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Abstract
The Stirling numbers of the first kind s(n, k), for k � 2 and n � k, are expressed
in two di↵erent ways as (k � 1)-fold integrals of certain symmetric polynomials in
k � 1 variables. This extends a well-known integral for the harmonic numbers.

1. Introduction

Stirling numbers of both kinds belong to the most basic and important objects
in combinatorics, with numerous applications also in other areas of mathematics.
They have therefore been studied extensively and continue to attract a great deal
of attention.

In this paper we consider the Stirling numbers of the first kind, s(n, k), which
can be defined, among other equivalent definitions, by the exponential generating
function

(log(1 + x))k

k!
=

1X
n=k

s(n, k)
n!

xn; (1)

see, e.g., [8, Ch. 26]. The main combinatorial interpretation of |s(n, k)| is the
number of ways to arrange n objects into k cycles; see, e.g., [6, p. 259].

Our point of departure is a well-known integral for the harmonic number Hn :=
1Supported in part by a grant of the Ministry of Education, Science and Culture of Japan.
2Supported in part by the Natural Sciences and Engineering Research Council of Canada.
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1 + 1
2 + · · · + 1

n , namely

Hn =
Z 1

0

1� xn

1� x
dx, (2)

which is easy to verify. Because of the connection s(n, 2) = (�1)n(n�1)!Hn�1 (see,
e.g., [8, eq. (26.8.15)]), we have the integral representation

s(n, 2) = (�1)n(n� 1)!
Z 1

0

1� xn�1

1� x
dx. (3)

Using the substitution x ! 1 � x and adding the integral thus obtained to the
original integral in (3), we get

s(n, 2) = (�1)n (n� 1)!
2

Z 1

0

1� xn � (1� x)n

x(1� x)
dx. (4)

This integral was used in [2] to obtain certain convolution identities for Bernoulli
numbers.

It is the purpose of this paper to obtain extensions of (3) and (4) for any s(n, k),
with n � k � 2, in terms of multiple integrals. We begin with the extension of the
integral (4).

Theorem 1. Let k � 2 be an integer, and x1, . . . , xk be real variables with x1 +
· · · + xk = 1. Define the sum

Sn(x1, . . . , xk) := 1 +
k�1X
r=1

(�1)k�r
X

1i1<...<irk

(xi1 + · · · + xir)
n . (5)

Then for all n � k we have

s(n, k) =(�1)n�k (n� 1)!
k!

⇥
Z 1

0

Z 1�x1

0
. . .

Z 1�x1�···�xk�2

0

Sn(x1, . . . , xk)
x1 . . . xk

dxk�1 . . . dx1. (6)

In the case k = 2 the multiple integral in (6) is interpreted as the single integral
from 0 to 1. With k = 2, then, and setting x1 = x and x2 = 1�x, we clearly obtain
(4). As next smallest example we set k = 3 and x1 = x, x2 = y, and x3 = 1�x�y.
Then (6) reduces to the following double integral expression.

Corollary 1. For n � 3 we have

s(n, 3) = (�1)n�1 (n� 1)!
3!

Z 1

0

Z 1�x

0

Sn(x, y)
xy(1� x� y)

dy dx,

where

Sn(x, y) = 1� (x + y)n � (1� x)n � (1� y)n + xn + yn + (1� x� y)n.
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Our second result generalizes the integral expression (3).

Theorem 2. Let k � 2 be an integer, and x1, . . . , xk�1 be real variables. Define
the sum

Rn(x1, . . . , xk�1) := 1 +
k�1X
r=1

(�1)r
X

1i1<...<irk�1

(xi1 + · · · + xir)n � 1
xi1 + · · · + xir � 1

. (7)

Then for all n � k we have

s(n, k) =(�1)n�1 (n� 1)!
(k � 1)!

⇥
Z 1

0

Z 1�x1

0
. . .

Z 1�x1�···�xk�2

0

Rn(x1, . . . , xk�1)
x1 . . . xk�1

dxk�1 . . . dx1. (8)

In the case k = 2 the multiple integral reduces again to the single integral from
0 to 1, and with x1 = x we have

Rn(x)
x

=
1
x

✓
1� xn � 1

x� 1

◆
= �1� xn�1

1� x
,

so (8) reduces to (3) in this case. Once again we state the next simplest case, k = 3,
as a corollary which follows immediately from Theorem 2 with x1 = x and x2 = y.

Corollary 2. For n � 3 we have

s(n, 3) = (�1)n�1 (n� 1)!
2

Z 1

0

Z 1�x

0

Rn(x, y)
xy

dy dx,

where
Rn(x, y) = 1� xn � 1

x� 1
� yn � 1

y � 1
+

(x + y)n � 1
x + y � 1

.

In Section 2 we state and partly prove some lemmas which are interesting in their
own rights; the first two of them are known. These will then be used in Section 3
to prove Theorems 1 and 2. We conclude this paper with some additional remarks
in Section 4.

2. Some Lemmas

The Stirling numbers of the first kind have two well-known multiple sum expressions
that are similar in appearance. The first of these is

s(n, k) = (�1)n�k(n� 1)!
X

1j1<···<jk�1n�1

1
j1 . . . jk�1

; (9)

see, e.g., [5] or [7]. Some further remarks can be found at the end of Section 4. The
second such sum will be required in the next section, and we state it as a lemma.
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Lemma 1. For all n � k � 1 we have

s(n, k) = (�1)n�k n!
k!

X
j1+...+jk=n
j1,...,jk�1

1
j1 . . . jk

. (10)

This identity can be found, for instance, in [7] or [4, p. 291 ↵.]. The proof
follows from (1) by taking the k-fold Cauchy product of the series log(1 + x) =
x� 1

2x2 + 1
3x3 � . . . , and equating coe�cients.

The next lemma is an extension of the well-known beta function, or beta integral,
Z 1

0
xm�1(1� x)n�1dx =

�(m)�(n)
�(m + n)

. (11)

While this is valid for complex parameters m,n with <(m),<(n) > 0, we will require
m and n only to be positive integers. The following extension to multiple integrals
is true in similar generality, although again we will need it only for positive integer
parameters.

Lemma 2. For positive real j1, . . . , jk with k � 2 we have
Z 1

0

Z 1�x1

0
. . .

Z 1�x1�···�xk�2

0
xj1�1

1 . . . x
jk�1�1
k�1 (1� x1 � · · ·� xk�1)jk�1

⇥ dxk�1 . . . dx1 =
�(j1) . . .�(jk)

�(j1 + · · · + jk)
. (12)

Once again, for k = 2 we interpret the multiple integral in (12) as the single
integral from 0 to 1. Lemma 2 can be proved by induction on k, with (11) as the
base case. This multivariate beta integral is not new; it can be found, for instance,
in [10], where it was further generalized.

For the next lemma and for Section 3 we introduce the following notation which
is related to the multiple integrals in (6), (8) and (12). For any d � 1, let �d be
the section of the d-dimensional unit cube defined by

�d := {(x1, . . . , xd) 2 Rn |0  x1  1, 0  x2  1� x1,

. . . , 0  xd  1� x1 � · · ·� xd�1} .

Thus, �1 is the unit interval, �2 is the right-angled triangle with area 1/2, and
�3 is the solid of volume 1/6 obtained by cutting the appropriate triangular object
from the 3-dimensional unit cube. Also, the multiple integrals in (6), (8) and (12)
are taken over �k�1.

The following lemma could be proved in greater generality. However, for sim-
plicity we restrict ourselves to continuous functions.
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Lemma 3. Let d � 1 be an integer and f(x1, . . . , xd) a continuous function in d real
variables defined on �d. For 1  j  d let fj(x1, . . . , xd) be the function obtained
from f(x1, . . . , xd) by replacing xj by 1� x1 � · · ·� xd. Then for all 1  j  d we
have Z

�d

fj(x1, . . . , xd)dx =
Z

�d

f(x1, . . . , xd)dx, (13)

where dx := dxd . . . dx1.

Proof. We consider the inner-most integral in
Z

�d

f dx =
Z 1

0

Z 1�x1

0
. . .

Z 1�x1�···�xd�1

0
f(x1, . . . , xd)dxd . . . dx1 (14)

and substitute xd by 1 � x1 � · · · � xd. Then dxd becomes �dxd, and the limits
of integration 0 and 1 � x1 � · · · � xd�1 get interchanged. Switching the limits of
integration back will cancel the minus sign, which proves the lemma for j = d.

Next we note that because of symmetry of the object �d we can take the iterated
integral on the right of (14) in any order; in particular, xj for any j = 1, . . . , d� 1
could be interchanged with xd. The statement of the lemma is then obtained for j
by the same easy substitution as above. This completes the proof.

3. Proofs of the Theorems

Proof of Theorem 1. For a fixed k � 2 and x1, . . . , xk as in the theorem, consider
the multiple sum

eSn(x1, . . . , xk) =
X

j1+...+jk=n
j1,...,jk�1

n!
j1! . . . jk!

xj1
1 . . . xjk

k . (15)

Furthermore, for any integer r with 1  r  k, define

Tn(xi1 , . . . , xir) :=
X

j1+...+jr=n
j1,...,jr�0

n!
j1! . . . jr!

xj1
i1

. . . xjr
ir

, (16)

where {xi1 , . . . , xir} is a subset of the set of variables {x1, . . . , xk}. Note that
the summation indices in (16) start with 0, in contrast to the sum (15). By the
multinomial theorem the sums (16) evaluate as

Tn(xi1 , . . . , xir) = (xi1 + · · · + xir)
n , r = 1, . . . , k. (17)

In particular, we have

Tn(xi) = xn
i , Tn(xi1 , xi2) = (xi1 + xi2)

n ,
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and, keeping in mind that x1 + · · · + xk = 1, we get

Tn(x1, . . . , xk) = 1. (18)

Now we evaluate the sum eSn(x1, . . . , xk) by using the sums (16) and the inclusion-
exclusion principle. We do this by noting that eSn(x1, . . . , xk) is obtained from
the full sum Tn(x1, . . . , xk) by subtracting each of the (k � 1)-fold sums that have
j1 = 0, respectively j2 = 0, etc.; that is, we subtract the k sums Tn(x2, . . . , xk),
Tn(x1, x3, . . . , xk), up to Tn(x1, . . . , xk�1). However, we subtracted too many terms
and must therefore add the

�k
2

�
sums Tn(xi1 , . . . , xik�2), and so on. Thus,

eSn(x1, . . . , xk) =Tn(x1, . . . , xk)�
X

1i1<...<ik�1k

Tn(xi1 , . . . , xik�1)

+
X

1i1<...<ik�2k

Tn(xi1 , . . . , xik�2)� · · · + (�1)k�1
kX

i=1

T (xi),

with distinct summation indices ij in each of the sums. Now, using (17) and (18),
we see that in fact eSn(x1, . . . , xk) is the same as Sn(x1, . . . , xk) in (5).

To conclude the proof, we divide (15) by the monomial x1 . . . xk, which leaves
the resulting quotient still as a symmetric polynomial. With the notation as used
in Lemma 3, and keeping in mind that xk = 1 � x1 � · · · � xk�1, (3.1) and (2.3)
immediately give

Z
�k�1

Sn(x1, . . . , xn)
x1 . . . xk

dx =
X
(⇤)

n!
j1! . . . jk!

Z
�k�1

xj1�1
1 . . . xjk�1

k dx

=
X
(⇤)

n!
j1! . . . jk!

· (j1 � 1)! . . . (jk � 1)!
(j1 + · · · + jk � 1)!

= n
X
(⇤)

1
j1 . . . jk

, (19)

where (⇤) indicates that the sum is taken over all j1, . . . , jk � 1 with j1+· · ·+jk = n.
Finally, combining (10) with (19) we immediately get (6), which completes the proof
of Theorem 1.

Proof of Theorem 2. For fixed integers k � 2 and m � 0 define the function

gm(x1, . . . , xk�1) :=
1

x1 . . . xk�1

k�1X
r=1

(�1)r
X

1i1<...<irk�1

(xi1 + · · · + xir)
m , (20)

and for greater ease of notation we set gm = gm(x1, . . . , xk�1). Here and in what
follows the summation indices ij are once again assumed to be distinct in each sum.
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For 1  j  k�1 let �j be the linear operator acting on gm (or any rational function
in x1, . . . , xk) that changes xj to xk, and let �k be the identity operator. Then we
have

kX
j=1

�j(gm) =
1

x1 . . . xk

kX
j=1

xj

k�1X
r=1

(�1)r�j

X
1i1<...<irk�1

(xi1 + · · · + xir)
m

=
1

x1 . . . xk

k�1X
r=1

(�1)r

2
4 kX

j=1

xj�j

X
1i1<...<irk�1

(xi1 + · · · + xir)
m

3
5 .

(21)

Let Ar be the expression in large brackets in this last line. For each j, �j applied
to the r-fold sum in Ar contains no xj at all. Therefore, if we change the order of
summation, we get

Ar =
X

1i1,...,irk

(xi1 + · · · + xir)
m

kX
j=1

j 62{i1,...,ir}

xj (22)

(note that the summation indices ij range from 1 to k, in contrast to the sums in
(21)). Since x1 + · · ·+xk = 1, the second summation in (22) is 1� (xi1 + · · ·+xir),
and we get with (22) and (21),

kX
j=1

�j(gm) =
�1

x1 . . . xk

k�1X
r=1

(�1)r
X

1i1<...<irk

(xi1 + · · · + xir)
m+1

+
1

x1 . . . xk

k�1X
r=1

(�1)r
X

1i1<...<irk

(xi1 + · · · + xir)
m . (23)

Now we add both sides of (23) for m = 0, 1, . . . , n� 1. Then the sum on the right
telescopes, and the final term (for m = 0) is

k�1X
r=1

(�1)r
X

1i1<...<irk

1 =
k�1X
r=1

(�1)r

✓
k

r

◆
= �1� (�1)k. (24)

Hence we have

n�1X
m=0

kX
j=1

�j(gm) =
�1

x1 . . . xk

� (�1)k

x1 . . . xk

0
@1 +

k�1X
r=1

(�1)k�r
X

1i1<...<irk

(xi1 + · · · + xir)
n

1
A . (25)
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Next, from (20) we get as a result of finite geometric sums,

n�1X
m=0

gm =
1

x1 . . . xk�1

k�1X
r=1

(�1)r
X

1i1<...<irk�1

(xi1 + · · · + xir)n � 1
xi1 + · · · + xir + 1

. (26)

Also, since x1 + · · · + xk = 1, we have

1
x1 . . . xk

=
1

x2 . . . xk
+

1
x1x3 . . . xk

+ · · · + 1
x1 . . . xk�1

=
kX

j=1

�j

✓
1

x1 . . . xk�1

◆
.

By the linearity of the operator �j , this with (26) and (25) gives the following
identity, where we use the notations introduced in (5) and (7):

kX
j=1

�j

✓
Rn(x1, . . . , xk�1)

x1 . . . xk�1

◆
= (�1)k�1 Sn(x1, . . . , xk)

x1 . . . xk
. (27)

As our final step we take the (k � 1)-fold integral of both sides of (27) over �k�1,
and note the crucial fact that by Lemma 3 the integral of each of the k summands
on the left of (27) is the same for each j. We may therefore evaluate it for the case
j = k (corresponding to the identity operator �k), and we finally get

k

Z
�k�1

Rn(x1, . . . , xk�1)
x1 . . . xk�1

dx = (�1)k�1

Z
�k�1

Sn(x1, . . . , xk)
x1 . . . xk

dx

= (�1)n�1 k!
(n� 1)!

s(n, k),

where the last identity comes from Theorem 1. The proof of Theorem 2 is now
complete.

4. Further Remarks

1. In his recent paper [9], Qi derived three distinct integral representations for the
Stirling numbers. However, they are all very di↵erent from our results and involve
higher derivatives and limits.

It should also be mentioned here that easier integrals, related to the polygamma
and other special functions, were obtained independently by Butzer and Hauss [3]
and Adamchik [1] in the course of their work on extending the Stirling numbers
s(n, k) to real or complex parameters. These integrals, however, do not apply to
the case of integers 1  k  n.

2. The harmonic numbers Hn := 1 + 1
2 + · · · + 1

n , which were briefly discussed
in the introduction, have been generalized in several di↵erent ways. In fact, five
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di↵erent generalizations are listed and studied in [5], among them

Hn,r :=
X

1j1<···<jrn

1
j1j2 . . . jr

(n, r � 1), Hn,0 = 1

and
H(n, r) :=

X
j0,...,jr�1

1j0+j1+···+jrn

1
j0j1 . . . jr

(n � 1, r � 0).

We already noted in (9) that the identity

Hn,r = (�1)n�r 1
n!

s(n + 1, r + 1), (28)

was obtained in [5] and [7]; in the same papers it was also shown that

H(n, r) = (�1)n�r+1(r + 1)!s(n + 1, r + 2). (29)

The identities (28) and (29) therefore show that our theorems can also be considered
integral representations for these two related types of generalized harmonic numbers.
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