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In a recent paper fs j the author proved that the binomial coefficient and 

the bracket function ([x] = greatest integer < x) are related by 
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Moreover, the fact that the numbers R and A are orthogonal proved 

the elegant general result that for any two sequences f(n, k), g(n, k), then 

(5) f(n,k) = ^ g ( n , j ) R k ( j ) 

j=k 

if and only if 

n 

(6) g(n,k) = ^ f ( n , j ) A k ( j ) . 

j=k 

Notice that (5) and (6) do not imply (1) and (2); one at least of the special 

expansions must be proved before the inverse relation follows from (5)-(6). 

Finally, it was found that R and A satisfy the congruences 

R,(j) = 0 (modk) 
(7)

 K 

Afe(J) = 0 (modk) 

for all natural numbers j > k + 1 if and only if k is a prime. 

These congruences, together with the fact that R. (k) = A, (k) = 1 then 

showed that either of (1) and (2) implies that 

(8) (*\ s I"|1 (mod k) (k > 2) 

for all natural numbers n if and only if k is a prime. 

Naturally, similar congruences are implied for any f and g which sat-

isfy the pair (5)-(6). 

Now it is natural to look for an extension of these results to the more 

general situation where j . J is replaced by the q-binomial coefficient 

j=i 
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In the limiting case q = 1 these become ordinary binomial coefficients„ This 

is the motivation for the present paper., Ordinarily we omit the subscript q 

unless we wish to emphasize the base useds 

We follow the terminology in f2l and, since that paper is intimately con-

nected with the results below, the reader is referred there for detailed state-

ments and for further references to the literature,, Cf. also f l l . 

In the present paper we exhibit q-analogs of expansions (1) and (2) in 

terms of q-extensions of R and A* Moreover, the generating functions for 

R, (jj q) and A. (j, q) prove their orthogonal nature so that we obtain an elegant 

and direct generalization of the inverse pair (5)-(6) to the q-coefficient caseB 

By consideration of the expressions 

/ ^ R k ( j s q ) A (n,p) , y , Ak(j, q)R (n,p) , q f p , 

j=k j=k 

we are then able to obtain new expressions for q-Stirling numbers of first and 

second kind, with the ordinary Stirling numbers as limiting cases* 

Our emphasis is on the various series expansions involving R and A and 

a detailed study of arithmetic properties will be left for a separate paper* 

The principal results developed here are embodied in Theorems 1-16. 

Special attention is called t o l , 2, and 6, A few arithmetic results also appeare 

We begin by generalizing (2). Put 

i=0 

n 
n Ak(j,q), k > l 

Now, inverse relations (7.3)-(7.4) in [2] may be stated in the form 

XX 

(10) - F(n) = J ] (-l)
n
-i[j»] q ^ ^ ^ - I)/2

f(J) 

if and only if 
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n 

(ID f(n) = J ] F*l F(j) . 

Thus 

A
k

(
^> = E (-D

n
"

j
[^]q

(n
"

3) (n
-

3
"

l ) /2
[i]. 

In this sum the bracketed term is zero for 0 < j < k so that the index j need 

range only from k to n, and it is then also clear that A, (n, q) = 0 for n < 

k. Moreover A, (k, q) = 1 for all k > 1 and any q„ Evidently we have 

proved 

Theorem 1. The q-binomial coefficient expansion of the bracket func-

tion is 

*» [i]-s[?]
A

k^-[a
+
E[j]

A
kM. 

i=k j=k+i 

where 

(13) Ak(3,q) = 2 : ( » l )
j
-

d
[ i ] q

( j
"

d ) ( j
-

d
"

l ) / 2
[ l ] 

d=k 

3 

i 
d=k 

= q3(3-i) /2^ (_1}Hi[Tj pd(d-D/2 [d] 

with pq = 1. Cf. also Theorem 15. 

The indicated second form of (13) follows from the reciprocal transform-

ation ["21 

n 

k 
L Jp 

k(k-n) 
q 

n 
k 

for pq = 1 
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The sum may be written also as in the second form of (4) above. See Theorem 

15. 

The ease of finding (12) suggests that it should not be difficult to invert 

the formula. To do this9 i.-e., to derive a q-analog of (1), we shall proceed 

exactly as in the proof of Theorem 7 in [ s ] . We need a q-analog of the 

relation 

Zw Ik- l ) ( k) 
d=k ' 

which was exploited in [3] in the proof of Theorem 7 as well as in the study of 

the combinatorial meaning of R, (j). 

The q-binomial coefficient satisfies [2] the recurrence relations 

m 
n 1 r n l ^ n-k+i [ n 1 

and the second of these gives 

d-k Z-1H2HV]-
so that by summing both sides we have the desired q-analog 

(14) 2>"[Z:i] - [l] 
d-k 

We also recall the formula of Meissel [3] 

(15) 

m<x 

where fx is the familiar Moebius function in number theory. 
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We a r e now in a posi t ion to p rove 

T h e o r e m 2. The b racke t function expansion of the q-binomial coefficient 

i s given by 

(16) [J] -srfK«">-[i]
+
z[fiv"»' 

L J • j = k L J L J j=k+i L J 

where 

(17) Rk(j»q) E d-kfd- 1 

dlj 
d>k 

MO/d) 

Proof. As in [ 3 , p . 248] we have 

E ["nlY^ d-k f d - l l 
m z ^

q
 Ik-iJ 

j < n dlj 

U(j/d) 

Z«"K:i] E [^H 
d<n m < n / d 

E*"[2:i] - [;]• 
d<n 

by (15), then (14). 

This completes the proof s ince it i s evident that R, (j,q) = 0 for j < k 

and R, (k, q) = 1 for a l l k > 1 and any q. 

We next obtain a Lamber t s e r i e s expansion having R, (j,q) as coefficient. 

We need a q-analog of the formula 

(18) 

oo 

Z ® * 
n=k 

x (1 - x) k > 0 , 
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which was used in [3, p0 246]* 

By using (14), it easily follows that 

oo oo n 

n=k n=k j = k 

= q ^ ^ d - x r ^ f e - l,qx) , 

with S(0,qx) = (1 - qx)"
1
 , 

so that iteration yields the desired formula 

oo k 

(19) J] [kl
 xI1 =

 ^
 n (1

 "
 qix)

"
1
 '

 k
 - ° • 

n=k j=o 

We also recall [ 3 , (3)] 

CO 

(190 EljP
 =

 x
k
(l - x)-i(l - xV

1
, k > l , 

n=k 

We may now state 

Theorem 3. The number-theoretic function R, (j,q) is the coefficient 

in the Lambert series 

k 

(20) 

CO i CO 

I \ w f i ^ k n tt-,ix)-.^[»;J]<,»-^. 
j=k

 1
~

X
 j=i n=k 

Indeed, the same steps used in [3 , p„ 246] apply here, One substitutes 

in (19) by means of (16), rearranges the series, and then uses (19
T
)„ Since we 

are only concerned with the coefficients informal gene rating functions no prob-

lem about convergence arises at this point, Later, in Theorem 16, we expand 

(20) as a power series in a variant form. The right-hand summation in (20) 

follows easily from (19), 
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The expansion inverse to (20) is just as easily found, and we state 

Theorem 4. The number-theoretic function A, (j,q) is the coefficient 

in the expansion 

(21)
 ]C

A
k

(j
'

q)xJ
 °

 {1
"^

x) 
k 

. . , . . 1 - x 
-pk 1=1 

Indeed, the proof parallels that in.[3, 252] in that one starts with (19*), sub-

stitutes by means of (12), rearranges, and applies (19). 

Now it is evident that the q-binomial coefficient , is a polynomial of 

degree k(n - k) in q, Thus it is evident from (4) and (17) that A, (j,q) and 

Rk-Cbq)
 a r e

 each polynomials in q. In terms of the formal algebra ofgenerat-

ingfunctions we may then equate corresponding coefficients in series to derive 

identities. Substitution of (20) into (21), and conversely, yields the following 

orthogonality relations which we state as 

Theorem 5. The numbers A, (j,q) and R, (j,q) are orthogonal in the 

sense that 

(22) 

and 

"V Rk(j,q)A (n, q) = 8^ , 

j=k 

(23) ^ A k ( j , q ) R . ( n , q ) =f i£ 

j=k 

Thus we have evidently also proved the quite general inversion 

Theorem 6. For two sequences F(n, k, q), G(n, k, q), then 

(24) F (n, k, q) = ^ G(n, j , q)Rk(j, q) 

]=k 
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if and only if 

n 

(25) G(n5ksq) = ^ F(n5 j , q)Ak(J,q) . 

j=k 

Again we note that Theorem 6 does not immediately imply Theorem 1 or 

Theorem 25 as one at least of these must be proved before Theorem 6 yields 

the other* The expansion and inversion theories are quite separate ideas* 

It was seen in [3, pa 24 7J that the number of compositions of n into k 

positive summandSj C. (n), is related to R, (j) by the formula 

(26) Ck(n) = ( k : i ) = 2 > k
( d ) 

din ( - ) 

which was then inverted by the Moebius inversion theorem to get that part of 

(3) above involving the Moebius function. Since that paper started from the 

number-theoretic interpretation of R, (j) and only later used the formula of 

Meisselto obtain the expansion without starting from the theory of compositions, 

it is of interest in the present paper to proceed in reverse, The Moebius inver-

sion theorem applied to (17) above gives us at once 

Theorem 7, The function R,(j,q) satisfies the q-analog of (26). 

(27) ^[1-4 =!>•<» 
din 

We now turn to the connections between R, (j,q) and A, (jsq) and the 

Stirling numberse A formula due to Carlitz was stated in [ l ] in the form 

(28) 

s=k 

[k] - ^ ( ; ) < q - l )
B

"
k
S 2 f c B - k . q ) , 
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where S2(n, k, q) is a q-Stirling number of the second kind and, explicitly, 

S2(n,k,q) = < q - i r ^ -(29) 

3=0 

It is evident from the expansions which we have examined here that we 

may obtain formula (28) in quite a different manner,, 

Indeed, substitution of (2) into (16) above gives us at once 

n s 

(30) [I] =£(;)2X<l.q>AJ(s) . 
s=k j=k 

and this must agree with (28), so that we are left to assert 

Theorem 8. The q-Stirling number of the second kind as defined by 

(29) may be expressed as 

(31) (q - l)
S
"

k
S2(k, s - k, q) = ^ ^ ( j , q)A. (s) . 

j=k 

This is an interesting result, because when q = 1 the left-hand member 

is zero (k fi s), and the right-hand member is zero because of the fact of 

orthogonality of R. (j) and A.(s). As a corollary to this theorem we have 
K 3 

Theorem 9. The ordinary Stirling numbers of the second kind (in the 

author's notation [ l ] ) are given by 

(32) S2(k,n-k) = q^tq-l^J^I^O.^Afa) , 

3=k 

where R, (j,q) is given by (17) and A.(n) = A.(n, 1) is given by (4). 

It is natural to request a companion formula for the Stirling numbers of 

the first kind. To attempt this we next need a formula inverse to (28), as the 
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formula inverse to (30) is apparent* We proceed by making use of the q-inversion 

theorem expressed in relations (10)-(11) above, 

Put 

n 

(33) (*\ = J ] ( s )
 f ( s

'
k

^
)
 • 

s=o 

then by (10)-(11) this inverts to yield 

(34) f(n, k, q) = £ (- l)
1
^ [*] q<*H)(n-M)/2 ^ 

It was found in [ l5 (3*19)] that the q-Stirling numbers of the first kind 

as there defined could be expressed in the form 

(35) Sl(n, k, q) = (q - i r
k

] T (-D
k
"

j
 ( I Z j ) [ »] q

j ( j+ l ) /2
 . 

which may be rewritten as follows: 

Sl(n, n - k, q) = (q - ! ) * * £ ( - 1 ) ^ ( n ^ 1 ,) [ j ] J ^ 

n 

(q-D^SC-D^-^-J^]^ 

(q - l )
k
-

n
 J ] (-l)

k
-J (3\|-nJq(n- j)(n- j+1)/2 ) 

j=0 \ ' 

so that we may write 
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II 

(36) Sifo.n-k.q) = (1 - q ) ^ ! ^ [ *] (A q^M-DA^j o 

This looks somewhat like f(n, k, q) as given by (34), but with an important dif-

ference: the factor q
n
~"**. It seems rather difficult to modify the work so as to 

remove this factor and express f (n, k, q) easily in terms of Si(n, k, q). We 

could call f (n, k, q) a modified Stirling number of the first kind. We illustrate 

further the difficulty involved, Instead of (33) let us put 

(37) ""(") -EGW* 
' S=0 

This inverts by (10)-(11) to give 

g(n,k,q) =J](-l)
n
~

J (n-j)(n-j-i)/2 

i=o 
( 0 «•* • 

and comparison of this with (36) yields at once 

(38) g(n,k,q) = q~
n
 (1 - q)

n k
Si(n,n - k, q) 

This, however, leads to difficulty when we examine the analog of (30). Indeed, 

substitution of (12) into (1) gives us at once 

(39) (^EWEv
1
. Us,q) 

s.=k j=k 

However, expansion (37) gives us 

(40) 

n 

(k)
 =

2[s]«
n
e<

8
'

k
'

<
3>. , 

S=0 
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and we may not equate coefficients since (39) requires the coefficient of the q-

binomial coefficient to be independent of n, but in (40) it is not, 

Of course, by (33) and (39) we do have 

(4i)
 Ew^

 =
 E

(
"

i ) S
"

j
[j]( i )

q 

j=k j=k 

(s-j)(S-j-l) /2 

which is the best companion to (31) noted at this time* 

Another approach would be to develop a q-bracket function (q-greatest 

integer function) and proceed in a manner similar to the above by expanding the 

binomial coefficient I . J in terms of a q-bracket function and using this in 

relation (2) just as we here used relation (2) in (16) to get (30) and then (31)* 

The development of the q-analog of the greatest integer function will be left 

for a separate account 

It seems notwithout interest to exhibit a numerical example of (32)., From 

definition, S2(2, 3) = 1 • 1 •• 1 + 1 . 1 . 2 *+ l • 2 • 2 + 2 \ 2 • 2 = 15, being 

the sum of the 4 possible products, each with 3 factors (repetition allowed)s 

which may be formed from the first 2 natural numbers. The table of values of 

A.(n) in [3 , p0 254] and the formula (17) may be used, We find that 

S2(2,3) = S 2 (2 ,5-2) = lim^ (q - 1 ) -
8

] £ R 2 ( J , q)A (5) 

3=2 

= lim (q - 1)"
3
(-8 + 6q(q+l) -4<-1+q

2
 + q

3
 + q

4
)+(q

3
 + q

4
 + q

5
'+ q

6
)) 

= lim1 (q - l )"
3
 (-4 + 6q + 2q

2
 - 3q

3
 - 3q

4
 - q

5
 + q

6
) = 15, 

the limit being easily found by 1
?
Hospital's theorem, 

We should remark for the convenience of the reader that the Stirling num-

bers appear in various forms of notation and the notations of Riordan [5JS 

Jordan [4] , and the author [ l ] are related as follows: 

(42) s(n,k) = s£ = ( - l )
n
"

k
S i ( n - l , n - k ) , 
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and 

(43) S(n,k) = (s£ = S2(k,n - k) = A A ^ n . 

The Si and S2 notations are convenient because of the generating functions 

n n n oo 

(44) n (1+kx) = £ Sidi,k)x
k

f n ( 1 - k x ) "
1
 = £ s 2 ( n , k ) x

k
. 

k=o k=0 k=o k=o 

Also, in £l j will be found a discussion of the interesting continuation formulas 

(45) S 2 ( -n- l ,k , l /q) = q
k
S1(n,k,q)f S ^ n - l , k, 1/q) - q

k
S2(n,k,q) . 

A q-polynomial was suggested in [ l ] which would include both Si and S2 as 

instances. The q-Stirling numbers as defined hi f l"J satisfy the generating 

relations 

(46) n (l + [k]x) = £ Si(n,k,q)x
k
, n (1 - tKJx)"

1
 = £ S2(n,k,q)x

k
, 

k=o k=o k=o k=o 

in analogy to (44). Here [kj is called a q-number and is defined by 

so that 

qlj^! [
k
] =

 k
 • 

The notation [k] must not be confused with that for the bracket function. 

Relations (31) and (41) suggest that we consider the following. By using 

Theorem 3 with base qs and substituting with Theorem 4 and base p, we 

find the identity 
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k oo n n 

(47) X
k
 n a - q

j
xH = J2 *

n
 n a - p V

1
^ Rk(j,q)A.(n,P) . 

j=i n=k i=i j=k 

It will be recalled from [3 ] that for p = q the inner sum is merely a 

Kronecker delta. In view of Theorem 85 we may look on the sum 

(48) X
R

k
( J 5 q ) A

j
( n

'
P ) = f ( n

'
k s P

'
q ) 

j=k 

as a kind of generalized Stirling numberB 

Some of the results already found extend to real numbers instead of 

natural numbers only. The product definition (9) holds for n = x = real num-

ber. We may also extend the range of validity of (16) just as was done in the 

proof of Theorem 7 in [3 ] . Indeed we have 

Theorem 10. For two sequences F(x,k, q), G(x, k,q), then for real x 

and all natural numbers k 

(49) Ffc,k,'q) = J^ G(x5j9q)Rk(j,q) 

k<j<x 

if and only if 

(50) G(x,k5q) = ] T G(x,j,q)Ak(j,q) , 

k<j<x 

I where R and A are defined by (17) and (13). 

The proof uses nothing more than Theorem 5. 

The real-number extension of Theorem 1 most readily found is as follows. 

Theorem 11. For real x and natural numbers k 

k4j4x 
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The proof parallels that of Theorem 7 in [s]9 Note that the 'expansion' 

(52) 

k4j^x
 q 

is inc or recto What is really expanded in (51) is 

lr ' h °
w e v e r i n

 ^
a c

^ \T~
 =

 Mk ' 

so that what one might first try from (50) does not hold, 

Similarly, a correct generalization of Theorem 2, by inversion of (51), 

is 

Theorem 12. For real x and natural numbers k 

(53) KG • £ [ f ] v - « 
k4j4x 

The failure of (52) suggests two new procedures. First, we may define 

a kind of q-greatest integer function (not the only possible definition) by 

(54) 
k ' q 

k4j4x L J q 

and secondly, we may introduce new coefficients such that 

(55) E[? 
k4j4x 

Bk(j»q) , 

but these are not easily determined. We shall leave a detailed discussion of 

such extensions for another paper. 
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Although we omit a detailed study of the arithmetical properties of the 

functions R,(j9q) and A, (j?q)9 we remark that such a study makes use of 

arithmetical properties of the q-binomial coefficients. Fray [6 ] has recently 

announced some results in that direction* In particular he announces the fol-

lowing theorem* Let q be rational and q ^ 0 (modp), and let e = exponent 

to which q belongs (mod p)e Let n = a0 + ea, 0 < a0 < e, and k = b0 + eb, 

0 < b0 < e„ Then 

(56) 
a 0 l / a\ 

bojvb/ (mod p) 

We do explore certain arithmetical properties which are of a different 

nature. First of all, (17) gives 

qRi(n,q) = ^ T q jn(n/d) 

din 

and by a theorem of Gegenbauer [ 3 , p6 256] this sum is always divisible by n 

for any natural number qe Thus we have the congruence 

(57) qRi(nsq) = 0 (mod n.) 

for all integers n9 q* This is trivial for Ri(n, 1) = Ri(n) = 0 for n > 2. 

On the other hand9 let n = p be a prime. Then we have for integers q 

(58) Ri(p,q) = q
13

"
4
 - 1 = 0 (modp), for (p, q) = 1 , 

this following from the Fermat congruence* Again this is trivial when q = 1. 

It is possible to obtain various identical congruences for the functions 

studied in this paper* If f(q) and g(q) are two polynomials in q with integer 

coefficients, we recall that f(q) = g(q) (mod m) is an identical congruence 

(mod m) provided that respective coefficients of powers of q are congruent, 

We shall call such congruences identical q-congruences* Thus we have 
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Theorem 13. The functions defined by (13) and (34) satisfy the identical 

q-congruence 

Ak(n,q) = f(n,k, q) (mod k) (k > 2, n = 1, 2, 3,- • •) 

if and only if k is prime, 

Proof. Apply (8) to (13) and (34). 

Another way of seeing this is to note that (33) and (39) imply 

n n 

f(n,k5q) = J2 Rk(])Aj(n»q) = Ak(n, q) + ] T Rk(j)A.(n,q) , 

j=k j=k+i 

and recall (7), whence the result follows. 

In similar fashion one can obtain various congruences involving the q-

Stirling numbers. 

As a final remark about identical congruences we wish to note the follow-

ing q-criterion for a prime. 

Theorem 14. The identical q-congruence (for k ^ 2) 

(59) (1 - q)
k _ 1

 = [k ] (modk) 

is true if and only if k is a prime. Here, the q-number 

[ k ] q = <q
k
 - l)/(q - 1) . 

Proof. We shall use the easily established q-analog identity: 

(60) (q-D^E^^DV 
j

 = 1 

From this we have 
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Now it i s eas i ly seen that 

419 

k 01 if k = p r i m e and 1 < j < k - 1 

Hence it is t r iv ia l that (59) holds when k = p r i m e , 

A s s u m e then that (59) holds for a composi te k. Then we have (61) so 

that 

(?) , 1 < j < k - 1 . 

j = p5 whence k 

Let p be a prime a d iv i sor of k. Then for some va lue o f j , 1 < j < k - 1, 

1
 1 . Consider ing this in the form 

I P /
 6 

k(k - 1) • • • (k - p + 1) 

p(p - 1 ) : 

we have (k, j) = 1, whence k i s re la t ive ly p r i m e to every factor k . - j in the 

n u m e r a t o r and. we have p(p - 1)1 I (k - l)(k - 2)»
e
 • (k - p + 1). This impl ies 

that p | (k - j) for some j with 1 L j 4 k - 19 o r s ince plk (by hypothesis)9 

t he re fo re pi j which is imposs ib le . Thus the only poss ib i l i ty i s that k i s 

p r i m e itself. 

If we wr i t e out the congruence a s 

(1 - q )
k _ 1

 = A -»-SL (mod k) , 

and mult iply through by 1 - q we have the equivalent identical congruence 

(62) (1 - q )
k
 = 1 - q

k
 (mod k) 

if and only if k = p r i m e (k > 2). 

It was noted in [ 3 ] that E. M8 Wright
f
s proof of (8) was to show that (8) 

i s equivalent to the identical q-congruence (62). We note a typographical m i s -

take in [3, p . 24lj in that the identical congruence t h e r e should r ead 
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(63) (1 - x)
P
 = 1 - x

P
 (mod p) 

if and only if p is prime. 

The proof above for (59) is equivalent to Wright's proof of (62), however 

it is felt to be of interest to present it byway of the q-identity (61). Of course, 

the generating functions (1) and (2) show that (8) and (63) are equivalent. 

Since \jf\ was concerned with compositions and partitions, it is of interest 

to recall a theorem of Cayley to the effect that the number of partitions of n 

into j or fewer parts, each summand 4i , is the coefficient of q in the series 

expansion of the q-binomial coefficient 

m 
3 , k+i 

When | q. | ̂  1 and i-^oo, j —>oo, this reduces to Euler
T
s formula for the par-

tition of n into any number of parts at alL 

oo 

O (1 - q V
1
 = l + £ P(n) q

n
 . 

k=i n=i 

It is expected that the q-identities derived here have further implications for 

partitions and compositions. 

As another result we show that A, (n, q) may be written in such a way 

that the greatest integer function does not explicitly appear. This is analogous 

to relation (41) in C3J. We have 

Theorem 15. For the numbers defined by (13) we have 

(64) Ak(n,q) = £ < - l )
n

-
m k

[ ^ _ \ ] ^-rnkMn-mk+OA 

14m4n/k 

Proof. Recall that 
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n 

L
3 

= "n - l " 

3 
+ 

n -

_ J -

l ] 

1 J 
.

n
~3 

Then by (13) and this we have 

n - i 
A

k
(n
'
q) =

E < -
i
>

n
"

j n - 1 

3 

(n-j)(n-j-l)/2 

n - 1 

j - 1 

q n - j (ti-j)(n-j-i)/2 

£ (-l)
n
"

j+1 n - 1 

j - l 

(n-j)(n-j+i)/2 . 1 - 1 
k 

3=1 

n - 1 

3 - 1 

(n-j)(n-j+l)/2 

3=i 

n - 1 

j - l 

(n-j)(n-j+i)/2 3 - 1 
k 

= y (_D
n
-J | » - i 

k<3<n 

k l j 

[" 
(n-j)(a-j+i)/2 

which may then be wr i t ten as we indicates let t ing j = mk in the summation. 

An a l te rna t ive form of the power s e r i e s expansion for (20) i s eas i ly found. 

Indeed, the product on the r ight s ide of (20) may be wr i t ten as follows: 

k - i oo 

n a - q )̂-
1
 = n a - qV)-

1
 = n 

j+k 

3
= 1 j=o 3=o 

1 - xqq* 

However, Car l i tz [j7, pe 525J has noted the expansion (due to Cauchy [8J) 
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-

n ———r - L, —n\—
 t 

. n 1 - btq
J
 ft

 i q ;
n 

j=o ^ n=o 

w h e r e 

n - i 

(b - a ) n = n (b - q
j
a ) 

3=o 

and 

n 

(q)n = n (1 ~ q
3
) . 

3=1 

Setting a = q , b = 1, t = qx, we can obtain the des i r ed expansion. We 

s ta te the r e su l t a s 

T h e o r e m 16. The Lamber t s e r i e s for R, (j,q) m a y b e wr i t ten as apower 

s e r i e s in the form 

00
 i °° (1 - Q

k
) 

(65) £„„«.,>-t-j-E-^-v,-* 
TT 1 - x

J
 A

 v
^ n 

j=k n=o 

F u r t h e r r e s u l t s re la t ing to composi t ions and par t i t ions will be left for a 

future paper . 
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