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Abstract
We define a q-analogue of r-Stirling numbers of the second kind using their combinatorial
interpretation in terms of set partition. Some properties are obtained including recurrence relation,
explicit formula and certain symmetric formula. Moreover, a q-analogue of r-Stirling numbers of the
first kind is introduced to obtain a q-analogue of the orthogonality and inverse relations of the two
kinds of r-Stirling numbers.
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1 Introduction
Several generalizations of Stirling numbers have appeared in the literature. Almost all the generalizations
of Stirling numbers have been listed in [1]. One of these is the r-Stirling numbers of the first and
second kind in [2] which are defined, respectively, as follows

[
n

k

]
r

:= number of permutations of the set {1, 2, · · · , n} into k nonempty disjoint cycles,

such that the numbers 1, 2, · · · , r are in distinct cycles.

{
n

k

}
r

:= number of partitions of the set {1, 2, · · · , n} into k nonempty disjoint classes

(or blocks), such that the numbers 1, 2, · · · , r are in distinct classes (or blocks).
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Detailed discussion on r-Stirling numbers and some related works can be found in [2, 3, 4]. Recently,
the r-Stirling numbers of the second kind have been generalized further in [5] by replacing the
condition

the numbers 1, 2, · · · , r are in distinct classes (or blocks)

with the condition

for given subsets R1, . . . , Rr of {1, 2, . . . , n} where |Ri| = ri and
Ri ∩Rj = ∅, for all i, j = 1, . . . , r i 6= j, the elements of each

subsets Ri, i = 1, . . . , r are in distinct classes (or blocks).

This generalization of r-Stirling numbers of the second kind is called the (r1, . . . , rr)-Stirling numbers
of the second kind.

On the other hand, Certain generalization of Stirling numbers has been defined in [6] by considering
the normal ordering of powers (V U)n of the noncommuting variables U and V satisfying UV =
V U + hV s where h ∈ C− {0} and s ∈ N0. More precisely,

(V U)n =

n∑
k=1

Ss;h(n, k)V s(nk)+kUk

where Ss;h(n, k) denotes their generalized Stirling numbers. In [7], the numbers Ss;h(n, k) were
expressed in terms of the unified generalization of Stirling numbers in [1]. This result was used to
derive more properties for Ss;h(n, k). Further investigation of these numbers has been done in [8] by
considering the particular case s = 2 corresponding to the meromorphic Weyl algebra.

One of the outgrowths in generalizing Stirling numbers is the introduction of their q-analogues.
The study of q-analogue has become more popular nowadays due to its application in physics and
other areas in mathematics, particularly, in the study of fractals, dynamical system, quantum groups,
q-deformed superalgebras, fermionic oscillator, creation-annihilation principle and Ising model. There
are two main classification of q-analogues: the combinatorial q-analogues and the q-analogues
extended by F.H. Jackson [9]. This present study can be classified as part of combinatorial q-
analogues.

A q-analogue of a number, polynomial, theorem, identity or expression is a generalization involving
a new parameter q such that when q → 1, it gives back the original number, polynomial, theorem,
identity or expression. For instance, a given polynomial ak(q) is a q-analogue of an integer ak if

lim
q→1

ak(q) = ak.

Hence, the polynomials

[n]q =
qn − 1

q − 1
, [n]q! =

n∏
i=1

[i]q,

(
n

k

)
q

=

k∏
i=1

qn−i+1 − 1

qi − 1

are the q-analogues of the integers n, n!, and
(
n
k

)
. It is important to note that a q-analogue of a

number, polynomial, theorem, identity or expression is not unique. For example, a q-analogue of the
classical Stirling numbers has been defined by some authors in different manner (cf [10, 11]). In
1992, a new q-analogue of Stirling numbers has been defined by Cigler in [12] using the concept of
set partitions (see also [13]). This is closely related to the q-Stirling numbers defined in [14] in three
different ways using generating functions. This work of Cigler motivates the present authors to define
a q-analogue of r-Stirling numbers of the second kind using their combinatorial interpretation in terms
of set partitions. Moreover, a q-analogue of r-Stirling numbers of the first kind is defined by means of
certain generating function, which, consequently, gives the orthogonality and inverse relations of the
q-analogue of both kinds of r-Stirling numbers.
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2 A q-Analogue of r-Stirling Numbers of the Second Kind
The classical Stirling numbers of the second kind S(n, k) were defined in [15] as the cardinality of
set B of partitions of {0, 1, 2, · · · , n− 1} into k nonempty disjoint subsets. Based on this definition, a
q-analogue of S(n, k) was defined in [12] to be the following sum∑

π∈B

w(π), w(π) = q
∑

i∈B0
i

where B0 is a subset in partition π which contains 0.

On the other hand, the above definition of r-Stirling numbers of the second kind

{
n

k

}
r

can be

restated as follows:{
n

k

}
r

:= number of partitions π of {0, 1, ..., n− 1} into k nonempty subsets B0, B1, ..., Bk−1

such that the first r elements are in distinct subsets.

In this section, a q-analogue of r-Stirling numbers of the second kind will be defined parallel to
the work of Cigler. First, we choose B0 so that the number 0 ∈ B0. Then, let us define the following
notations:

• the weight of partition π
w(π) = qs(B0), s(B0) =

∑
i∈B0

i.

• the weight of each set of partitions A

w(A) :=
∑
π∈A

w(π)

• An,k,r := the set of all partitions of 0, 1, ..., n− 1 into k nonempty parts such that the first r
elements are in distinct partitions.

Now, we have the following definition:

Definition 2.1. A q-analogue

{
n

k

}
q,r

of r-Stirling number of the second kind is defined by

{
n

k

}
q,r

:= w(An,k,r) n, k ≥ 1, n ≥ k ≥ r

where

{
0

k

}
q,r

:= δ0k and

{
n

0

}
q,r

:= δ0n, n, k ≥ 0

Remark 2.1. We choose the above weight function so that, when q = 1,{
n

k

}
1,r

= |An,k,r| =

{
n

k

}
r

.

Moreover, the above weight function is a kind of variation of the weight function corresponding to the
q-Stirling numbers of the second kind in [11] resulting to a new q-analogue of second kind Stirling-type
numbers. One may also try to define a q-analogue of r-Stirling numbers of the second kind using the
weight function in terms of non-inversion numbers.
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When n = 4, k = 3 and r = 2, we have the following partitions of {0, 1, 2, 3}:

A4,3,2 = {{0}{1}{2, 3}}, {{0, 2}{1}{3}}, {{0}{1, 2}{3}}, {{0, 3}{1}{2}}, {{0}{1, 3}{2}}.

Then {
4

3

}
q,2

= q0 + q0+2 + q0 + q0+3 + q0 = 3 + q2 + q3.

To compute quickly the first values of the q-analogue, let us consider the following recurrence
relation:

Theorem 2.1. The number

{
n

k

}
q,r

satisfy the following recurrence relation

{
n+ 1

k

}
q,r

=

{
n

k − 1

}
q,r

+ (k − 1 + qn)

{
n

k

}
q,r

where n ≥ k ≥ r ≥ 0.

Proof. We write An+1,k,r = C1 ∪ C2 ∪ C3 such that

• C1 is the set of all π ∈ An+1,k,r such that {n} is one of the nonempty parts of π.

• C2 is the set of all π such that n ∈ Bi, i 6= 0, and Bi\{n} 6= φ.

• C3 is the set of all π such that n ∈ B0.

Then we have

w(C1) =

{
n

k − 1

}
q,r

, w(C2) = (k − 1)

{
n

k

}
q,r

, and w(C3) = qn

{
n

k

}
q,r

.

Using this recurrence relation, we can generate the first values of the q-analogue.

The next theorem contains an explicit formula for

{
n

k

}
q,r

, which is analogous to certain identity

in [2]. But before that, let us consider first the following lemma.

Lemma 2.2. ∑
r≤j1<j2<···<ji≤n

qj1+j2+···+ji =

(
n− r + 1

i

)
q

q
i(i−1+2r)

2 .

Proof. Note that from [16]

(a+ x)(a+ qx)· · · (a+ qn−rx) =
n−r+1∑
i=0

(
n−r+1

i

)
q
q(

i
2)xian−r+1−i
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Replacing x by qrx, we have

(a+ qrx)(a+ qr+1x)· · · (a+ qnx) =

n−r+1∑
i=0

(
n− r + 1

i

)
q

q(
i
2)qrixian−r+1−i

=

n−r+1∑
i=0

(
n− r + 1

i

)
q

q
i(i−1)

2 qrixian−r+1−i

=

n−r+1∑
i=0

(
n− r + 1

i

)
q

q
i(i−1+2r)

2 xian−r+1−i

And comparing the coefficients of xi at a = 1 gives

n−r+1∑
i=0

 ∑
r≤j1<j2<···<ji≤n

qj1+j2+···+ji

xi =

n−r+1∑
i=0

(
n− r + 1

i

)
q

q
i(i−1+2r)

2 xi

∑
r≤j1<j2<···<ji≤n

qj1+j2+···+ji =

(
n− r + 1

i

)
q

q
i(i−1+2r)

2

Writing π ∈ An+1,k+1 in the form

π = {0, j1, j2, · · · , ji}/B1/ · · · /Bk

where jl 6= 1, 2, . . . , r − 1, we get therefore

{
n+ 1

k + 1

}
q,r

= w(An+1,k+1) =
∑

π∈An+1,k+1

w(π)

=

n∑
i=0

∑
r≤j1<···<ji≤n

qj1+···+ji

{
n− i
k

}
r−1

Thus, using Lemma 2.2, we obtain the following explicit formula.

Theorem 2.3. The explicit formula for

{
n+ 1

k + 1

}
q,r

is given by

{
n+ 1

k + 1

}
q,r

=

n∑
i=0

(
n− r + 1

i

)
q

q
i(i−1+2r)

2

{
n− i
k

}
r−1

. (2.1)

Remark 2.2. Equation (2.1) is a q-analogue of the identity in [2], which is given by{
n

m

}
r

=
∑
k

(
n− r
k

){
n− p− k
m− p

}
r−p

pk,

when p = 1.
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Remark 2.3. The r-Stirling numbers of the second kind in [2] satisfy the following exponential generating
function ∑

k≥0

{
k + r

m+ r

}
r

zk

k!
=

1

m!
erz(ez − 1)m.

Using the Binomial Theorem and the expansion of exponential function, this can be expressed further
as ∑

k≥0

{
k + r

m+ r

}
r

zk

k!
=
∑
k≥0

{
1

m!

m∑
j=0

(−1)m−j
(
m

j

)
(r + j)k

}
zk

k!
.

This implies that {
k + r

m+ r

}
r

=
1

m!

m∑
j=0

(−1)m−j
(
m

j

)
(r + j)k. (2.2)

This formula can also be obtained via (r, β)-Stirling numbers

〈
k

m

〉
β,r

in [17] by taking β = 1. That

is, {
k + r

m+ r

}
r

=
1

m!

m∑
j=0

(−1)m−j
(
m

j

)
(r + j)k =

〈
k

m

〉
1,r

. (2.3)

Thus, using (2.2), the explicit formula in (2.1) can be rewritten as{
n+ 1

k + 1

}
q,r

=

n∑
i=0

k−r+1∑
j=0

(−1)k−r+1−j(k−r+1
j

)(
n−r+1

i

)
q
q

i(i−1+2r)
2 (r − 1 + j)n−r+1−i

(k − r + 1)!

=
1

(k − r + 1)!

k−r+1∑
j=0

(−1)k−r+1−j

(
k − r + 1

j

)
(r − 1 + j)n−r+1 ×

×


n−r+1∑
i=0

(
n− r + 1

i

)
q

q
i(i−1)

2

(
qr

r − 1 + j

)i .

Applying a q-identity in [15], which is given by
n∑
i=0

(
n

i

)
q

q
i(i−1)

2 xi =

n−1∏
i=0

(
1 + xqi

)
,

we obtain{
n+ 1

k + 1

}
q,r

=
1

(k − r + 1)!

k−r+1∑
j=0

(−1)k−r+1−j

(
k − r + 1

j

)
n−r∏
i=0

(r − 1 + j + qr+i). (2.4)

This identity is a kind of q-analogue of that identity in (2.3) since, when q = 1, (2.4) reduces
immediately to (2.3).

The next theorem contains a symmetric formula for

{
n

k

}
q,r

which is analogous to the horizontal

generating function of Stirling numbers of the second kind.

Theorem 2.4. A q-analogue of r-Stirling numbers of the second kind satisties the following relation
n−1∑
k=0

{
n

k + 1

}
q,r

(x− r + 1)k−r+1 = (x+ qr)(x+ qr+1) · · · (x+ qn−1).

1273



British Journal of Mathematics and Computer Science 4(9), 1268-1279, 2014

Proof. From the well-known formula

∆k

k!
(x+ r)n|x=0 =

{
n+ r

k + r

}
r

,

we get {
n

k + 1

}
q,r

=

n−1∑
i=0

(
n− r
i

)
q

q
i(i−1+2r)

2

{
n− i− 1

k

}
r−1

=
∆k−r+1

(k − r + 1)!

n−1∑
i=0

(
n− r
i

)
q

q
i(i−1+2r)

2 (x+ r − 1)n−r−i|x=0

=
∆k−r+1

(k − r + 1)!

n−r∑
i=0

(
n− r
i

)
q

q
i(i−1+2r)

2 (x+ r − 1)n−i−r|x=0.

It is known that, for a positive integer n, a real number q 6= 1, and an indeterminate z, we have

n∏
i=1

(a+ qi−1z) =

n∑
k=0

(
n

k

)
q

q
k(k−1)

2 zkan−k.

With z = qr and a = x+ r, we obtain{
n

k + 1

}
q,r

=
∆k−r+1

(k − r + 1)!
(qr + x+ r − 1)(qr+1 + x+ r − 1) · · · (qn−1 + x+ r − 1)|x=0.

The well-known formula for higher order difference operator yields

n−1∑
k=0

{
n

k + 1

}
q,r

(x− r + 1)k−r+1 =

n−1∑
k=0

{
∆k−r+1

(k − r + 1)!

n−1∏
j=r

(qj + x+ r − 1)|x=0

}
(x− r + 1)k−r+1

=

n−1∑
k=0

1

(k − r + 1)!

{
k−r+1∑
j=0

(−1)k−r+1−j

(
k − r + 1

j

)
× .

.

n−1∏
l=r

(ql + r + j − 1)

}
(x− r + 1)k−r+1

=

n−1∑
k=0

1

(k − r + 1)!

{
k−r+1∑
j=0

(−1)k−r+1−j

(
k − r + 1

j

)
× .

.


n−r∑
i=0

∑
r≤i1<i2<···<ii≤n−1

qi1+i2+···+ii(r + j − 1)n−r−i


 (x− r + 1)k−r+1

=

n−1∑
k=0

1

(k − r + 1)!

n−r∑
i=0

∑
r≤i1<···<ii≤n−1

qi1+···+ii ×

{
k−r+1∑
j=0

(−1)k−r+1−j

(
k − r + 1

j

)
(r + j − 1)n−r−i

}
(x− r + 1)k−r+1.

1274



British Journal of Mathematics and Computer Science 4(9), 1268-1279, 2014

Using the explicit formula for (r, β)-Stirling numbers in (2.3) which also appears in [19], we have

n−1∑
k=0

{
n

k + 1

}
q,r

(x− r + 1)k−r+1 =

n−r∑
i=0

∑
r≤i1<i2<···<ii≤n−1

qi1+i2+···+ii


n−1∑
k=0

〈
n− r − i
k − r + 1

〉
1,r−1

(x− r + 1)k−r+1

 .

A relation in [19] implies that

n−1∑
k=0

{
n

k + 1

}
q,r

(x− r + 1)k−r+1 =

n−r∑
i=0

∑
r≤i1<i2<···<ii≤n−1

qi1+i2+···+iixn−r−i

= (x+ qr)(x+ qr+1) · · · (x+ qn−1).

For example, when n = 4 and r = 2, we have

3∑
k=0

{
4

k + 1

}
q,2

(x− 1)k−1 =

{
4

2

}
q,2

+

{
4

3

}
q,2

(x− 1) +

{
4

4

}
q,2

(x− 1)(x− 2)

= (1 + q2 + q3 + q5) + (3 + q2 + q3)(x− 1) + (x− 1)(x− 2)

= x2 + q2x+ q3x+ q5 = (x+ q2)(x+ q3).

It is worth mentioning that certain generalization of Bell numbers, called r-Bell numbers, has
been investigated in [18] resulting to several interesting properties of these numbers. These numbers
were first defined in [19] as the sum of r-Stirling numbers of the second kind. It is then interesting to
define a q-analogue of r-Bell numbers in terms of the above q-analogue of r-Stirling numbers of the
second kind and establish some properties analogous to those obtained in [18] for r-Bell numbers.

3 A q-Analogue of r-Stirling Numbers of the First Kind
It is known that the classical Stirling numbers satisfy the following inverse relation

fn =

n∑
k=0

[
n

k

]
gk ⇐⇒ gn =

n∑
k=0

(−1)n−k
{
n

k

}
fk. (3.1)

This inverse relation can be obtained using the following generating functions

xn =

n∑
k=0

[
n

k

]
xk

xn =

n∑
k=0

{
n

k

}
xk.

This motivates the authors to define a q-analogue of r-Stirling numbers of the first kind as follows:

Definition 3.1. A q-analogue of r-Stirling number of the first kind is defined by

(x− r + 1)n−r =

n∑
k=0

[
n

k

]
q,r

(−1)n−k(x+ qr)(x+ qr+1) . . . (x+ qk−1) (3.2)
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with r ≤ k−1. By convention,

[
n

k

]
q,r

= 1 when r = k and n ≥ k,

[
n

0

]
q,r

= 1 when n = 0,

[
n

0

]
q,r

= 0

when n > 0 and

[
n

k

]
q,r

= 0 when n < k or n, k < 0.

Using the relation in Theorem 2.4, we have

(x− r + 1)n−r =

n∑
k=0

[
n

k

]
q,r

(−1)n−k
k∑

m=1

{
k

m

}
q,r

(x− r + 1)m−r

=

n∑
m=1


n∑

k=m

(−1)n−k
[
n

k

]
q,r

{
k

m

}
q,r

 (x− r + 1)m−r.

Comparing the coefficients of (x− r + 1)n−r, we obtain
n∑

k=m

(−1)n−k
[
n

k

]
q,r

{
k

m

}
q,r

= δmn

where δmn is the Kronecker delta. On the other hand, the relation in Theorem 2.4 can be written as

(x+ qr) · · · (x+ qn−1) =

n∑
k=1

{
n

k

}
q,r

k∑
m=0

[
k

m

]
q,r

(−1)k−m(x+ qr) . . . (x+ qm−1)

=

k∑
m=1


n∑

k=m

(−1)k−m
{
n

k

}
q,r

[
k

m

]
q,r

 (x+ qr) . . . (x+ qm−1).

Thus, we can state formally these results in the following theorem.

Theorem 3.1. The q-analogue of r-Stirling numbers of the first kind satisties the following orthogonality
relations

n∑
k=m

(−1)n−k
[
n

k

]
q,r

{
k

m

}
q,r

= δmn

n∑
k=m

(−1)k−m
{
n

k

}
q,r

[
k

m

]
q,r

= δmn.

Remark 3.1. This theorem immediately implies that(−1)i−j
[
i

j

]
q,r


0≤i,j≤n

{i
j

}
q,r

T

0≤i,j≤n

= In+1

where In+1 is the identity matrix of order n+ 1. That is,(−1)i−j
[
i

j

]
q,r

−1

0≤i,j≤n

=

{i
j

}
q,r

T

0≤i,j≤n

and

det

(−1)i−j
[
i

j

]
q,r


0≤i,j≤n

{i
j

}
q,r

T

0≤i,j≤n

 = 1.
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As a direct consequence of this theorem, we have the following inverse relations of q-analogue
of r-Stirling numbers.

Theorem 3.2. The q-analogue of r-Stirling numbers of the first kind satisties the following inverse
relations

fn =

n∑
k=0

(−1)n−k
[
n

k

]
q,r

gk ⇐⇒ gn =

n∑
k=0

{
n

k

}
q,r

fk

fk =

∞∑
n=0

(−1)n−k
[
n

k

]
q,r

gn ⇐⇒ gk =

∞∑
n=0

{
n

k

}
q,r

fn.

For quick computation of the first values of

[
n

k

]
q,r

, we need the following triangular recurrence

relation.

Theorem 3.3. The q-analogue of r-Stirling numbers of the first kind

[
n

k

]
q,r

satisfies

[
n+ 1

k

]
q,r

=

[
n

k − 1

]
q,r

+ (n− 1 + qk)

[
n

k

]
q,r

. (3.3)

Proof. Equation (3.2) implies that
n+1∑
k=0

[
n+ 1

k

]
q,r

(−1)n+1−k(x+ qr)(x+ qr+1) . . . (x+ qk−1) = (x− r + 1− n+ r)(x− r + 1)n−r

=

n∑
k=0

[
n

k

]
q,r

(−1)n−k(x+ qk − qk + 1− n)(x+ qr)(x+ qr+1) . . . (x+ qk−1)

=

n∑
k=0

[
n

k

]
q,r

(−1)n−k(x+ qr)(x+ qr+1) . . . (x+ qk−1)(x+ qk)

+

n∑
k=0

[
n

k

]
q,r

(−1)n−k(−qk + 1− n)(x+ qr)(x+ qr+1) . . . (x+ qk−1)

=

n+1∑
k=0

[
n

k − 1

]
q,r

(−1)n+1−k(x+ qr)(x+ qr+1) . . . (x+ qk−1)

+

n∑
k=0

(qk − 1 + n)

[
n

k

]
q,r

(−1)n+1−k(x+ qr)(x+ qr+1) . . . (x+ qk−1)

By comparing the coefficients, we obtain the desired recurrence relation.

We observe that the q-Stirling numbers

[
n

k

]∗
q

in [12] satisfy the relation

[
n+ 1

k

]∗
q

=

[
n

k − 1

]∗
q

+ (n− 1 + qk)

[
n

k

]∗
q
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which is analogous to the recurrence relation in Theorem 3.3. This recurrence relation has been used

to give combinatorial interpretation of

[
n

k

]∗
q

in terms of the weight of permutations in {1, 2, . . . , n}

with k nonempty cycles. Hence, we can also use the recurrence relation in Theorem 3.3 to give

combinatorial interpretation for

[
n

k

]
q,r

by following the same argument in constructing the combinatorial

interpretation of

[
n

k

]∗
q

.

To sketch the construction, first, we let Pn be the set of all permutations of {1, 2, . . . , n}, Pn,r
be the set of all permutations of {1, 2, . . . , n} such that elements 1, 2, . . . , r are in different cycles
and w(π) be the weight of π ∈ Pn. As defined in [12], the decomposition into nonempty cycles
C0, C1, . . . , Ck−1 of a permutation π ∈ Pn is called a natural decomposition if the ordering is according
to decreasing largest elements of the cycles, the natural ordering. Since max(C0) = n, the natural
decomposition ofC0 is given by {n}, C01, C02, . . . , C0i. Also, in [12], for π = [C01|C02| . . . |C0i|n]C1|C2| . . . |Ck−1 ∈
Pn, we define

w(π) := qj1+j2+...+ji

where jl = m if C0l lies between Cm−1 and Cm in the natural ordering of cycles and jl = k if

max(C0l) < max(Ck−1). Then the q-analogue

[
n

k

]
q,r

of r-Stirling numbers of the first kind can be

interpreted as the sum of the weights of all permutations π ∈ Pn,r such that the natural decomposition
has exactly k cycles.
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