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Abstract

The Pascal-typ matrices obtainel from the Stirling numbes of the first kind s(n, k) and
of the seconl kind S(n, k) are studied respedtely. It is shown tha thee matrices can be
factorized by the Paschmatrices Also the LDU-factorization of a Vandermond matrix of
theform V,,(x,x + 1, ..., x +n — 1) for any red numbe x is obtained Furthermoresome
well-known combinatori&identities are obtainel from the matrix representatioof the Stirling
numbersand thee matrices are generalize in one or two variables© 2001 Elsevie Science
Inc. All rightsreseved.
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1. Introduction

For integesnand k withn > k > 0, the Stirling numbers of the first kind s (n, k)
and of the second kind S(n, k) can be defined as the coefficiens in the following
expansia of avariabex (see[3, pp. 271-279)):

[x]n = Y (=1 Fs(n, k)x*

k=0
and
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X" =S, blxk, (1.1)
k=0
where
[x], = {x(x—l)-~-(x—n+1) ifn>1,
" 1 if n=0.
Itis known that foram, k > 0, thes(n, k), S(n, k) and[n]; satisfy the following
Pascal-type recurrence relations:

(1.2)

s(n,k)=s(n—Lk—1)+ n—LDsn—1,k),
S, k) = S(n — 1,k — 1) +kS(n — 1, k), (1.3)
[n]k = [n — 1]k + k[n — L]i—1,

wheres(n, 0) = s(0, k) = S(n, 0) = S(0, k) = [0]x = 0 ands (0, 0) = S(0,0) = 1,
and moreover th&(n, k) satisfies the following formula known as ‘vertical’ recur-
rence relation:

n—1

Sk =Y (” ; 1) SU, k —1). (1.4)
I=k—1

As we did for the Pascal triangle, we can define the Pascal-type matrices from the
Stirling numbers of the first kind and of the second kind, respectively. A
matrix representation of the Pascal triangle has catalyzed several investigations
(see [1,2,4,6,7]).

Then x n Pascal matrix [4] (also see [2]) Py, is defined by

e iz,
(Pudij = {Oj otherwise

More generally, for a nonzero real varialdiethe Pascal matrix was generalized
in P,[x] and Q,[x], respectively which are defined in [6] (also see [1]), and these
generalized Pascal matrices were also extended, [w, y] (see [7]) for any two
nonzero real variablesandy where

(Bplx, y])ij = {" Y (j - ) L= (1.5)
0

otherwise
By the definition, we see that
Pylx] = @plx, 1],  QOnlyl = @ull, yl,
Pn - Pn[l] - Qn[l] - @n[l, 1]

(1.6)

Moreover, it is known that

Pyx] = Pul—x] = [(—1)” (3 _ 11> X' ] : (1.7
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and in particularp, 1 = P, 1 [1].

In [6] and [7], the factorizations oP,[x], Q.[x], and ®,[x, y] are obtained,
respectively.

In Section 2, we study the Pascal-type matrices which will be called the Stirling
matrices obtained from the Stirling numbers of the first kigd k) and second kind
S(n, k). As a consequence it is shown that such matrices can be factorized by the
Pascal matrices. Also the LDU-factorization of a Vandermonde matrix of the form
Vo(x,x+1,...,x +n — 1) for any real numbexis obtained.

In Section 3, some well-known combinatorial identities are obtained from the
matrix representation of the Stirling numbers.

Finally in Section 4, these matrices are generalized in one or two variables.

2. Stirling matrices of the second kind

For the Stirling numbers(i, j) andS(i, j) of the first kind and of the second kind
respectively, defing, ands,, to be then x n matrices by
o fsG@ g ifi =,
(5n)ij = {O otherwise
and
L )sG ) ifi =,
(Snij = {0 otherwise
We call the matrices, andsS, Stirling matrix of the first kind andof the second
kind, respectively (see [5, p. 144]).

For example,
1 0 0 O 1 0 0 O
|1 1 0 O and Ss — 1 1 0 O
=12 3 10 =11 3 1 ol
6 11 6 1 1 7 6 1

From now on, we will use the notatiah for the direct sum of two matrices.
Using the definition ofS,,, we can derive the following matrix representation from
(1.2):
Xy = ([ ® Sp-1) Fa, (21)
whereX,, = [Lx...x" 1T andF, = [[xlolx]1. .. [x]n—1]".
In this section, we mainly study Stirling matrds, of the second kind since
St =1=D" s, j)l or st = [(=DIISG, )] (2.2)
First, we will discuss for a factorization &f,. .
For thek x k Pascal matrixP;, we define the: x n matrix P, by

5 |-k O
Pk—|: 0 ijl.
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Thus,P, = P, and Py is the identity matrix of orden.

Lemma?2.1. For then x n Pascal matrix P,,
Sn - Pn([l] ® Sn—l)~

Proof. For eachi andj with i > j > 1, since the(i, j)-entry of [1] ® S,—1 is
S — 1, j — 1), from the definition of the matrix product and (1.4), we get
i-1
(P11 Sp-1))ij= Y pirs1SUj—1)
I=j-1
i—1

= (i ! 1) SU,j =1 =SGj) =Sy O
I=j-1

For example,

1 0 0 O]t 0 0 O
g,_|1 1 000 1 00
=11 2 1 o||lo 1 1 ol

1 3 3 1//0 1 3 1

The following theorem is an immediate consequence of Lemma 2.1.

Theorem 2.2. The Siirling matrix S, of the second kind can be factorized by the
Pascal matrices P;'s:
Sn = ﬁnﬁn—l"'I;ZI;Js

For example,
1 0 0 Of|2 0 O O]l]f1 0o O O
S, = 1 1 0 0ofo 1 0 of|(0 1 0 O
=11 2 1 o[|o 1 1 o[|0o 0 1 o
1 3 3 1/(0o 1 2 1/|{0 0 1 1

We now turn our attention to the special matrices which can be expressed by the
Stirling matrices.
Itis easy to see that Lemma 2.1 and (2.1) lead to

n
(x+ 1" = Z S+ 1, k+ Dxl (2.3)
k=0
for eachn =0, 1, ... Thus (2.1) and (2.3) suggest how the Vandermonde matrix
which is defined by the following way can be factorized.
DefineV, (x) to be then x n Vandermonde matrix by

Vox)=V,(x,x+1,....,x+n—-—1)
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1 1 1
X x+1 x+n—1
_| x? x+1D2 - (x4+n-1)72
xnfl (x—l—l)n*l (x—l—n—l)”*l

and use the definition dfc],, in (1.2) to define the x n matrix L, by

0y e
(L,,)i,-z{g L i

otherwise
For example,
1 0 0 O
L=|1 2 2 o
1 3 6 6
By a simple computation we obtain
L, = P,D,, (2.4)

whereD, = diag(1,1,2!, ..., (n — 1)!). Thus, we have

_ 1y _ i—1
Lnlan an L= |:(_1)l j(i—ll)! (J—l>i|

Applying the binomial theorem, it is easy to show that for any real numiaed
for the Pascal matri®,,

Py Vy(x) = Vp(x 4+ 1).
Thus, we have
detV,(x) =detV,(x + 1).

Lemma 2.3. For then x n Stirling matrix S, of the second kind,
Va(1) = S, L.

Proof. Applying (1.1) and (1.3)foreach j =1, 2, ..., n, we have

(SuLp) =Y SG oL — i1

k=1

=Y (SG -1 k=1 +kSG —LOMNj — i1
k=1

=Y {SG —Lk—DIj — k-1 + SG — L OK[j — Lx-1}
k=1
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=Z[S(i —Lk=D[j = Li-1+SG =L Ok — [/ — LI}
k=1

i—1

=Y "8G — Lk
k=1

— ;-1 _

=j'"7" = (Va(D)ij,

since

Y SG—Lk=-Dlj— 1=y SG—-100L -1k

k=1 k=1

which completes the proof.O

In the following theorem, we obtain the LDU factorizationdf(x) for any real
numberx.

Theorem 2.4. For any real number x and the generalized Pascal matrix P,[x] in
(1.6),

Va(x) = (Pulx — 11S,) Du P,
Proof. From (2.4) and Lemma 2.3, for any real numkeve get
((Palx = 1S Ly),; = (Pulx = 11Va(D)sj
i—1
i —1
=Z<zk> 11k k= (x4 j — 1)t
k=0
=Va(x))ij. O

For example,

1 1
X x+1 x+2 x+3

ViAO=1 2 412 (422 (x+3)72
[ x4+ +28 (x +3)3
o1 0 071 0 0 O
x—1 1 o 0|1 1 0 0
Tlax-12 2(x-1 1 o|l1 3 1 0
-1 3x-1% 3:x-1 1 1 7 6 1
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1 0 0 O 1 1 1 1
o 0 1 0 O 0 1 2 3
0O 0 2 O 0 0 1 3
0O 0 0O 6 0O 0 0 1
1 0 0 0
lx 1 0 0
| x? 2 +1 1 0
¥ 3%+3+1 AN+3 1
1 0 0 Oof|1 1 1 1
o 0 1 0 of|j]0 1 2 3
0O 0 2 o0of|j]0 0 1 3"
0O 0 0 6/|0 O 0 1

Corollary 2.5. For any real number X,
n—1
det V,(x) = [ [ !
k=0
For the inverse o¥,,(x), from (1.7) and Theorem 2.4 we see that

Vu(x)"t = PI[-11D, 151 P,[1 — x].

3. Somecombinatorial identities

In this section, we obtain some well-known identities for a Stirling number from

its matrix representation.
Applying Theorem 2.4 fox = 1, we obtain

Sp = Vu(1) (P,;l)T DL (3.1)

Computing the matrix product in (3.1) and comparing with the last ro,ofwe
can obtain the following representation ff, k), known as Stirling formula:

k
_ 1 k—t k—1 n—1 _
S(n, k) = (k_l)!;(—l) <[_1>t (k=1,2....n).

Again applying (1.7) and (2.2) to Lemma 2.1, since

sp = ([1] & sp—1]) P, (3.2)
by a simple matrix product, it is easy to see that the Stirling numberk) of the

first kind satisfies the following ‘horizontal’ recurrence relation which gives other

explicit formula for thes(n, k) (see [5, p. 215)]
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n—1

s(n, k) = Z (kij_)s(n—l, D).

I=k—1
Moreover, from Lemma 2.1 and (3.2), since
P, = S, ([1] @ sp—1) or P, = ([1]1 @ Sp—1)sn,

a binomial coefficien(}) can be expressed by the Stirling numbers of the first kind
and of the second kind as follows:

(’Z) = Z(—l)’_kS(n + 1,1+ 1)s(t, k)
t=k
or

(Z) = Z(—l)”_tS(n, Hs(t+1,k+1).

t=k
Finally, note that th@&ell number w(n) is defined by

w(n) = ZS(n,k), n>1
k=1

By virtue of the matrix, theth Bell numberw (i) is just the sum of the entries in
theith row of the Stirling matrixS, of the second kind. Thus, from Lemma 2.1 we
get

Pl 0@ - on-D] =[el 0@ - om].
More generally, if we note that for eaeh=0, 1, . ..

A"om) = (-1 (’Z) wn4+k) m=0,1,..)
k=0

wherew(0) := 1 andA is the difference operator which is defined by
Awn) =on+1) —wn) and A"w=AA"Tw) m=23,..),

by a simple matrix computation we get

w(0) ol -+ wnh-1)
w(1) w@ - w(n)
w(n _ 1) a)(‘n) . . a)(2n' -2

o) Ao@d - A" le@)

0@ Aw®@ - A0
. ) . (3.3)

a)(.n) Aa).(n) A”fl.a)(n)
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From (3.3), for eacim=1,2, . . it is easy to establish the following identity:
n—1

A"%o(n):Z(n;l)a)(m—i—k) m=0,1,...,n—1), (3.4)
k=0

whereA%» (n) 1= w(n).
In particular, from (3.4) we get the following well-known identities (see [5,
pp. 210-211)):

n—1

wmn) =y (n i 1) wk) (n=1

k=0
and
wn) = A'w(l).

4. Generalizations of the Stirling matrices

For any nonzero real numbgrthen x n generalized Stirling matrix of the first
kind s,,[x] andof the second kind S,,[x] are defined by
s it =,
(sn[xDij = {O otherwise
and
B A (A ) I =
(SalxDij = {0 otherwise
By the definition, we see tha}[1] = s, andS,[1] = S,.
) Also, for thek x k generalized Pascal matri&[x] we define the: x n matrix
Pi[x] by

— N u—k 0]
Pl = [ 0 Pk[x]] |
Sinces,[1] = s, andS,[1] = S,, it is easy to prove the following lemma.
Lemma4.1. Let x be anonzero real number. Then
(@) 5, [x] = Su[—x],
(b) Sy x] = su[—x].

The following theorem follows from Lemmas 2.1 and 4.1.
Theorem 4.2. Let x be a nonzero real number. Then

(@) Sulx] = Pulx]1([1] ® Sp—1lx]),

(b) Sulx] = Pulx] Py-alx]... P2[x] Pi[x],

(©) 87 x1 = Pi[—x] Po[—x]... Py_a[—x] Pu[—x].
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For example,
M1 0 0 O]
X 1 0 O
Salxl=1 2 3 1 o
| x 7x2  6x 1]
1 0 0 O]lf1 o 0 O
|x 1 o0 of|jo 1 o0 o0
“[x2 2« 1 of|l0 x 1 ol
_x3 3x2 3 1|0 x2 3 1

Again, if we define thes x n matrices,[x] andT,[x] by
XTEs G, )i,
(nlxDij = {O otherwise

and
(TulxDij = {gﬂZS(i,j) I(:tiheiv{;ise
it is easy to see that the following theorem holds by the similar argumentg[for
ands,[x].
Theorem 4.3. Let x be a nonzero real number. Then for the generalized Pascal
matrices P,[x] and Q,[x] definedin (1.6),the following results hold:
@) ;Y x1=T[ - 1],
(b) 7,7 x] = ta[ — 5],
(©) talx] = ([1] ® sp—1[x]) Qnlx],
(d) Tulx] = Qulx1(121 @ Su-1[3]).
(€) tulx] = Pi[x]Pylx] ... Py_1[x]Qulx],
() Tulx] = Qulx1Pi-a[2]... P2[2]P1[2],
(@) 1, 1x1 = Qu[ — ] Pa-al—x1... Pal—x]Pi[—x],

X
(h) 7,7 x] = Po[ = ]P2[ = 7] Paca[ = £]Qu[ = 1]
Furthermore, for any two nonzero real numbgrandy we define then x n
matrices¥,[x, y] andQ,[x, y] by

XTIy G, gy i i >
(nlx, yDij = {0 otherwise

and
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_ [xIyTITRSGL )y it >
(@nlx, yDij = {0 otherwise.
By the definition, we see that
Qulx, 1] = Sulxl, Q11 yl = Tulyl,
Yalx, 1l =sulxl,  Yull, yl = taly].
It is easy to see that the following theorems hold by the similar arguments for
sqa[x] andsS, [x].

Theorem 4.4. Let x and y be any nonzero real numbers. Then for the extended
generalized Pascal matrix @,,[x, y] defined in (1.5),the following results hold:

(@) Qu[—x,y] = Qulx, —yl,

(b) Yul—x, yl = Pulx, =yl

©) @ x, vl = W[ —x, 3] = Pulx, -],

(d) ¥, ', y1 = Quf = x, 3] = Qu[x, — 3],

(€) ulx, y1 = @ulx, YI([2] ® Sp-1[3]).

(f) Walx, y1 = (1 & su—1lxy]) Pulx, y1,

(@) Qulx, y1 = @ulx, y1Py-a[E]. .. P[] P[%].

(h) Walx, yl = PilxylPalxy]... Py alxyl®ulx, y1,

() ¥, e, y1 = @ulx, =3 ] Pucal—xy]... Pal—xylPal—=xy],
0) @ 0x, vl = P1[ = 2]Po[ = £]... Pya[ — 2], [x, - 2],
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