Formula (4.19) was given in (1.7) and also in (2.9), which are derived by different
approaches.

From (4.17) we have

[dn,k]0≤k≤n =

[

k!

n!
S(n, k)

]

0≤k≤n

, (4.20)

where S(n, k) ≡ S(n, k, α, β, r) (αβ 6= 0). Therefore, surveying the above pro-
cess, we obtain an algorithm to evaluate generalized Stirling numbers S(n, k) ≡
S(n, k, α, β, r) with αβ 6= 0.

Algorithm 4.5 Denote d(t) = (1+αz)r/α and h(z) = ((1+αz)β/α−1)/β (αβ 6= 0).
Let n, k ∈ N0 and αβ 6= 0. Then we may find A-sequence (an)n∈N0

shown in (4.18)
and establish the array (4.20) except its first column by using the recursive relation
(4.16) shown in Theorem 4.3, i.e.,

k!

n!
S(n, k) =

∑

j≥0

aj
(k + j − 1)!

(n− 1)!
S(n− 1, k + j − 1) (4.21)

for all 1 ≤ k ≤ n. The first column of array (4.20) can be constructed by using
(4.19). Thus, the nth entry of the first column is

1

n!
S(n, 0) =

〈r〉n,−α

n!
. (4.22)

Finally, all S(n, k) ≡ S(n, k, α, β, r) (0 ≤ k ≤ n) can be read from a modification of
array (4.20); namely from

[

n!

k!
dn,k

]

0≤k≤n

= [S(n, k)]0≤k≤n ,

where S(n, k) = n
∑

j≥0 aj [k + j − 1]j−1S(n − 1, k + j − 1) when 1 ≤ k ≤ n, and
S(n, 0) can be obtained from (4.22) or (4.19).

Remark 4.1 Similar to the argument in Remark 3.1, the condition αβ 6= 0 in
Theorem 4.4 and Algorithm 4.5 is not necessary. Algorithm 4.5 can be modified
to adapt some of cases when αβ = 0. We will show the application of Algorithm
4.5 to the calculations of the classical Stirling numbers of the second and the first
kind, i.e., S(n, k, α, β, r)) = S(n, k, 0, 1, 0) and S(n, k, α, β, r) = S(n, k, 1, 0, 0), in
Examples 4.2 and 4.3, respectively.



22 T. X. He

Example 4.1 For the Howard’s weighted degenerated Stirling numbers S(n, k) ≡
S(n, k, 1, 1,−1). From Algorithm 4.5 or Theorem 4.4, we immediately have gener-
ating function of the corresponding A-sequence A(z) = 1. Then, using (4.21) and
(4.22) we obtain the Riordan array [dn,k]0≤k≤n =

[

k!
n!S(n, k)

]

0≤k≤n
as

[

k!

n!
S(n, k)

]

0≤k≤n

=













1
−1 1
1 −1 1

−1 1 −1 1
1 −1 1 −1 1













.

Therefore,

[S(n, k)]0≤k≤n =













1
−1 1
2 −2 1

−6 6 −3 1
24 −24 12 −4 1













,

which gives S(0, 0) = 1; S(1, 0) = −1, S(1, 1) = 1; S(2, 0) = 2, S(2, 1) = −2,
S(2, 2) = 1; S(3, 0) = −6, S(3, 1) = 6, S(3, 2) = −3, S(3, 3) = 1; and S(4, 0) = 24,
S(4, 1) = −24, S(4, 2) = 12, S(4, 3) = −4, and S(4, 4) = 1 row by row.

Example 4.2 As we have presented in Remarks 3.1 and 4.1, the condition αβ 6= 0 in
Theorems 3.4 and 4.4 and Algorithm 4.5 is not necessary. Here, we demonstrate how
to modify Algorithm 4.5 for the case of (α, β, r) = (0, 1, 0). The generating function
of the corresponding classical Stirling numbers {S(n, k) ≡ S(n, k, 0, 1, 0)}0≤k≤n of
the second kind is

1

k!
(ez − 1)k =

∑

n≥0

S(n, k)
zn

n!
.

Thus the corresponding Riordan array has generating functions d(z) = 1 and h(z) =
ez − 1. Since the compositional inverse of h(z) is h̄(z) = ln(1 + z), the A-sequence
characterization of the Riordan array has generating function

A(z) =
z

ln(1 + z)
=

z
∑

k≥1
(−1)k−1

k zk
=

1
∑

k≥0
(−1)k

k+1 zk
,

which coefficients {an}n≥0, i.e., the elements of A-sequence, can be solved from the
above equation as

a0 = 1, an = −
n
∑

k=1

an−k
(−1)k

k + 1
=

n+1
∑

k=2

an−k+1
(−1)k

k
(n ≥ 1).

Thus, we obtain the first few an:

a0 = 1, a1 =
1

2
, a2 = −

1

12
, a3 =

1

24
, a4 = −

19

720
, etc.

Similar to Algorithm 4.5, we may find the Riordan array
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[dn,k]0≤k≤n =

[

k!

n!
S(n, k)

]

0≤k≤n

=

[

k!

n!
S(n, k)

]

0≤k≤n

=













1
0 1
0 1

2 1
0 1

6 1 1
0 1

24
7
12

3
2 1













.

The Riordan Stirling array of the Stirling numbers of the second kind is

[S(n, k)]0≤k≤n =

[

k!

n!
S(n, k)

]

0≤k≤n

=













1
0 1
0 1 1
0 1 3 1
0 1 7 6 1













,

which gives all S(n, k) = S(n, k, 0, 1, 0) for 0 ≤ k ≤ 4. For instance, S(4, 0) = 0,
S(4, 1) = 1, S(4, 2) = 7, S(4, 3) = 6, and S(4, 4) = 1.

Example 4.3 For (α, β, r) = (1, 0, 0), we can also applied a modification of
Algorithm 4.5 to evaluate the classical Stirling numbers of the first kind s(n, k) ≡
S(n, k, 1, 0, 0) as follows. In this case, we have the corresponding Riordan array
(d(z), h(z)) = (1, ln(1 + z)). Thus the compositional inverse of h̄(z) = ez − 1. Thus
the A-sequence {an}n≥0 has its generating function

A(z) =
z

h̄(z)
=

z
∑

k≥1
zk

k!

=
1

∑

k≥0
zk

(k+1)!

.

Solve the above equation to obtain

a0 = 1, a1 = −
1

2
, a2 =

1

12
, a3 = 0, a4 = −

1

720
etc.,

which brings us the Riordan array

[dn,k]0≤k≤n =

[

k!

n!
s(n, k)

]

0≤k≤n

=

[

k!

n!
s(n, k)

]

0≤k≤n

=













1
0 1
0 − 1

2 1
0 1

3 −1 1
0 − 1

4
11
12 − 3

2 1













.

The Riordan Stirling array of the signed Stirling numbers of the first kind is

[s(n, k)]0≤k≤n =

[

k!

n!
s(n, k)

]

0≤k≤n

=













1
0 1
0 −1 1
0 2 −3 1
0 −6 11 −6 1













,

which gives all s(n, k) = S(n, k, 1, 0, 0) for 0 ≤ k ≤ 4. For instance, s(4, 0) = 0,
s(4, 1) = −6, s(4, 2) = 11, s(4, 3) = −6, and s(4, 4) = 1. Of course, the Stirling
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numbers of the first kind can be evaluated more easily by using formula (2.5) in
Theorem 2.2, namely,

s(n, k) ≡ S(n, k, 1, 0, 0) =
1

k!

dk

dz2
[z]n

∣

∣

∣

∣

z=0

,

which are simply the coefficients of the powers of z in the expansion of [z]n.
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