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In this paper we provide an algebraic approach to the generalized Stirling
numbers (GSN). By defining a group � that contains the GSN, we obtain a unified
interpretation for important combinatorial functions like the binomials, Stirling
numbers, Gaussian polynomials. In particular we show that many GSN are prod-
ucts of others. We provide an explanation for the fact that many GSN appear as
pairs and the inverse relations fulfilled by them. By introducing arbitrary bound-
ary conditions, we show a Chu–Vandermonde type convolution formula for GSN.
Using the group � we demonstrate a solution to the problem of finding the con-
nection constants between two sequences of polynomials with persistent roots.
© 2001 Academic Press

1. INTRODUCTION

In the past few years the study of generalized Stirling numbers (GSN) has
gained increasing interest. Since the term GSN has appeared in [4], various
authors analyzed this subject by using analytic, algebraic, and combinatorial
approaches. As an important example Verde-Star’s calculus of divided dif-
ferences has provided a powerful tool for the unified treatment of GSN [15].
Other authors like de Médicis and Leroux [11] or Wagner [18] have focused
on combinatorial techniques and interpretations for particular instances of
GSN. Finally there are authors like D’Antona, Damiani, Hsu, Loeb, Naldi,
and Shiue [5–7] who have looked at GSN basically as connection constants
arising from the transformation between sequences of polynomials with per-
sistent roots. Recently Bickel et al. [2] have shown that the GSN are well
suited for the description of discrete time pure birth processes.

An article that has attained only little attention so far is due to
Théorêt [14]. We have not been aware of this work and all results
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presented here have been developed independently. Nevertheless our
Theorem 6 could be obtained directly from [14, Theorem 1, p. 199].

The GSN contain a lot of important combinatorial functions like the
binomials, Stirling numbers of the first and second kind, Lah numbers, and
Gaussian polynomials. For a survey see [7, 11]. For all but the most triv-
ial GSN, explicit formulas are difficult to find. Hence one is interested in
manipulating known GSN in order to build new ones. Another reason for
searching for a unifying theory for GSN is that they appear in numerous
combinatorial identities. For a better understanding of these identities it is
essential to find an interpretation in a closed theoretical framework.

The purpose of this paper is to provide such a framework. In Section 2
we introduce the group � of all infinite lower triangular matrices A over a
field � of characteristic 0 for which A�n� n� = 1 ∀n ∈ �0. For our investi-
gations we focus on the recursion

A�0� �� = δ�0� �� and

A�n� �� = an−1� � A�n − 1� �� + A�n − 1� � − 1�
(1)

that is characteristic for the GSN. We then use (1) to define a mapping
� from the set � of all coefficient functions a � �0 × �0 −→ � to � .
This approach is different from the one recently taken by several authors
inasmuch as they have rather relayed on generating function methods [5, 7].
Our approach enables us to formulate and prove Theorem 6 which forms
the main result of this paper. This result connects GSN of the first and
second kind, which can be obtained by restricting � to appropriate subsets
� and � of �. � and � are formed by all a ∈ � that are constant in �
and n, respectively. As a consequence of Theorem 6 we derive some known
inverse relations for GSN. In Section 3 we enlarge the applicability of the
theory by introducing the notion of general boundary conditions. We then
investigate the solutions of (1) under the assumption that A�n� 0� = g�n�
for some arbitrary function g � �0 −→ � with g�0� = 1. In particular we
show that an analogous result to Theorem 6 holds in this case too. We apply
the theory in order to show a Chu–Vandermonde type convolution formula
for GSN. This formula generalizes the corresponding formulas in [11, 15].

In Section 4 we investigate the problem of interpolating between
sequences of polynomials with persistent roots or in short just persistent
sequences. This problem has been treated extensively in [5, 6]. Apply-
ing Theorem 6 we are able to refine their analysis of the structure of
the connection constants. We show that they can always be written as a
product of elements of � . Further we examine a group that has been
introduced in [15]. We give explicit expressions for its elements and show
that it is actually a subgroup of � . Finally we make some remarks, con-
cerning another class of subgroups of � , and show some connections with
sequences of polynomials of binomial type.
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2. THE GROUP OF GENERALIZED STIRLING NUMBERS

Let � denote any field with characteristic 0. Usually � stands for the
real or complex numbers. We consider the mappings

A � �0 × �0 −→ �

�n� �� �−→ A�n� ���

where additionally A satisfies

A�n� n� = 1 ∀n ≥ 0 (2)

and

A�n� �� = 0 ∀� > n
 (3)

We denote the set of all such mappings by � . In other words � is the
set of all infinite lower triangular matrices over � with 1 on the diagonal.
Because of (3) we can define a composition on � · � � × � → � by

A · B�n� �� �=
∞∑
k=0

A�n� k�B�k� �� =
n∑

k=�

A�n� k�B�k� ��
 (4)

�� � ·� can be regarded as a closed subset of the incidence algebra for the
trivial PO set �.

Proposition 1. �� � ·� is a group.

Proof. We denote by �n the set of n× n matrices that fulfill (2) and (3).
�n is a group by matrix multiplication. Now let φn � �n → �n−1 be given by
omitting the nth row and column. Obviously φn is a surjective homomor-
phism for all n and we set

�̂ = lim←−��n�φn�

the inverse limit of ��n�φn�. One easily verifies that �̂ ∼= � and so that �
is a group.

Remark 2. The unit element in � is given by

δ�n� �� �=
{

1 if n = �
0 if n �= �.
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Next we consider mappings

a � �0 × �0 −→ �

�n� �� �−→ an� �

and we denote the set of all such mappings by �. � naturally carries a linear
space structure. We write an� � instead of a�n� �� in order to distinguish the
elements of � from the elements of � . � contains two subsets � and �
which are of special interest for us. We set

� �= {
a ∈ � � a�n� �1� = a�n� �2� ∀ �1� �2� n ∈ �0

}
(5)

and accordingly

� �= {
a ∈ � � a�n1� �� = a�n2� �� ∀n1� n2� � ∈ �0

}

 (6)

This means the members of � and � are the elements of � that are con-
stant in the first or second argument. Therefore we will often identify them
with mappings a � �0 −→ K and, instead of an� �, just write an or a� for
a ∈ � �� , respectively.

In order to relate � and � we come to the central definition of this
paper. We consider the recursion

A�0� �� = δ�0� �� ∀� ≥ 0 (7)

A�n� �� = an−1� � A�n − 1� �� + A�n − 1� � − 1� ∀n > 0� � ≥ 0 (8)

for any a ∈ �. We set A�n� �� = 0 for � < 0 and get A�n� 0� = an−1� 0 A�n−
1� 0�. Alternatively we could agree for (8) to hold only for � > 0 and that
for � = 0 we have the boundary condition (BC)

A�n� 0� =
n−1∏
k=0

ak� 0 ∀n > 0
 (9)

We call (9) the natural boundary condition (NBC) in contrast to an
arbitrary BC

A�n� 0� = g�n�� ∀n > 0

that we will consider later. From (7) and (8) we infer immediately that
A�n� �� = 0 if � > n and A�n� n� = 1 ∀n ≥ 0. So we can define a map

� � � −→ � (10)

by associating to any a ∈ � the solution A ∈ � of (7) and (8). One easily
verifies that this map is well-defined. In the last 25 years, various authors
studied the solutions of (7) and (8) for several a ∈ �. Some took a more
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algebraic approach (e.g., [4, 5, 7, 8, 10, 15]) others used combinatorial meth-
ods (e.g., [11, 18]). Mostly the terms generalized Stirling numbers (GSN)
of the first and second kind have been used for the members of ��� �
and ����. In the following we call the elements of ���� just generalized
Stirling numbers. The goal of this section is to investigate the map � and to
clarify its interaction with the group structure of � . We start with a negative
result. Namely � � � −→ � is not injective.

Lemma 3. Let a ∈ �. Then we have

an� n = 0 ⇐⇒ ��a� = δ


Proof. First assume there is an n with an� n �= 0. Then

A�n + 1� n� = an� n A�n� n� + A�n� n − 1�

and hence either A�n� n − 1� �= 0 or A�n + 1� n� �= 0 in contradiction to
A = δ. On the other hand, if an� n = 0 for all n ≥ 0 then

A�0� 0� = 1

A�1� 0� = a0� 0 A�0� 0� = 0� A�1� 1� = A�0� 0� = 1

and it follows easily by induction that A = δ.

The above lemma obviously implies that � is not injective. Now let
A ∈ � with A�n� 0� = 0 for some n but with A�n + 1� 0� �= 0. Then it
follows from (9) that there is no a ∈ � such that A = ��a�. Thus � is not
surjective either.

If � is analyzed on the whole domain �, then the situation is very com-
plicated. In order to obtain some meaningful results it seems necessary to
restrict � to some subset � ⊂ �. Usually � will be � , � or �+� .

The following result is due to Comtet [4].

Proposition 4. (a) Let a ∈ � . Then

��a��n� �� = en−��a0� a1� 
 
 
 � an−1��

where ek is the kth elementary symmetric polynomial.

(b) Let b ∈ � . Then

��b��n� �� = hn−��b0� b1� 
 
 
 � b���

where hk is the kth complete symmetric polynomial.
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In the sequel we use small Greek letters α�β� γ� 
 
 
 for scalars in �.
We denote by �� �= ��� � � −→ � the restriction of � to � and ��

analogously. Further for any A ∈ � , λ ∗ A means the element of � for
which

λ ∗ A�n� �� = λn−� A�n� ��

One easily proves by induction that

��λa� = λ ∗ ��a�
 (11)

Next we define a family of operators Tk � � −→ � by its action on A ∈ �

Tk�A��n� �� �=
{
δ�n� �� if n < k or � < k
A�n − k� � − k� if n ≥ k and � ≥ k. (12)

In the following we write � 
 � for ���1� 1� 1� 
 
 
��, i.e., � 
 ��n� �� = (
n
�

)
the

binomials. We now show some basic properties of �.

Proposition 5. (a) �� and �� are injective.

(b) ��� ∩ �� = �λ ∗ � 
 � � λ ∈ ��
(c) ��� � ∩ ���� = ⋃∞

k=0 Tk��λ ∗ � 
 � �λ ∈ ���
(d) ∀k > 0�A ∈ Tk��λ ∗ � 
 � � λ ∈ ��� there is exactly one a ∈ � ,

b ∈ � with ��a� = A = ��b�. Moreover we have a = bT .

Proof. (a) Let A ∈ � and a� b ∈ � with ��a� = ��b� = A. Then we
have

an = A�n + 1� n� − A�n� n − 1� = bn ∀n > 0

and a0 = A�1� 0� = b0. So a = b and �� is injective. For �� one proceeds
analogously.

(b) Let a ∈ � ∩ � . Then there are sequences �ck�k and �dk�k with

an� � = cn and an� � = d� ∀n� � ≥ 0


In particular we have an� n = cn = dn and so c = d. From this we infer
an� � = cn = c�. Hence an� � = λ for some λ ∈ � and with (11) the claim
follows.

(c) Let A ∈ ��� � ∩ ����. Then there are a ∈ � and b ∈ � with
��a� = ��b� = A. There exist sequences �ck�k and �dk�k with

an� � = cn and bn� � = d� ∀n� � ≥ 0


We have

A�n + 1� �� = cn A�n� �� + A�n� � − 1� = d� A�n� �� + A�n� � − 1�
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This implies cn A�n� n� = dn A�n� n� and hence c = d. Now let us assume
that ck > 0 ∀k ≥ 0. Then we have

A�1� 0� = c0

A�2� 0� = c0
2 = c0 c1 �⇒ c1 = c0

A�3� 0� = c0
3 = c0 c1 c2 �⇒ c2 = c0


Inductively we find ck = c0 = λ ∀k ≥ 0 and some λ ∈ � and hence A =
λ ∗ � 
 �. Now let us suppose there is exactly one i with ci = 0. Because of

c0
i+1 = c0 c1 
 
 
 ci = 0

we infer i = 0. In a similar way we see that if ��i � ci = 0�� = k then

c =
(

0� 
 
 
 � 0︸ ︷︷ ︸
k

� ck+1� ck+2� 
 
 


)



Analogously to the case above one finds ci = λ ∀i > k and it is easily
verified that with an� � = cn and b = aT we have

��a� = ��b� = Tk �λ ∗ � 
 �� (13)

and hence ��� � ∩ ���� = ⋃∞
k=0 Tk��λ ∗ � 
 � � λ ∈ ���. We note that in

this case a �= b and that ∀k > 0 and A ∈ Tk��λ ∗ � 
 � � λ ∈ ��� we can
find exactly one a ∈ � and b ∈ � that fulfill (13). This proves the other
inclusion and (d).

Next we want to demonstrate the central result of this paper. In short it
says that ��� + �� = ��� � · ����. More explicitly we have

Theorem 6. Let a ∈ � and b ∈ � . Then we have

��a + b� = ��a� · ��b�

Proof. Let A = ��a�, B = ��b�, and C = A · B. Then we have

C�0� �� = δ�0� ��, i.e., C fulfills the initial condition. Next for � = 0 we
have

C�n� 0� =
n∑

k=0

A�n� k�B�k� 0� =
n∑

k=0

en−k�a0� 
 
 
 � an−1� b0
k


On the other hand

��a + b��n� 0� =
n−1∏
k=0

�ak + b0� =
n∑

k=0

en−k�a0� 
 
 
 � an−1� b0
k
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For n� � > 0 we have

C�n� �� =
n∑

k=�

A�n� k�B�k� ��

=
n∑

k=�

�an−1 A�n − 1� k� + A�n − 1� k − 1��B�k� ��

=
n∑

k=�

an−1 A�n − 1� k�B�k� ��

+
n∑

k=�

A�n − 1� k − 1� �b� B�k − 1� �� + B�k − 1� � − 1��

= �an−1 + b��
n−1∑
k=�

A�n − 1� k�B�k� ��

+
n−1∑

k=�−1

A�n − 1� k�B�k� � − 1�

= �an−1 + b��C�n − 1� �� + C�n − 1� � − 1�

It follows that C fulfills (7) and (8) with an� � = an + b� and from the
definition of � we infer C = ��a + b�.

The above theorem shows a relation between GSN of the first and sec-
ond kind which is known for special cases, but has never been noted in
full generality. Note that the theorem does not hold if ��a� and ��b� are
interchanged. Indeed the recursion fulfilled by ��b� · ��a� can be arbi-
trarily complicated and the non-commutativity of the group � is clearly
recognized. But the theorem and the following corollary suggest that �� � ·�
is the right algebraic framework to study �.

Corollary 7. Let a ∈ � and b ∈ � . Then there exist unique c ∈ � and
d ∈ � with

��a� · ��c� = ��c� · ��a� = δ

and

��b� · ��d� = ��d� · ��b� = δ


Moreover we have c = −aT and d = −bT .

Proof. Let a ∈ � . Then we have aT ∈ � and

�a − aT �n� n = an� n − aTn� n = 0 ∀n ≥ 0
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Hence Lemma 3 and Theorem 6 imply

δ = ��a − aT � = ��a� · ��−aT � = ��−aT � · ��a�

The third equality follows from the fact that in any group the left inverse
is also the right inverse. So the inverse element is uniquely determined
and from the injectivity of �� we infer that −aT is also unique with this
property. The statements for b and d follow in a similar way.

The above corollary points out a relation between GSN of the first and
second kind that has often been called the orthogonality relation. In the
present context the term inverse relation seems to be more appropriate.
Corollary 7 can be summarized in the following commutative diagram

�
� → �

a �→−aT

� �A �→A−1

�
� → �

Theorem 6 suggests unifying the GSN as the members of ��� + �� and
considering the GSN of the first and second kind as special instances of
the former. The GSN in this sense coincide with the connection constants
in [5, 6]. In [5] the term complementary symmetric functions has been intro-
duced. For some GSN like the Lah numbers it is known that they are self
inverse [9]. The following corollary clarifies the situation and shows that
this holds in a more general context.

Corollary 8. Let a ∈ � � b ∈ � . Then we have

��a + b� · ��−aT − bT � = ��−aT − bT � · ��a + b� = δ


Proof.

��a + b� · ��−aT − bT � = ��a� · ��b� · ��−bT �︸ ︷︷ ︸
δ

·��−aT � = δ


In particular if b = aT we get

��a + aT � · �−1� ∗ ��a + aT � = δ
 (14)

Example 9 (Binomials). Let � = �� 
 �� ⊂ � be the cyclic subgroup
generated by � 
 �. We call � the binomial group. Then we have ��� ·� ∼=
�	�+�. To see this we set

ϕ � 	 −→ � ∩ �

α �−→ an� � ≡ α
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Then we have that

� ◦ ϕ � 	 −→ �

α �−→ α ∗ � 
 �
is a bijection. From

��ϕ�α + β�� = ��ϕ�α� + ϕ�β�� = ��ϕ�α�� · ��ϕ�β��
we infer that � ◦ϕ is an isomorphism. In particular we find the well known
identity

� ◦ ϕ�1 − 1��n� �� =
n∑

k=�

�−1�k−�

(
n

k

)(
k

�

)
= δ�n� ��


For α ∈ � we have the powers in �

� 
 �α = � 
 � · � 
 � · · · · · � 
 �︸ ︷︷ ︸
α×

= ��ϕ�1 + · · · + 1︸ ︷︷ ︸
α×

�� = ��ϕ�α��


This suggests defining powers of the binomials for arbitrary λ ∈ � by setting
(and extending ϕ in an obviuos manner)

� 
 �λ �= ��ϕ�λ��
 (15)

We have

� 
 �λ1 · � 
 �λ2 = � 
 �λ1+λ2 


Example 10 (Stirling Numbers, Lah Numbers). We set an� � = n and
bn� � = �. Then we have ��a� = S the Stirling numbers of the first kind,
��b� = s the Stirling numbers of the second kind, and ��a + b� = L the
sign-less Lah numbers. Theorem 6 yields

L = S · s

From Corollary 7 we infer the well known identity

n∑
k=�

�−1�k−� S�n� k� s�k� �� = δ�n� ��

and from Corollary 8 we find

n∑
k=�

�−1�k−� L�n� k�L�k� �� = δ�n� ��
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Example 11 (Non-central Stirling Numbers). This example is due to
Koutras [8]. If we set an� � = �α − n� and bn� � = �β − �� we obtain the
non-central Stirling numbers Sα� sβ of the first and second kind. We then
have

Sα�n� �� =
n∑

k=�

αk−� �−1�n−kS�n� k�
(
k

�

)
and

sβ�n� �� =
n∑

k=�

βn−k �−1�k−�

(
n

k

)
s�k� ��


For some applications of these numbers in probability theory see [8].

Example 12 (Möbius Inversion). Möbius and Zeta function play a cen-
tral role in the theory of incidence algebras, e.g., see [13]. As mentioned
before, � can be regarded as a multiplicatively closed subset of the inci-
dence algebra over �. It is easily verified that with b ∈ � , bn� � = δ0� �
∀n ≥ 0 we get

��b��n� �� �=
{ 1 if n ≥ �
0 if n < �.

So we have ��b� = ζ the Zeta function. Let a ∈ � , an� l = −δn� 0 ∀� ≥ 0.
Then with Lemma 3 we find ��a� ·��b� = δ and thus ��a� = µ the Möbius
function.

3. BOUNDARY CONDITIONS AND CONVOLUTION FORMULAS

In this section we extend the algebraic background for the GSN and thus
provide interpretations of additional identities for various combinatorial
functions. In the previous section we have seen that these interpretations
can often be found within the setting of the group � . Unfortunately the
mapping � was not surjective and therefore not all members of � could
be treated in this way. By introducing the set of boundary conditions 

we can extend � in a proper way to make it surjective. Consequently we
get any A ∈ � as an image under �. We will then examine in which way
A ∈ � depends on the boundary condition. The main result of this section
will be Theorem 15 and as an important consequence of it, Corollary 16.
Theorem 15 answers the question of dependence on the boundary con-
ditions if A satisfies a recursion with coefficients in � + � . Corollary 16
provides a generalization of the convolution formulas found in [11, 15].

To begin with, we replace the natural boundary condition NBC

A�n� 0� =
n−1∏
k=0

ak� 0
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by an arbitrary function

g � �0 −→ � with g�0� = 1


This means we consider the recursion

A�n� �� = an−1� � A�n − 1� �� + A�n − 1� � − 1� ∀n� � > 0 (16)

together with the initial and boundary conditions

A�0� �� = δ�0� �� and A�n� 0� = g�n� ∀n� � ≥ 0
 (17)

We denote by 
 the set of all admissible boundary conditions (BC)


 �= {
g � �0 → � � g�0� = 1

}



Similar to the previous section we define a mapping

� � 
 × � −→ �

by associating with a given BC and the coefficients a ∈ � the solution
A ∈ � of (16) and (17). This � is well-defined and surjective. In the fol-
lowing we will write ��a� if we consider the NBC. For any g1� g2 ∈ 
 and
a� b ∈ � we consider

g3�n� = ��g1� a� · ��g2� b��n� 0�
 (18)

We call g3 the product boundary condition (PBC). The following result gen-
eralizes Theorem 6 for arbitrary BC.

Theorem 13. Let g1� g2 ∈ 
 and a ∈ � � b ∈ � . With g3 the PBC we
have

��g3� a + b� = ��g1� a� · ��g2� b�
 (19)

Proof. We set A = ��g1� a�� B = ��g2� b�. As in the proof of
Theorem 6 one verifies that A · B fulfills the recursion for n� � > 0.
For n = 0 we have again A · B�0� �� = δ�0� �� and for � = 0 we have

A · B�n� 0� =
n∑

k=0

A�n� k�B�k� 0� =
n∑

k=0

A�n� k� g2�k��

where the second equality follows from the definition of B = ��g2� b�.
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Next we investigate how ��g� a� depends on g. For this purpose we intro-
duce two families of operators νk� λk ∀k ≥ 0 on �,

νk � � −→ �

an� � �−→ an+k� �

and

λk � � −→ �

an� � �−→ an� �+k


Then we have

� = {
a ∈ � � λk�a� = a ∀k ≥ 0

}
and

� = {
a ∈ � � νk�a� = a ∀k ≥ 0

}



First we investigate B = ��g� b�� b ∈ � . We introduce the family of gener-
ating functions �F���≥0

F��x� �=
∞∑
k=�

B�k� ��xk
 (20)

Then by applying (16) to F� we get

F��x� =
∞∑
k=�

B�k� ��xk =
∞∑
k=�

�b� B�k − 1� �� + B�k − 1� � − 1��xk

= b� x
∞∑
k=�

B�k� ��xk + x
∞∑

k=�−1

B�k� � − 1��xk

= b� xF��x� + xF�−1�x�
which implies

F��x� = x

1 − b� x
F�−1�x� =

�∏
k=1

x

1 − bk x
F0�x�

= x�

( ∞∑
k=0

hk�b1� 
 
 
 � b��xk

)( ∞∑
k=0

g�k�xk

)

= x�
∞∑
k=0

xk
k∑
i=0

g�i�hk−i�b1� 
 
 
 � b��
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By comparing the coefficients with (20) we get for g ∈ 
� b ∈ �

��g� b��n� �� =
n−�∑
k=0

g�k�h�n−k�−��b1� 
 
 
 � b��

=
n−�∑
k=0

g�k���λ1�b���n − k − 1� � − 1�
 (21)

Next we turn to the case ��g� a�� a ∈ � . In order to find an explicit expres-
sion we first prove the following lemma.

Lemma 14. Let a ∈ � and A = ��a�. Then we have for n ≥ � ≥ 0� i ≥ 0

n−�∑
k=i

A�n� k + ��A−1�k� i� =


0 if n < i
δ0� � if n = i
��νi+1�a���n − i − 1� � − 1� if n > i.

Proof. We set

Ci�n� �� �=
n−�∑
k=i

A�n� k + ��A−1�k� i�


Then for � > 0 we have

Ci�n� �� =
n−�−1∑
k=i

an−1 A�n − 1� k + ��A−1�k� i�

+
n−�∑
k=i

A�n − 1� k + �� − 1��A−1�k� i�

= an−1 Ci�n − 1� �� + Ci�n − 1� � − 1�
and

Ci�n� 0� =
n∑

k=i

A�n� k�A−1�k� i� = δ�n� i�


By abuse of notation we find

Ci = ��δ� 
 � i�� a�

Now it is easily verified that

��δ� 
 � i�� a��n� �� =


0 if n < i
δ0� � if n = i
��νi+1�a���n − i − 1� � − 1� if n > i

which completes the proof of the lemma.
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From Theorem 13 it follows that for g1 ∈ 
 and a ∈ � we have

��g� a� = ��a� · ��g1� 0��

where g is given by the PBC

g�n� =
n∑

k=0

A�n� k� g1�k�
 (22)

Now for any given g ∈ 
, we choose a g1 ∈ 


g1�n� =
n∑

k=0

A−1�n� k� g�k�

and with this g1, Eq. (22) holds. Using (21) one finds that

��g1� 0��n� �� = g1�n − ��

and hence

��g� a��n� �� = ��a� · ��g1� 0��n� ��

=
n∑

k=�

A�n� k� g1�k − ��

=
n∑

k=�

A�n� k�
k−�∑
i=0

A−1�k − �� i� g�i�

=
n−�∑
k=0

A�n� k + ��
k∑
i=0

A−1�k� i� g�i�

=
n−�∑
i=0

g�i�
n−�∑
k=i

A�n� k + ��A−1�k� i�

=
n−�∑
i=0

g�i���νi+1�a���n − i − 1� � − 1�


The last equality follows from Lemma 14 and we have found the explicit
expression

��g� a��n� �� =
n−�∑
k=0

g�k� e�n−k�−��ak� 
 
 
 � an−1�

=
n−�∑
k=0

g�k���νk+1�a���n − k − 1� � − 1�
 (23)
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Now that we have seen how ��g� a����g� b� depend on g for a ∈ � � b ∈ � ,
the same question arises for ��g� a + b�. First we want to introduce some
abbreviations in order to make the formulas more readable. By setting

Âi = T1���νi+1�a���
and

B̂ = T1���λ1�b���
we can restate (21) and (23) obtaining

��g� a��n� �� =
n−�∑
i=0

g�i� Âi�n − i� �� (24)

and

��g� b��n� �� =
n−�∑
i=0

g�i� B̂�n − i� ��
 (25)

We are now ready to state the analogous result to (24) and (25) for
��g� a + b�. Theorem 13 suggests that in this case some kind of prod-
uct Âk · B̂ is involved such that for either Âk = δ or B̂ = δ we get (25)
and (24), respectively. Indeed we have the following theorem.

Theorem 15. Let g ∈ 
� a ∈ � � b ∈ � . Then

��g� a + b��n� �� =
n−�∑
i=0

g�i� Âi · B̂�n − i� ��

with Âi� B̂ as above.

Proof. Let g ∈ 
. Then we set

g1�n� = ∑
k=0

���a��−1�n� k� g�k�

and we have ��g� a + b� = ��a� · ��g1� b�. From this we infer

��g� a + b��n�m� =
n∑

�=m

(
n∑

k=�

A�n� k� g1�k − ��
)
B̂���m�

=
n∑

�=m

(
n−�∑
k=0

g�k� Âk�n − k� ��
)
B̂���m�

=
n−m∑
k=0

g�k�
n−k∑
�=m

Âk�n − k� �� B̂���m�

=
n−m∑
k=0

g�k� Âk · B̂�n − k�m�
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Using Theorem 15 we can generalize the convolution formulas for the
GSN of the first kind found in [11] and of the second kind found in [15].

Let a ∈ � and νk� λk � � −→ � as above. Then it holds for the
composition

νk ◦ λi�a�n� � = λi ◦ νk�a�n� � = an+k� �+i ∀i� k ≥ 0


Corollary 16. Let a ∈ � � b ∈ � . Then we have

��a + b��n� � + k� =
n−�∑
i=k

��a + b��i� k�

× T1
(
�
(
νi+1 ◦ λk+1�a + b�))�n − i� �� ∀k ≥ 0


Proof. Let

C = ��a + b�� g�n� = C�n + k� k�� and Ck = ��g� νk ◦ λk�a + b��

Then we have C�n+ k� �+ k� = Ck�n� �� ∀k ≥ 0 and from Theorem 15 we
infer

Ck�n� �� =
n−�∑
i=0

C�i + k� k� �T1���νi+k+1�a��� · T1���λk+1�b���� �n − i� ��

=
n−�+k∑
i=k

C�i� k�T1���νi+1 ◦ λk+1�a + b����n − �i − k�� ��

and hence

C�n� � + k� = Ck�n − k� ��

=
n−�∑
i=k

C�i� k�T1���νi+1 ◦ λk+1�a + b����n − i� ��


If we set

B̂k = T1���λk+1�b���
and observe that for any A�B ∈ � we have T1�A ·B� = T1�A� · T1�B�, then
we can restate Corollary 16 in the form

A · B�n� � + k� =
n−�∑
i=k

A · B�i� k� Âi · B̂k�n − i� ��
 (26)

If we set b = 0, then we have B = B̂k = δ and

A�n� � + k� =
n−�∑
i=k

A�i� k� Âi�n − i� ��� (27)
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namely the convolution formula due to de Medicis and Leroux [11]. On the
other hand if we set a = 0, i.e., A = Âi = δ, we get

B�n� � + k� =
n−�∑
i=k

B�i� k� B̂k�n − i� ��� (28)

that is, the convolution formula due to Verde-Star [15]. As �1� 1� 1� 
 
 
� ∈
� ∩ � , both formulas generalize the well-known Chu–Vandermonde con-
volution formula (

n

� + k

)
=

n−�∑
i=k

(
i

k

)(
n − i − 1
� − 1

)



4. SEQUENCES OF POLYNOMIALS WITH PERSISTENT ROOTS

In this section we demonstrate some relations between sequences of poly-
nomials with persistent roots (persistent sequences) and the group � . In
particular we investigate the transformation of one persistent sequence to
another. This problem has been extensively studied for sequences of bino-
mial type by Rota and Mullin in [12]. In [5, 6] much progress in the same
problem for persistent sequences has been made. With the theory developed
in Section 2 we are able to refine some of their results and interpret them
in terms of the group � . We give an explicit representation for a group
that has been introduced in [15] and show that it is indeed a subgroup
of � . Finally we make some remarks on connections between conjugate
subgroups of the binomial group � and sequences of binomial type.

We consider persistent sequences of polynomials pa�n ∈ ��x 
pa� 0�x� ≡ 1 and pa�n�x� = �x + an−1�pa�n−1�x� ∀n > 0� (29)

where ak ∈ � ∀k ≥ 0. Equation (29) says that all roots of pa�n−1 persist in
pa�n. From (29) we infer

pa�n�x� =
n−1∏
k=0

�x + ak� ∀n > 0


Let Pn�x� denote the set of all polynomials of degree n in x with coefficients
in �. Pn�x� forms an n + 1 dimensional linear space over the field �. It is
obvious that, for any persistent sequence, pa� 0� 
 
 
 � pa� n forms a basis for
Pn�x�. Hence any q ∈ Pn�x� can be represented as

q�x� =
n∑

k=0

qk pa�k�x�
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In particular for any two persistent sequences �pa�k�k≥0 and �pb�k�k≥0 we
have

pa�n�x� =
n∑

k=0

R�n� k�pb�k�x�
 (30)

It was shown in [5, 6] that R�n� k� satisfy the recurrence

R�n� �� = �an−1 − b��R�n − 1� �� + R�n − 1� � − 1� ∀n� � > 0�

where

R�0� �� = δ�0� ��

Hence with a ∈ � and b ∈ � we have

R = ��a − b� = ��a� · ��−b� = ��a� · ���bT ��−1

by Theorem 6. In the sequel we identify a ∈ � and b ∈ � with the
sequences �ak�k≥0, �bk�k≥0. We have thus proved

Theorem 17. Let a� b ∈ � . If pa� 0�x� = pb� 0�x� ≡ 1 and

pa�n�x� =
n−1∏
k=0

�x + ak�� pb� n�x� =
n−1∏
k=0

�x + bk�

then

pa�n�x� =
n∑

k=0

��a� · ���b��−1�n� k�pb�k�x�


In other words Theorem 17 states that

pa�n�x� =
n∑

k=0

R�n� k�pb�k�x� �⇒ ��a� = R · ��b�
 (31)

Special GSN have often been defined by property (30). In [7], for example,
Eq. (30) forms the starting point for the investigation of Stirling-type pairs,
although only for the particular case where the sequences of zeros �ak�k≥0
and �bk�k≥0 are of the form ak = αk − r, bk = βk − r α�β� r ∈ �.

As another application of Theorem 17 we describe a non-trivial subgroup
of � . This example has already been treated in [15] but can now be inte-
grated in the general theory. Let a ∈ � and �pa�k�k≥0 as above. The map
x �→ λx + τ operates on Pn�x� by

p�x� �→ q�x� = p�λx + τ�

In particular we have

pa�n�λx + τ� =
n∑

k=0

Rλ� τ�n� k�pa�k�x�
 (32)
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On the other hand

pa�n�λx + τ� = λn
n−1∏
i=0

(
x + τ + ai

λ

)

 (33)

Thus with ân = �τ + an�/λ we have

��â� = 1
λ

∗ (��a� · τ ∗ � 
 �)
and with α ↑ ��a��n� �� �= αn ��a��n� �� and α ↓ ��a��n� �� �= α���a� ×
�n� �� we infer from (31)

Rλ� τ = λ ↓ ��a� · τ ∗ � 
 � · ���a��−1
 (34)

Now if we set � = {
Rλ� τ � λ ∈ �\�0�� τ ∈ �

}
then ��� ·� is a subgroup of

�� � ·�. We have

Rλ1� τ1
· Rλ2� τ2

= Rλ1λ2� τ1+λ1τ2



The straightforward proof of these facts is left to the interested reader.
Other examples of nontrivial subgroups of � are given by � in

Example 9. Of special interest are the conjugate subgroups of �

A · � · A−1 with A ∈ � 


We show that they are connected to sequences of binomial type. First we
observe that for a ∈ � and �pa�k�k≥0 as above and Ax�n� �� = (

n
�

)
pa�n−��x�

we have

Ax�0� �� = δ�0� �� and

Ax�n� �� = �x + an−1−��Ax�n − 1� �� + Ax�n − 1� � − 1�

In particular if ak is linear in k and A = ��a� then we infer

Ax = A · � 
 �x · A−1

and hence with Example 9

Ax+y = Ax · Ay


From this we obtain the following corollary.

Corollary 18. If a ∈ � and aλ �n+�� = λ �an + a�� then(
n

�

)
pa�n−��x + y� =

n∑
k=�

(
n

k

)
pa�n−k�x�

(
k

�

)
pa�k−��y�
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In particular from Corollary 18 we get for � = 0

pa�n�x + y� =
n∑

k=0

(
n

k

)
pa�n−k�x�pa�k�y�

so that �pa�k�k≥0 is a sequence of binomial type and a persistent sequence at
the same time. For a complete list of such sequences refer to [3]. On the
other hand for any A ∈ �

Ax�n� �� = A · � 
 �x · A−1�n� ��
is a polynomial of degree n − �. Thus Ax�n� �� can always be written as
Ax�n� �� = (

n
�

)
pn� ��x� some pn� � ∈ Pn−��x�. For these polynomials we get

we get as above(
n

�

)
pn� ��x + y� =

n∑
k=�

(
n

k

)
pn�k�x�

(
k

�

)
pk� ��y�
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