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6. CONCLUSION

We have proven a number-theoretical problem about a sequence, which is
a computer-oriented type, but cannot be solved by any computer approach.

REFERENCE

1. J. Nievergelt, J. C. Farrar, & E. M. Reingold. Computer Approaches to
Mathematical Problems. WNew Jersey: Prentice-Hall, 1074. Ch. 5.3.3.

#HHHH

WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—II
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1. INTRODUCTION

The Stirling numbers of the first and second kind can be defined by

(1.1) @), =x@+1) -+ (x+n-1) = E: S, (n, k)xk,

and n k=0

(1.2) zn =Y S, K e(@ - 1) o0 (@-k+1),
k=0

respectively. In [6], the writer has defined weighted Stirling numbers of
the first and second kind, S, (n, k, A) and S(n, k, A), by making use of cer-
tain combinatorial properties of S,(n, k) and S(n, k). Numerous properties
of the generalized quantities were obtained.

The results are somewhat simpler for the related functions:

R (n, k, \) =5;(n, K+ 1, ) +5,(n, k)
(1.3) _
R(n, k, A) =8, k+ 1, \) + S(n, k).
In particular, the latter satisfy the recurrences,

Ri(n, ky, \) =R;(n, k=1, \) + (n + MR, (n, k, 1)
(1.4)
{ R(n, k, \) =R(n, k -1, A) + (k + D)R(n, k, A,

and the orthogonality relations

S RG, G, N ¢ 1R, Ry D)
i=o0

(1.5)
(‘_1)n_jR1(ns j’ A)R(j: k’ A = {(1)
0

N

~
S

0
XX

~

n
J’=
We have also the generating functions

©

(1.6) > I R, Ky DyE = (-2 hE,
k=0

n=0
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o n
n
(1.7 z %ZR(n, ks Myk = erexp{y(e® - 1)},
n=0 ""k=0
and the explicit formula
k
_ 1 k-g(Kk\ , . n
(1.8) R(n, k, A) —-?!-JZ% (- J<j>('7 + D"
Moreover, corresponding to (1.1) and (1.2), we have
n
(1.9) A+ " = DR, (n, k, Myk
k=0
and "
(1.10) y" = ) GO RO, Ky D+ ),
k=0

It is well known that the numbers 5, (n, n-k), S(n, n-k) are polyno-
mials in »n of degree 2k. 1In [4] it is proved that

8,(n, n - k) = ZB(k <n+g-1)
(1.1 (k > 1),
St n - k) = }: B(k, J)<” * - 1)

where B, (k, j), B(k, j) are independent of n, and
(1.12) Bk, §) =Bk, k-4 +1), (1=zJ<k).

The representations (1.11) are applied in [4] to give new proofs of the
known relations

k
Sty n-k) =3, (i * Z)(i ; Z>51<k +t, b
(1.13) oo
5,0, m - k) = j{:(% * Z>(§ ; Z>S(k +t, 8.
t=0

For references to (1.13), see [2], [7].

One of the principal objectives of the present paper is to generalize
(1.11). The generalized functions R, (n, n - k, A\), R(n, n - k, A) are also
polynomials in n of degree 2k. We show that

Ri(n, n -k, A)—ZB (%, J,X)(n-‘-J)
(1.14) 7o

R(n, n - k, \) =ZB(k s A)(n +‘7>

izo
where B, (k, 4, A\), B(k, j, A) are independent of n, and
(1.15) By(k, g»A) =B(k, k =g, 1L =2, (0<J<Kk).
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As an application of (1.14) and (1.15), it is proved that

k
k+n+ 1\[k-n-1
R(n, n - Kk, A) = ( )( )R (k+t, t, 1 = XN)
Z:(] k-t k+ ¢ 1
(1.16) %
k+n+ 1\[k-n-1
R.(ny, m =k, A\) = E ( )( )R(k + ¢, t, 1 - A).
1 e k-t k+t

For A = 1, (1.16) reduces to (1.13) with n replaced by n + 1; for A = 0, we
apparently get new results.
In the next place, we show that

E(n, n -k, \)

]

(Z) B}((-n 00

(k - Z - 1>B£n+n(1 .,

where B;m(X) is the Bernoulli polynomial of higher order defined by [8, Ch.

6]:
Y (k) Z’{_k_ —u_ # Au
n‘;OBk M5 _<e“ - 1) ohu,

(1.17)
F(n, n — ks, A)

We remark that (1.17) can be used to give a simple proof of (1.16).
For the special case of Stirling numbers, see [2].

It is easily verified that, for A =0 and 1, (1.17) reduces to well-
known representations [8, Ch. 6] of S(n, n = k) and S, (n, n - k).

In view of the formulas (for notation and references see [3]),

k-1
Sty m - k) =3 8k, j)( n )
Y ey

J
k
N I DEL O] P
j=o

it is of interest to define coefficients R'(k,j, A\) and R{(k,j, A) by means
of

(1.18)

A
R(n, n - k, A\) = ZR'(k’ J >‘)(zkn— j)
(1.19) e

A
R (n, n = k, \) =Z;R1’(k, Fs N (ZR”_ J)
Fe

Each coefficient is a polynomial in A\ of degree 2k and has properties
generalizing those of S'(k, J) and S{(k, 7).

Finally (89), we derive a number of relations similar to (1.16), con-
necting the various functions defined above. For example, we have

k .
Rl ) = DR ] e, & =01 -
(1.20) -
_iln + 3\, .
Ao n =1 ) = 2 ORI T )R k- 1=

=0
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and

RI(n, ks M)

k

> (—1)t(’Z ) i)R'(n, t, 1= 2)
t=0

3 £

IEC I (A LICRE N TPV
t=0

In the proofs, we make use of the relations (1.15).

(1.21)
R'(n, k, X)

2. REPRESENTATIONS OF R(n, n - k, A)

As a special case of a more general result proved in[5], if f(x) is an
arbitrary polynomial of degree <m, then there is a unique representation in
the form

m=-1

2.1) Flz) = Zaj(” ' j),

i=0

where the a are independent of x. Thus, since R(n, n - k, A) is a polyno-
mial in » of degree 2k, we may put, for k > 1,

2.2) R, n - &y ) = Zm i (" %)

where the coefficients B(k, j, A) are independent of n.
By (1.4), we have, for k > 1,

(2.3) ERn+1l,n-k+1, )

n-kK+1+MNNR(n,n-k+1, )\
+R(n, n -k, \).
Thus, (2.2) yields

ZB(k i x)(” +=7>= &

Since

2Kk -

K+ 1+ LB(k -1, 4, x)(” +=72).

j=0

n-k+1l+rx=Mm+j-2k+2)+*k-7-1+2N),

we get

ZB(k Js x)(” +J> Z<27< - DBk - 1, 4, A)(” +<71)

+ S (k-G-1+0B&K-1, 4, x){(”””)(zz”f_jl».

J
It follows that

(2.4) Bk, G5 ) = (k+g5-MBk-1, 5, )+ (k-7+MB(k-1, j-1, A).

We shall now compute the first few values of B(k,j, A\). To begin with
we have the following values of R(n, n - k, A\). Clearly, R(n, n, A) =
Then, by (2.3), with k = 1, we have

Rn+ 1, ny, \) —R(n, n -1, \) =n+ .
It follows that

(2.5) R, n - 1, \) = (’;>+ nA.
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Next, taking k = 2 in (2.3),
En+1,n-1, ) -R(n,n -2, ) =m-1+ NEMn, n-1, N,
we find that

(2.6) R, n - 2, \) =3<Z> +<§) +3(Z)A-+<Z)A% (n>2).

A little computation gives the following table of values:

Bk, J> M)
\\;\\\f\\ 0 1 ' 2 3
0 1
1 1 -2 A
2 -2, 1+ 3% - 237 A
3 (I -2, 8 + 7A - 1207 + 3)° L+ 4x +6)% - 333 | A3

The last line was computed by using the recurrence (2.4).
Note that the sum of the entries in each row above is independent of A.
This is in fact true generally. By (2.2), this is equivalent to saying that
the coefficient of the highest power of )\ in R(n, n - Xk, A) is independent
of A. To prove this, put
Rn, n -k, ) =an® +am?*1 4+ ...
Then

Rn+1,n-k+1, A) - E(n, n - k, N
a, ((n + D - n?) 4 al((n + 1)2k-1 _ p2k-1y 4oL
ZRaank'l + e

Thus, by (2.3), 2kak =qa,_,. Since a; = 5, we get
1 1

Y T oMK - 2) ... 2 2kpy
Therefore,
k
2.7 S Bk, G, 0 =L _ 55 k- D
~ 2%k

This can also be proved by induction using (2.4). :
However, the significant result implied by the table together with the
recurrence (2.4) is that

(2.8) B(ks j’ >\) = 0’ (j > k)'
Hence, (2.2) reduces to

k .
_ . n+yg
(2.9) R(VL, no- k, )\) "‘Z B(k9 J s }\)( 2k )-

i=0

It follows from (2.9) that the polynomial R(n, n - k, A) vanishes for
0 <n<k.
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Incidentally, we have anticipated (2.9) in the upper limit of summation
in (2.7).

3. REPRESENTATION OF R, (n, n - k, 1)

Since Rl(n, n - ks A) 1is a polynomial in »n of degree 2k, we may put,
for k > 1,

2k .
_ . n+g
(3.1) R (s m = ks 2) —;()Bl(k, 7s x)( 2% )

where B, (k, j, A) is independent of x.
By (1.4) we have, for k > 1,
(3.2) R (n+l, n-k+1, A) = m+MNR,(n, n-k+1, A) +R, (n, n-k, A).
Thus, by (3.1), we get
L . n+g gy . n+g
PIEES N CACRIERCEIVS DENCES HEREN (A

Jj=0

Z(Zk = 1)B1(k - 19 j’ >\)<;Zk+_j1>
J

3 (2= j- 24+ 0B, (k- 1, 4, x){(”;kj_zl) - (fktjl)}_
J

-+

It follows that
(3-3) Bl(ks j: )\) = (j+1">\)Bl(k—1’ je >\)
+ Qk—j—l+kﬂ%(k—l,j—1,k%

As in the previous section, we shall compute the first few values of
By(ks g5 A).
To begin with, we have R, (n, n, A) = 1. Then by (3.2), with k = 1, we

have

Rl(n"l'l: Vs )\) _Rl(n:n_ 19 )\) =7’l+)\,
so that
(3.4) Fiten - 1,0 = () +

Next, taking k¥ = 2 in (3.2),
Rl(n + ]-5 n - 1, >\) - Rl(na n - 29 >\) = (Vl + A)Rl(n’ no=- 19 )\)-
It follows that
_ ofn n [ n n n\.2
o5 mnnesw (i) 1(5) o6+ (< ()
n>2).

A little computation gives the following table of values:
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By (ks 35 M)
J
x 0 1 2 3
0 1
1 1 - A A
2 (r -7 2 4+ 2 - 207 W,
3 1r-xn° 8 = 7x - 327 + 3)° 6+ 8% - 33> - 3x° | (W),

Exactly as above, we find that

GOl _ 3.4 ... 2k - D).

k
(3'6) ZBl(k’ j’ >\) = Zkk' -

=0

This can also be proved by induction using (3.3). Moreover,

(3.7 By(k, 5 A) =0, (J > k),
so that (3.1) becomes
ko .
. +
(3.8) R (n, n - ky A) = 231(7@ 7 x)(”ZkJ>.
iz

Thus, the polynomial R,(n, n - k, A) vanishes for 0 < n < k.

L. RELATION OF B, (k, j, A) TO B(k, 4, A)
In (2.4) replace J by k - j and we get
(4.1) B(k, k = j, \) = (2k =5 - MBk -1, k -4, )

+

Put _
Bk, g5 A)

Bk - 4, M.

Then (4.1) becomes

(4.2) B(k, g, A) = (2k = = DBk -1, § -1, })

, +(J +MBk -1, 4, V.
Comparison of (4.2) with (3.3) gives .
Bi(k, §, M) =Bk, 4, 1 = 1),

and therefore

(4.3) Bi(k, 35 M)
In particular,

{‘Bl(k, 0, N
B, (ks ks M)

B(k, kK — g, 1 - X).

Bk, ks, 1 = 2) = (1 - 0*

I
]

(4.4)

1]
it

B(k, 09 1 - )\) (A)k'

We recall that

(4.5) R(n, k, 0) = S(n, k), R(n, k, 1) = S(n +1, k + 1)

(G +MBk -1, k-4 -1, A).
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and
(4.6) R (n, k, 0) =5, (n, k), Ry(n, k, 1) =5, (n+ 1, k + 1).
In (2.9), take A = 0. Then, by (1.11) and (4.5) with k replaced by n - &k,

ZB(k, g o)(” +‘7> ZB(k g)(” to 1).

It follows that
(4.7) Bk, g, 0) = B(k, § + 1), (0 < g<k); Bk, k, 0) =
Similarly, taking A = 1 in (2.9), we get

ZMkaU@*ﬂ ZMkm(*ﬁ

Thus
(4.8) Bk, g» 1) =Bk, §), (1 <4 <k); B(k, 0, 1) =0.
Next, take A = 0 in (3.8), and we get

}:za<k i (" %) - §:B<k AMETY)

This gives

(4.9 Bk, j, 0) =B, (k, §+ 1), (0<J<k; B(k, k, 0) =0,
Similarly, we find that
(4.10) By(k, g, 1) = By(k, §), (123 <k); By(k, 0, 1) = 0.

It is easily verified that (4.9) and (4.10) are in agreement with (4.4).
Moreover, for A = 0, (4.3) reduces to

B (ky 4, 0) = B(k, k - 4, 1);
by (4.8) and (4.9), this becomes

By(k, G+ 1) = Bk, k - ),
which is correct. TFor A =1, (4.3) reduces to

By(k, g, 1) =Bk, k -, 0);
by (4.7) and (4.10), this becomes

By(ks §) =Bk, k - § + 1)
as expected.
5. THE COEFFICIENTS B(k, 4, A); B (k, 4, A)

It is evident from the recurrences (2.4) and (3.3) that B(Xk, j; A) and
B,(k, §, ) are polynomials of degree <k in A with integral coefficients.
Moreover, they are related by (4.3). Put

k
(5.1) £, %) = }{%B(k, g» Na’
. e
and
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(5.2) FreOhs @) = ‘231 (ks g5 Mz
By (4.3), we have 7=

(5.3) Fr Qs @) = 2¥f, (1 - A, i—)

By (2.7) and (3.6),

(5.4) £,06 D = £, 0, D =%£—:

In the next place, by (2.4), (5.1) becomes

k
F06 @ =D {k+45 - NB& - 1, , 1)
ok

’ + (k-4 +MBk-1,4 -1, M.

Since

k
(k +3 - MB& -1, j, Dai = (& - A +aD)f,_, (s )
=0

J
and

k k-1
Sk -G +NBR -1, 7 -1, Ned =x) (k-4 -1+NBk& -1, 5, Dad
ji=0 J=0

xk = 1+X-xD)f, (A, ),
where D = d/dx, it follows that
(5.5) FoOs x) ={k =A+(k - 1+ Nz +a@ - x)DIf,_, O, 2).
The corresponding formula for f, , (), x) is
(5.6) FipeOs @ ={1 -2+ 2k - é + M + x(l - 2)D}f) (A, x).

Let EF denote the familiar operator defined by Ef(n) = f(n + 1). Then,
by (2.9) and (5.1), we have

(5.7) R(ns n = ks A) = £, O\, E’)(;k>.
Similarly, by (3.8) and (5.2),
(5.8) Ritns =k W) = f; O, E)(Z{).

Thus, the recurrence
Rn+1l,n-k+1, \) ~-Rn,n-%k, \) = OA+n-k+1)E(n, n -k + 1, A\)

becomes

£ O E)(”;;{ 1>—fk(x,"E)<;k> = O +n-k+DF_ O x)(ZR”_ 2).
Since
("5 - () = (™ 0)
2k 2k 2k - 1)°
we have

(5.9 500 (" 1) = Ot n -k DAL (R ).

Applying the finite difference operator /4, we get

(5.10) £ s E)<2kn— 1) = A+n-k+2)f, ;O x)(an_ 3) + 1O “’)(zkn_ 2)
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Similarly, the recurrence

Rn+l,n-k+1, ) ~Rn,n-k, ) = +nkx,n-k+1, %)
yields

(5.11) Frx O E)(%ﬂ_ 1) =+ F O E)(an_ 2)

and

6120 £, 00 By ) = Orn e DAL 00 By 3)
+f1,k—1<2kn— 2>‘

6. AN APPLICATION
We shall prove the following two formulas:

5 (k+n+1\[(k 1
(6.1) R(n,n—k,1—>\)=Z(k7ft><k—z_t>z?l(k+t,f;,k),
t=0

and

k
(6.2) R, (n,n -k, 1-2) = Z(k;le (kk’l t)R(k +t, 0.

Note that the coefficients on the right of (6.1) and (6.2) are the same.
To begin with, we invert (2.9) and (3.8). It follows from (2.9) that

ZR(VL n -k, Na" k= ZB(k 7. Nxk-d i (”2"7‘<=7'>mn-2k+j
ZB(k Js )\)xk Jz(m + 27() m

a - x)'Zk‘IZB(k, Js Nak-d,

It

[

so that ) j:o
S B, k - J, Vad = (1 - )Y R(n, n - k, Da"
f=0 n=k
’ 2k+ t % -

= 2 D" (2 * 1) my Rk + t, t)x?.
1t follows that om=e t=0

(6.3) Bk, k = . M) = i(—l)j't(% * l)R(k 4,y W)

. s J, Lt j - *f; N R R
Similarly,
« ) |
: = CNd-tf 2k + 1
(6.4) Byl = k= 3y ) = 3¢ (j-t>31(k+t’ Y

By (2.9), (4.3), and (6.4), we have

. +

Ym0 k-4 (5 J)

i=0

k

Z<n+g>z( 1)‘7 t(%jk+ 1)5? &+t £, N

Jg=0

R(n, n -k, 1 = X)

It



252 WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND—I I [Oct.

k k .
= _yd-tf2k + 1\(n + g
(6.5) ;’Rl(k +t, t, x)j;( 1) (j—l )( ok )
The inner sum is equal to

SN ik 1\ (n g e I A A A
J.Z;:',(—l)< J )( 2k >=<27< )JZ; JTn + & - 2k + D, (-k + D),

<n+t>F{—2k—1,n+t+1,—k+tjl
zk 372 ¢

n+t-2k+1, -k +¢

The 3F2 is Saalschutzian [1, p. 9], and we find, after some manipulation, that
k-t
3 (-1yd 2k+]t)n+t+j _ k+n+1<k—n—1
e~ J 2k k -t k+t :
J=0
Thus, (6.5) becomes
3
k+mn
R(n, n -k, 1 =) = ZE:( % -

t=0

N\(k -n -1
)( o )Rl(k + bt 0.

o+ +

This proves (6.1). The proof of (6.2) is exactly the same.

7. BERNOULLI POLYNOMIALS OF HIGHER ORDER

Norlund [9, Ch. 6] defined the Bernoulli function of order z by means
of

hadty (2) .Zitl_ _ _ﬁ____ 2 N
(7.1) WZ:SB,! I (eu : 1> o,

It follows from (7.1) that B;M(A) is a polynomial of degree m in each of the
parameters 2, A.

Consider
(7.2) Qn, n -k, \) = (Z)B“"”"(A)
and k—n -1
(7.3) Q0 m =i ) = (T pea -y,

It follows from (7.2) that
Qny ks V= (T L B ROE = 55 BP0
n=k n=k n=0
Hence, by (7.1), we have
2 n
(7.4) ZRQ(n, ke DAL = Lew - e,
ne

Comparison of (7.4) with (1.7) gives @(n, k, A\) = R(n, k, ), so that

(7.5) R(n, n -k, \) = (Z)B“"*’”(A).
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Next, by (7.3),

[Ms

<-1'/Lk —— k].) B;n-+kl)( 1 - )\)_Z_:l

2 Q0 ks Do =
n=k

n=k

]

Er?s

it
~

-k n unr
7t - i

n=k

k & n
= D" BIEPA - D5
n=0

It is known [8, p. 134] that

(1 + )* *(log(l + B))* = Z@f—nw,—B;’“_"kl’(x).
n=k :

Thus,

©

= u" S Yk ; 1\
> yk;Ql(n, ko MEyk= 30 T - W A<1og L u)

k=0 k=0

= (1 -wM1-w.
Therefore, Ql(n, ky \) = Rl(n, k, \), so that

(7.6) Ri(n, n =k, \) = (k - Z - 1)5,5"”)(1 -N.

For A = 0, (7.5) reduces to
_ _ n (-n+k),
Sn, n - k) <k)Bk :

7\ ,(-n+k) _(n k (-n+k-1)
<k>Bk (1) = (k)(l gl 1>Bk "

° _ n+1 (=n+k-1)
- (7§ enrron,

For A = 1, (7.6) reduces to

for A = 1, we get

Sn+1l, n-%k+1)

S,(n+ 1, n-k+1) = (k T r 1)3,((””’;

for A = 0, we get

5,y n = k) = (k TrT 1)(1 - %)B,ﬁ’” = (k . ”‘)B,ﬁ"’.

Thus, in all four special cases, (7.5) and (7.6) are in agreement with
the corresponding formulas for S(n, n - k) and Sl(n, n =K.

8. THE FUNCTIONS R'(n, k, X) AND R!(n, k, })

We may put
k
(8-1) R(?’l, n - k, >\) = ER'(R3 js >\)<2kn_ j)
and jZO
(8.2) R Gty m - ks N = D R'(K, 4 x)(Zk”_ j>.

Ji=0
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The upper limit of summation is justified by (2.9) and (3.8).
Using the recurrence (2.3), we get
FRn+1,n-k+1, \) - R(n, n -k, A)

k-1

. n
(n-k+1+ x);g%R'(k -1, 4, x)(zk i 2)

k

-1
2k - 4 - DR'(k - 1, 4, A) i )
;g% (2k -Jg -1

1]

k-1
# 2 0-G -1+ (K- 1, 4, )(2k e 2).
Since =0 k-1
R+ 1, n-k+1, ) - Rn, n =k, \) = D R'(k, j,_x)(ZR s 1),
we get =0

(8.3) R'"(ky gy M)=QRk-g-DR"(k-1, g, D+ (k-g+MR"(k-1, -1, N).
For k = 0, (8.1) gives

(8.4) R'(0, 0, \) =1, R'(0, 4, \) =0, (5> 0).
The following values are easily computed using the recurrence (8.3).
R'(k, 3, N)
N 0 1 2 3 4
0 1
1 1 A
2 3 1+ 3\ A2
3 15 10 + 15X 1+ 4)\ + 602 A2
4 105 105 + 105X | 25 + 60X + 4502 | 1 + 5\ + 10X + 4A% | A"

It is easily proved, using (8.3), that

(8.5) R'(k, 0, \) = 1.3.5 ... (2k - 1)
and
(8.6) R'(k, k, \) = Ak.
Also,
k .
(8.7 DRk, G5 A = (1 = Ny
J=0

Moreover, it is clear that R'(k, j, A) is a polynomial in A of degree
Je . . . m-n (m
To invert (8.1), multiply both sides by (-1) " and sum over 7.
Changing the notation slightly, we get

J .
, . _ _Ndrt(R g
(8.8) R'(k, k = 4, X)) = tio( 1) (k + t)R(k + t, t, A).
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Turning next to (8.2) and employing (3.2), we get

R (n

+ 1, n-k+1, )\) - R (n, n =k, A

k-1
CERIDILHCES HFREN (S ,)

J=0
k-1
2k - g
<0

J
k

J

It follows that
(8.9) Rk, g, M) =(2k-g-DR"(k-1, j, D+ (2k-5-1+R/(k-1,7-1,)).

For k = 0, we have

(8.10)

R!(0, O,

- DRIk -1, 4, A)( "

1

)\)=1’ R:{(O’ j) >\)=09 (j>0)'

2k - 4 -

)

+ 3@k - G- 24 NRIGK - 1, 4, x)(zk )

0

n

J -

255

)):

The following values are readily computed by means of (8.9) and (8.10).

RI(k, G, ))

J
\\;\\\\\ 0 1 2 3 4
0 1
1 1 A
2 3] 2+ 3 \,
3 15| 20 + 15X 6 + 14X + 617 m,
4 105 210 + 105X\ | 130 + 165X + 45)\%| 24 + 70X + 50A% + 10A°| (M),
We have
(8.11) RI(k, 0, A) = 1.3.5 ... (2k - 1)
and
(8.12) Rl(ks ks ) = (W)
Also
k .
(8.13) (-D7RI(k, 4, 1) = (1 - k.
=0

Clearly, R/(k, j, A) is a polynomial in A of degree 4.

d

Parallel to (8.8), we have

kK +4

i Y
(8.14) RI(ky, k =g, A = ;g%(—l)J t(k + t)Rl(k +t, t, M.
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9. ADDITIONAL RELATIONS
(Compare [3, 4].) By (8.14) and (3.1), we have

2(1) (k+‘7)}?’(k+g—t i-t, N

J

Z <kj‘,‘-J>ZBl(k’ 85 ”<k+j2_kt+s>

% ) .
ZB . 5. )\)Z( 1 (k;a><k+gz—kt+s>'

o .). Thus,
- dJ

BRIk, k = Gy 0

[

It can be verified that the inner sum is equal to (

k
k

(9.1) RIGk, 40 2) = Z( ALNCHENENY
Similarly,
(9.2) R'(k, k - 4, M) = Z ( .>B(k, 55 A).
The inverse formulas are
k . .
(9.3) B (k, t, ) = Z(—l)ﬂ't@)R{(k, Js N
and
(9.4) Bk, t, 1) - Z( P CA LU CHEREY

In the next place, by (9.4) and (3.1),

Ry, m -k, 2) = Zk:B(k t, A)(””) ZB<7< k-t 1‘”(n+t>
iB(k t, —D(n +27§<—t)

B e

&=

ey 3,1 - x)Z( 1)7° t( )(” Yk t)-

[:]»

The inner sum is equal to (-1) (n + k- J), and therefore
2k - g
K
9.5)  RyGnym- ks M) = Z i} ] >R &, k=G, 1= 2.
Similarly, k
9.6 R(n, n - Kk, x)=2(1)’< J(”*J)R (K, T = 4o 1= 2.

The inverse formulas are less simple. We find that
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n .
(9.7) RI(n, ky, \) = Y (-D*79Cc,(k, HR( + G, G, 1 - N)
and g=0
n
(9.8) R'(ny, ky A) = ) (-7 9C,(k, HR,(n + 4, §, 1 = A),
where =0 n-j
o n-t\(2n -t
(9.9) Cuhs ) = ;O(k SOG D)

It does not seem possible to simplify C,(k, J).
We omit the proof of (9.7) and (9.8).
Finally, we state the pair

k
, _ E: tfn - t\,,
(9.10) Rl(n, k, >\) tEO("l) <k _ t)R (7’1, t: 1 - )\),

. £
2(—1)t<z - t)Rl’(n, £, 1 - 0.
t=0

The proof is like the proof of (8.8) and (8.14).

(9.11) R'(n, ky, \)
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