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EXPANSION FORMULAS FOR SRIVASTAVA POLYNOMIALS IN SERIES
OF THE KONHAUSER BIORTHOGONAL POLYNOMIALS
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Expansion formulas for the polynomials of Srivastava (1972) in series of
Konhauser biorthogonal polynomials are obtained. The corresponding
expansion formulas are also derived for certain classes of special hypergeo-
metric polynomials (including the classical orthogonal polynomials) considered
by Srivastava (1972).

1. INTRODUCTION

Konhauser (1967) introduced the following pair of biorthogonal polynomials
suggested by the Laguerre polynomials L5(x) :
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where x is real, « > —1 and k is any positive integer. The polynomials given by
(1.1) are of degree nin x* and are called Konhauser biorthogonal polynomial set of
the first kind. The second set of polynomials given by (1.2) that are of degreen in x
are called Konhauser biorthogonal polynomial set of the second kind. These
polynomials have been extensively studied by Carlitz (1968), Prabhakar (1970, 1971),

Srivastava (1973), Karande and Thakare (1975), Patil and Thakare (1978), and Srivastava
and Singh (1979).

Srivastava (1972) introduced and studied a polynomial set S:' (x) defined by
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where m is an arbitrary positive integer and A4a.,; are arbitrary constants, real or
complex. If in (J.3) we select [Srivastava 1972, p. 4, eqn. (7)]
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where the a4’s and b's are independent of n, then (1.3) give a class of generalized
hypergeometric polynomials in the form
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which were considered by Srivastava [1972, p. 4, eqn. (8)].

The purpose of this note is to obtain expansions of the polynomials S: (x) in

series of Konhauser biorthogonal polynomial sets.

2. INTEGRALS

Our analysis requires the following integrals the first of which can be readily
evaluated with the help of (1.1).
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where Re (B) > —1l,andn, N =0, 1,2, ....

The integral (2.2) can be derived easily by using (2.1). We also need the following
biorthogonality relation

w
I eexa Z (6 k) Y2 (x; k) dx = Il(l—"—;‘,iiﬁ'l Smn (2.3
0

where 8mn is Kronecker’s delta, and Re (&) > —1.

3. EXPANSIONS

For the Srivastava polynomials S, (x) defined by (1.3), let
o
ABS™ (x) = z AsY® (3 ). (1)

Multiply both sides of (3.1) by e=® x> Z : (x; k). Integrate over interval (0, o=); then
using (2.2) and (2.3), we get
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provided that Re (x + ) > —1, Re (¢) > —1.

Hence (3.1) becomes
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provided that Re (« + 8) > —1,Re (&) > —1.
For k = 1 we shall get expansion formulas in terms of Laguerre polynomials.

By resorting to this method it is not hard to obtain the expansion of the function
(3.1) in terms of the Konhauser biorthogonal polynomial set of the first kind.
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4. PARTICULAR CASES

In view of (1.5) we obtain the following expansion formula for the generalized
hypergeometrﬁ polynomials :
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(B) In fact, using (4.1) with m =3 =1,6 = 0,8, =2+ 1 and x = }(1 — 2),
we get
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where Px”‘ ! (2) are the Jacobi polynomials.

(C) If welet

TA+N+D yio01,2,..

= a0

and m = 1, we get
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