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STIRLING NUMBER REPRESENTATION PROBLEMS
H. W. GOULD

1. Introduction. The Stirling numbers of the first kind are defined
as the coefficients Si(n, k) in the expansion

(1.1) I+ k) = 3 Siln, e,
k=0 k=0

so that [6] Si(#, k) =the sum of the C, ; possible products, each with
k different factors, which may be formed from the first # natural
numbers.

The Stirling numbers of the second kind are defined as the coeffi-
cients Sa(n, k) in the expansion

(1.2) 1A - k)t = 3 Salo, By,

k=0

so that Si(n, k) =the sum of the Cpyx—1y% possible products, each
with % factors (repetition allowed), which may be formed from the
first # natural numbers.

Schlémilch [9] found the formula

(=1)*S1(n — 1, k)

_ _ n n+E\ & g k Sa(7, &) ,
-9 (n k)<k>< b )f:";( b <j>(n+j)<k-;-j)

which is one of the simplest known explicit representations of the
Stirling numbers of the first kind in terms of the Stirling numbers of
the second kind. By means of a simple binomial coefficient identity
this formula is seen to be equivalent to the neater formula

149  Sin—1,8) = g(ZtQ(i;j)&(’ B,

found by L. Schlifli [8].

These two formulas do not seem to be very well known, perhaps
because it is easier to calculate S; by means of recurrence formulas.

Of course, it is well known [4; 5] that S, is given by the very
simple formula
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1
So(n, k) = — Ar gtk
nl %1

z=0

S (Y

=0

(1.5)

We remark that the numbers S, occur in the familiar Newton-Gregory
expansion [5; 12] of x":

(1.6) an = stz(k n—k)( >
k=0
In this paper we offer simple proofs of the following formulas:

B
k

k =0
1.8 (~ 1Sy, #) = (H") > (=1 (jki i)ﬁj—:—"_—%@
(")
(1.9) Ss(n — kb, k) = é(i;j)(it:)sl(kﬂ—l k),

(1.10) Sin — 1, k) = kz K@®)S:i(k+1t—1,k),

(1.11)  Satn—k, k) = i) K(0)Sa(t, k),

t=0

where in (1.10) and (1.11)

e - E0CEE)

In particular we remark that (1.9) is a companion to (1.4) thereby
providing a simple way to express the Stirling numbers of the second
kind explicitly in terms of the Stirling numbers of the first kind.

We also make application of the Eulerian numbers [1; 12]

k 1
(1.13) dp= 3 <—1>f(":.r )(k — i

i=0

in order to show that
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k

Sa(n — k, k) = (_1)k(") 2 (—1)iSy(k — 1, k — 1)

n! k =0

(1.14) .
: ;0 4n (5= 1)5.

2. Proof of (1.7) and (1.8). Because of the relations
n—1 (n) k " .
(2.1) 5 By = (—1)Si(n — 1,k), npositiveinteger,
and
k —n
(2.2) (n-}i— )B,ﬁ ) = Sa(n, k), n positive integer,

where B =B{(0) is a generalized Bernoulli number and [7]

2 z 0 2 Zk
( )W=ZdWE’

er — 1 k=0

and also in view of the relations [3]

(23) Sl(_n - 1; k) = S2(”’, k)7
(2.4 So(—n — 1, k) = Si(n, k),
it will be sufficient to establish for all real # that
n LJ E+1 in
(2.5) B = Z(—l)f(. N )B,E ™,
=0 i+ 1

and then (1.7) and (1.8) are special cases.
We take the generalized chain rule of differentiation in the form
(cf. [5, p. 216] and [6, p. 22] in general)

(2.6) D’i(i>= Zk)(—l)"(kJrl)# .7,

2 =0 Jj+1

()
2= .
x
Then noting that lim,., =1, and that [4; 7]

(2.7) BX’=1ﬁ<i)

23

and define

’
z=0
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we find that (2.5) follows immediately from (2.6).
3. Proof of (1.9). We have [7, p. 147]

k (n+k)
log (x 4+ 1) )" ® x By

3.1 _— ) =mn — < 1.
(3-1) ( " " T %]
From this and [7, p. 145]

n- k n
(3.2) BV = (1 ~ 7) B,
it follows that

x " L —nt1)
3.3 _) = — B 1).
3-3) (log(x—l—l)) zg)k! g 0

Now the generalized chain rule may also be written in the con-
venient form (cf. [5, p. 216] and [6, p. 22])

n —n L - k —J j
(3.4) 2D " = Z( ")( + ")z DLd,
=0 \ J k—yj

and by an easy binomial coefficient identity this may also be written
as

() =5 (GG I )
3.5) (—1 D,z = D,3.
()()(k 2Dz =4l )G U
We define
log (x + 1)
g=—"

X

and note that lim,.o s=1. Then it follows from (3.5) and the expan-
sions (3.1) and (3.3) together with (3.2) that

P G—n) “ (k—">(k+”>(k+j—1) (+k)
3.6) (—1 B = B
3.6) ( )(k>" S\e+i/\r—; b b

and consequently when we apply (2.2) to the left-hand member and
(2.1) to the right-hand member, this expression becomes identically
(1.9) which is therefore proved.

4. Proof of (1.10) and (1.11). It is a routine calculation to sub-
stitute for Sy(j, k) in (1.4) by means of (1.9) and obtain (1.10). Like-
wise we substitute for S;(k+j—1, &) in (1.9) by means of (1.4) and
the result is exactly (1.11). The summation K (t) occurs in each case.
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5. Proof of (1.14). Worpitzky [12, formula (14) ] has shown that
n ; — 1
(5.1) kiSa(kyn — k) = Z(] ) Any
i—o\n—Fk
where A, ; are the Eulerian numbers defined by (1.13).
Now it is a consequence of (1.1) that the familiar expansion
x n _1 n—k
(5.2) ( >= Z%—&(%—l,n—k)x"

n k=0 n.

is obtained.
From (5.1) we obtain, first putting »—£ for & and then using (5.2),

n ;  — 1
505 )
=0\ k

)3 (_ )k_ Sk =1,k =) — Dida.

j=0 =0

(n — B)I\Se(n — k, k)

Simplification of this yields relation (1.14) as proposed.

It would be interesting to obtain a relation inverse to (1.14), that
is a formula expressing S; in terms of S, using 4, ;.

It is not hard to show that a relation inverse to (5.1) is

I A o L (I )

=0
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