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Abstract
We define the Sheffer group of all Sheffer-type polynomials and
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1 Introduction

Riordan array is a special type of infinite lower-triangular matrix and
the set of all Riordan matrices forms a group called the Riordan group,
which was first defined in 1991 by Shapiro, Getu, Woan, and Woodson
[21]. Some of main results on the Riordan group and its applications to
the combinatorial sums and identities can be found in [16], [22]-[23], and
[26]. In particular, in the work by Sprugnoli (cf. [24] and [25]). In this
paper, we will define an operation on the set of all Sheffer polynomial
sequences so it forms a group called as the Sheffer group, which gives
a general pattern consisting of various special Sheffer-type polynomial
sequences as elements. We will show that every element of the group
and its inverse are the potential polynomials of a pair of generalized
Stirling numbers (GSN’s) (see 3.7), and the isomorphism between the
Sheffer group and the Riordan group (see 2.2). Hence, the established
results on the Sheffer group connect the Riordan group, GSN pairs, and
Riordan arrays, which can lead a comprehensive study on all of the
topics. For instance, the Sheffer group and the related GSN-pairs and
their inverse relations can be used to derive combinatorial identities as
well as algebraic identities containing the Sheffer-type polynomials.

As what mentioned in [16] (see also in [1]), “The concept of repre-
senting columns of infinite matrices by formal power series is not new
and goes back to Schur’s paper on Faber polynomials in 1945 (cf. [21]).”
A formal power series in auxiliary variable t of the form

b(t) = b0 + b1t + b2t
2 + · · · =

∑
n≥0

bnt
n

is called an ordinary generating function of the sequence {bn}.

Definition 1.1 Let A(t) and g(t) be any given formal power series over
the real number field R or complex number field C with A(0) = 1, g(0) =
0 and g′(0) 6= 0. We call the infinite matrix D = [dn,k]n,k≥0 with real
entries or complex entries a generalized Riordan matrix (The originally
defined Riordan matrices need g′(0) = 1) if its kth column satisfies∑

n≥0

dn,kt
n = A(t)(g(t))k; (1.1)

that is,
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dn,k = [tn]A(t)(g(t))k.

The Riordan matrix is denoted by [dn,k] or (A(t), f(t)).

Example 1.1 Riordan matrices (1, t) and (1/(1− t), t/(1− t)) are the
identity matrix and Pascal’s triangle, respectively.

If (A(t), g(t) and (B(t), f(t)) are Riordan matrices, then

(A(t), g(t)) ∗ (B(t), f(t)) := (A(t)B(g(t)), f(g(t))) (1.2)

is called the matrix multiplication, i.e., for (A(t), g(t)) = [dnk]n≥k≥0 and
(B(t), f(t)) = [cnk]n≥k≥0 we have

(A(t), g(t)) ∗ (B(t), f(t)) := (A(t)B(g(t)).f(g(t))) = [dnk][cnk], (1.3)

The set of all Riordan matrices is a group under the matrix multiplica-
tion (cf. [23-25]).

Definition 1.2 Let A(t) and g(t) be defined as 1.1. Then the polyno-
mials pn(x) (n = 0, 1, 2, · · · ) defined by the generating function (GF )

A(t)exg(t) =
∑
n≥0

pn(x)tn (1.4)

are called Sheffer-type polynomials with p0(x) = 1. Accordingly, pn(D)
with D ≡ d/dt is called Sheffer-type differential operator of degree n
associated with A(t) and g(t). In particular, p0(D) ≡ I is the identity
operator.

The set of all Sheffer-type polynomial sequences {pn(x) = [tn]A(t)exg(t)}
with an operation, “umbral composition” (cf. [18] and [19]), shown later
forms a group called the Sheffer group. We will also show that the Ri-
ordan group and the Sheffer group are isomorphic.

In Roman’s book [18], {Sn = n!pn(x)} is called Sheffer sequence
(also cf. [19]-[20]). Certain recurrence relation of pn(x) can be found
in Hsu-Shiue’s paper [11] . There are two special kinds of weighted
Stirling numbers defined by Carlitz [4] (see also [2, 8])). We now give
the following definition of the generalized Stirling numbers.
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Definition 1.3 Let A(t) and g(t) be defined as 1.1, and let

1

k!
A(t)(g(t))k =

∑
n≥k

σ(n, k)
tn

n!
. (1.5)

Then σ(n, k) is called the generalized Stirling number with respect to
A(t) and g(t).

The special case of A(t) ≡ 1 was studied in [10].
As having been commonly employed in the Calculus of Finite Differ-

ences as well as in Combinatorial Analysis, the operators E, ∆, D are
defined by the following relations.

Ef(t) = f(t + 1), ∆f(t) = f(t + 1)− f(t), Df(t) =
d

dt
f(t).

Powers of these operators are defined in the usual way. In particular,
for any real numbers x, one may define Exf(t) = f(t + x). Also, the
number 1 may be used as an identity operator, viz. 1f(t) ≡ f(t). It is
easy to verify that these operators satisfy the formal relations (cf. [13])

E = 1 + ∆ = eD, ∆ = E − 1 = eD − 1, D = log(1 + ∆).

From Definitions 1.1, 1.2 and 1.3 we have

pn(x) = [tn]A(t)exg(t)

= [tn]
∑
k≥0

1

k!
A(t)(g(t))kxk

=
n∑

k=0

dn,k
xk

k!
=

1

n!

n∑
k=0

σ(n, k)xk, (1.6)

where we use dn,k = σ(n, k) = 0 for all k > n. Therefore, with a
constant multiple, 1/(k!), of the kth column, the rows of the Rior-
dan array present the coefficients of the Sheffer-type polynomial se-
quences. As an example, the rows of the Riordan array (1/(1− t), t/(t−
1)) = [(−1)k

(
n
k

)
]0≤k≤n give the coefficients of the Laguerre polynomial

sequences {pn(x) =
∑n

k=0(−1)k
(

n
k

)
xk/k!}0≤n.
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This paper will be managed as follows. We shall define the Sheffer
group and present its properties in Section 2. Then the Riordan ar-
ray pairs and the generalized Stirling pairs will be shown in Section 3.
Finally, we shall discuss their higher dimensional extension in Section
4.

2 Sheffer group

Let {pn(x) =
∑n

k=0 pn,kx
k} and {qn(x) =

∑n
k=0 qn,kx

k} be two Sheffer-
type polynomial sequences. Then we define an operation, #, of {pn(x)}
and {qn(x)}, called the (polynomial) sequence multiplication (or the
“umbral composition” see [18,19]), as

{pn(x)}#{qn(x)} := {rn(x) =
n∑

k=0

rn,kx
k}, (2.1)

where

rn,k =
n∑

`=k

`!pn`q`k, n ≥ ` ≥ k. (2.2)

It is clear that the defined operation is not commutative. Sheffer group
under the “umbral composition” was defined with the n!-umbral calculus
in Roman [18]. We now give a formulation with the matrix form, or the
1-umbral calculus (cf. Sprugnoli [24]).

Theorem 2.1 The set of all Sheffer-type polynomial sequences defined
by Definition (1.2) with the operation # defined by (2.2) forms a group
called the Sheffer group and denoted by ({pn(x)}, #). The identity
of the group is

{
xn

n!

}
. The inverse of {pn(x)} in the group, denoted

by {pn(x)}(−1), is the Sheffer-type polynomial sequence generated by
1/A(ḡ(t))exp(xḡ(t)), where ḡ is the compositional inverse of g; i.e.,
(g ◦ ḡ)(t) = (ḡ ◦ g)(t) = t.

Proof. We now give a sketch of the proof. Some obvious details are
omitted. Let {pn(x) =

∑n
k=0 pn,kx

k}, {qn(x) =
∑n

k=0 qn,kx
k}, and

{rn(x) =
∑n

k=0 rn,kx
k} be three Sheffer-type polynomial sequences. It

can also be found the operation of the sequence multiplication satisfies
the associative law, namely,
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{pn(x)}# ({qn(x)}#{rn(x)}) =

{
n∑

k=0

(
n∑

u=k

n∑
`=u

`!u!pn,`q`,uru,k

)
xk

}
= ({pn(x)}#{qn(x)}) #{rn(x)}.

It is clear that {pn(x)}#{xn/n!} = {xn/n!}#{pn(x)} = {pn(x)}. Hence,
the set of all Sheffer-type polynomial sequences forms a group.

From (1.6) we can establish the mapping θ : [dn,k] 7→ {pn(x)} or
θ : (A(t), g(t)) 7→ {pn(x)} as follows.

θ([dn,k]n≥k≥0) :=
n∑

j=0

dn,jx
j/j! = [dn,k]n≥k≥0X, (2.3)

for fixed n, where X = (1, x, x2/2!, . . .)T , or equivalently,

θ((A(t), g(t)) := [tn]A(t)exg(t) (2.4)

It is clear that (1, t), the identity Riordan array, maps to the identity
Sheffer-type polynomial sequence {pn(x) ≡ xn/(n!)}n≥0. From the defi-
nitions 1.1 we immediately know that

pn(x) = [tn]A(t)exg(t) if and only if dn,k = [tn ]A(t) (g(t))k . (2.5)

Hence, the mapping θ is one-to-one and onto. From the mapping defined
by (2.3), we understand that the operation # defined in the Sheffer
group is equivalent to the matrix multiplication of two Riordan matrices
in the Riordan group. In [15], the connection between usual matrix
multiplication and Riordan matrix multiplication is given. Hence, a
connection between usual matrix multiplication and the Sheffer-type
sequence multiplication can be established similarly. Using symbolic
calculus with operators D and E, we find via (2.4) or Definition 1.2

A(t)f(g(t)) = A(t)Eg(t)f(0) = A(t)eg(t)Df(0) =
∑
k≥0

tkpk(D)f(0).

(2.6)
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This is the desired expression given in [7] to expand the composite func-
tion A(t)f(g(t)). Hence, we have pn(D)f(0) = [tn]A(t)f(g(t)), which,
from (2.5) and the multiplication in the Riordan group, is equivalent to

n∑
k=0

dn,kfk = [tn]A(t)f(g(t)), (2.7)

where (f0, f1, . . .) has GF f(t). The last expression was used to find
the Riordan subgroup by Shapiro recently (cf. [22]). (2.7) can also be
considered as a linear transform to f(t) or (f0, f1, . . .) represented by
Riordan matrix (A(t), g(t)). Thus, (2.3) or (2.4) is the linear transform
of ext. With the aid of (2.7), we may transfer a property of the Riordan
group to the Sheffer group.
Example 2.1 We now consider

(
1

1−t
, t

t−1

)
, an involution in the Riordan

group (cf. [3]), that possesses the matrix form

[dn,k]n≥k≥0 =



1
1 −1
1 −2 1
1 −3 3 −1
1 −4 6 −4 1

. . . . . .
. . .


. (2.8)

It is easy to find that

dn,k = (−1)k

(
n

k

)
.

Consequently,

pn(x) = θ[dn,k] =
n∑

k=0

(−1)k

(
n

k

)
xk

k!
, (2.9)

which is the Laguerre polynomial of order zero. Conversely, for the given
polynomials (2.9), we obtain the matrix (2.8), in which entries satisfy

−dn,k−1 + dn,k = dn+1,k.

Hence, its generating functions satisfy

−tA(t)(g(t))k−1 + tA(t)(g(t))k = A(t)(g(t))k.
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It follows that g(t) = t/(t − 1). From the the first column of matrix
(2.8) we also obtain A(t) = 1/(1− t).

If the sequences {pn(x)} and {qn(x)} are mapped from the Riordan
arrays [dn,k] and [cn,k], respectively, then from the defined operation,
(2.2), of the polynomial sequence multiplication, the coefficients of the
polynomials pn(x) and qn(x) are respectively pn,k = dn,k/(k!) and qn,k =
cn,k/(k!), and hence, we have

[k!rn,k]n≥k≥0 = [dn,k][cn,k],

where rn,k are obtained in (2.2). Consequently, the Sheffer-type poly-
nomial sequence {rn(x)} is mapped from the Riordan array

[en,k] := [dn,k][cn,k],

where en,k =
∑n

`=0 dn,`c`,k (n ≥ ` ≥ k).

Similarly, {L(p−1)
n (x)}−1 = {L(p−1)

n (x)} because of(
1

(1− t)p
,

t

t− 1

)−1

=

(
1

(1− t)p
,

t

t− 1

)
.

Theorem 2.2 The Sheffer group and the Riordan group are isomor-
phic.

Proof. Let {pn(x) =
∑n

k=0 pn,kx
k} and {qn(x) =

∑n
k=0 qn,kx

k} be two
Sheffer-type polynomial sequences mapped by θ from (A(t), g(t)) and
(B(t), f(t)), respectively, i.e., θ(A(t), g(t)) = {pn(x)} and θ(B(t), f(t)) =
{qn(x)} we have

{pn(x)}#{qn(x)} = θ ((A(t), g(t))) #θ ((B(t), f(t))

= θ ((A(t), g(t)) ∗ (B(t), f(t)) . (2.10)

Since mapping θ : [dn,k] 7→ {pn(x)} or equivalently, θ : (A(t), g(t)) 7→
{pn(x)} is one-to-one and onto and satisfies (2.10), we obtain the theo-
rem.

It is clear that the identity Sheffer polynomial sequence, {xn/n!},
is the mapping from the Riordan array (1, t). Hence, the inverse of
a Sheffer-type polynomial sequence {pn(x)}, denoted by {pn(x)}−1, is
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defined as θ (1/(A(ḡ(t))), ḡ(t)), where {pn(x)} = θ (A(t), g(t)) and ḡ(t)
is the compositional inverse of g(t), i.e., g(ḡ(t)) = ḡ(g(t)) = t.
Example 2.2 We now consider an exponential Riordan array ( t

et−1
, t).

Since θ
(

t
et−1

, t
)

=
{

1
n!

Bn(x)
}

and
(

t
et−1

, t
)−1

=
(

et−1
t

, t
)
, we have

{
1

n!
Bn(x)

}−1

=

(
et − 1

t
, t

)
=

{
1

n!

n∑
k=0

(
n

k

)
xn−k

k + 1

}
.

Similarly, {L(p−1)
n (x)}−1 = {L(p−1)

n (x)} because of(
1

(1− t)p
,

t

t− 1

)−1

=

(
1

(1− t)p
,

t

t− 1

)
.

Example 2.3 We now consider the sequence multiplication of the (p−
1)st order Laguerre polynomial sequences generated by involution ( 1

(1−t)p , t
t−1

)

in the Riordan group (cf. [3]),

{Lp−1
n (x)}#{Lp−1

n (x)} =

(
1

(1− t)p
,

t

t− 1

)
∗
(

1

(1− t)p
,

t

t− 1

)
= (1, t),

or equivalently

{Lp−1
n (x)}#{Lp−1

n (x)} =

{
xn

n!

}
,

which implies that {Lp−1
n (x)} is the inverse of itself and the following

identity

n∑
`=0

(−1)k+` (n + p− 1)!

(p + k − 1)!(n− `)!(`− k)!
= δn,k, (2.11)

where δn,k is the Kronecker symbol, which takes value 1 when n = k
and zero otherwise.
Example 2.4 Since the multiplication of two exponential Riordan ar-
rays (

t

et − 1
, t

)
∗
(

2

et + 1
, t

)
=

(
2t

e2t − 1
, t

)
,
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we can present the result of the sequence operation of the Bernoulli
polynomial sequence and the Euler polynomial sequence as

{
1

n!
Bn(x)

}
#

{
1

n!
En(x)

}
=

{
1

n!
Bn

(x

2

)}
.

Remark 2.1 Let pn(x) = a0 + a1x+ · · · anx
n, ai ∈ R, n = 0, 1, . . ., with

the corresponding lower triangular array

A =



d0,0

d1,0 d1,1

d2,0 d2,1 d2,2
...

...
...

. . .

dn,0 dn,1 dn,2 . . . dn,n
...

...
...

...
...


.

Then the Sheffer polynomial sequence {pn(x)} can be regarded as the
matrix transformation θ defined by

θ : A 7→ A



1
x
x2

2!
...
xn

n!
...


. (2.12)

By using (2.12), we may find subgroups of the Sheffer group if the
corresponding subgroups of the Riordan group can be found. In addi-
tion, the above consideration can be extended to the higher dimensional
setting.

Furthermore, the operation defined by (2.1)-(2.2), of θAX = {pn(x)}
and θBX = {qn(x)}, X =

[
1, x, x2

2!
, · · · , xn

n!
, . . .

]T
, where {pn(x)} and

{qn(x)} are two sequences in the Sheffer group with corresponding Ri-
ordan matrices A and B, respectively, can be written as



Sheffer group and Riordan group 11

{pn(x)}#{qn(x)} := (θAB)



1
x
x2

2!
...
xn

n!
...


= (AB)



1
x
x2

2!
...
xn

n!
...


,

a regular matrix multiplication of A and B. Based on this point of view,
({pn(x)}, #, +) can be considered as a ring, where + is a used addition
of matrices.

Definition 2.3 Let {pn(x)} and {qn(x)} be two Sheffer polynomial se-
quences. We say {pn(x)} and {qn(x)} are combinatorial orthogonal if
they satisfy

{pn(x)}#{qn(x)} = {qn(x)}#{pn(x)} =

{
xn

n!

}
, (2.13)

and we denote {pn(x)} ⊥com {qn(x)}.

Example 2.5 Laguerre polynomial sequence is combinatorial orthog-
onal, i.e., {L(p−1)

n (x)} ⊥com {L(p−1)
n (x)}. Although Laguerre polynomi-

als are also analytic orthogonal, i.e., orthogonal in an inner product
sense, it is not necessary that the analytic orthogonality implies the
combinatorial orthogonality or verse vise. For instance, θ(1/(1− t), t) =
{1, 1 + x, 1 + x + x2/2, . . .} and θ(1− t, t) = {1,−1 + x,−x + x2/2, . . .}
are combinatoric orthogonal, but not analytic orthogonal.

At the end of this section, we give a list of some Sheffer polynomials
for the interested readers to construct the inverses and the resulting
polynomials under the sequence multiplication. In the table, we can see
many array components are exponential Riordan array components.



12 T. X. He, L. C. Hsu, and P. J.-S. Shiue

A(t) g(t) pn(x) Name of polynomials

t/(et − 1) t 1
n!

Bn(x) Bernoulli

2/(et + 1) t 1
n!

En(x) Euler

et log(1 + t) (PC)n(x) Poisson-Charlier

e−αt(α 6= 0) log(1 + t) Ĉ
(α)
n (x) Charlier

1 log(1 + t) / (1− t) (ML)n(x) Mittag-Leffler

(1− t)−1 log(1 + t) / (1− t) pn(x) Pidduck

(1− t)(−p)(p > 0) t/(t− 1) L
(p−1)
n (x) Laguerre

eλt(λ 6= 0) 1 −et (Tos)
(λ)
n (x) Toscano

1 et − 1 τn(x) Touchard

1/(1 + t) t/(t− 1) An(x) Angelescu

(1− t)/(1 + t)2 t/(t− 1) (De)n(x) Denisyuk

(1− t)−p(p > 0) et − 1 T
(p)
n (x) Weighted-Touchard

3 Riordan array pairs and generalized Stir-

ling number pairs

We first define the Riordan pairs.

Definition 3.1 Let A(t) and g(t) be given as in Definition 1.1. Then
we have a Riordan pair {dn,k, d̄n,k} as defined by{

A(t)(g(t))k =
∑∞

n=k dn,kt
n,

A(ḡ(t))−1(ḡ(t))k =
∑∞

n=k d̄n,kt
n,

(3.1)

where ḡ ≡ g〈−1〉 is the compositional inverse of g with ḡ(0) = 0, [t]ḡ(t) 6=
0, and d0,0 = d̄0,0 = 1.

We also need the following definition of generalized Stirling number
pairs (cf. [10] for the case of A ≡ 1, and a special example has been
also studied in [24]))
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Definition 3.2 Let A(t) and g(t) be given as in Definition 1.1. Then
we have a generalized Stirling number pair {σ(n, k), σ̄(n, k)} as defined
by {

1
k!

A(t)(g(t))k =
∑∞

n=k σ(n, k) tn

n!
,

1
k!

A(ḡ(t))−1(ḡ(t))k =
∑∞

n=k σ̄(n, k) tn

n!
,

(3.2)

where ḡ ≡ g〈−1〉 is the compositional inverse of g with ḡ(0) = 0, [t]ḡ(t) 6=
0, and σ(0, 0) = σ̄(0, 0) = 1.

Remark 3.1 A closed connection between (3.1) and (3.2) is apparent.
A special case of pair (3.2) for A(t) = 1 was established in [9], which
were later applied to derive some combinatorial identities (cf. [26]).
Remark 3.2 If in (3.2) let A(t) and g(t) be defined by

A(t) = (1 + αt)γ/α, g(t) =
(
(1 + αt)β/α − 1

)
/β,

where α, β, and γ are real or complex numbers with αβ 6= 0, then

A(ḡ(t)) = (1 + βt)γ/β, ḡ(t) =
(
(1 + βt)α/β − 1

)
/α,

so that σ(n, k) = S(n, k; α, β, γ) and σ̄(n, k) = S(n, k; β, α,−γ) just
form a pair of GSN’s with three parameters. Note that such a class
of GSN-pairs includes various useful special number-pairs. A detailed
investigation of GSNs was given in [12] in 1998. For a very recent
development relating to this subject, see [17].

Note that (3.1)-(3.2) imply the orghogonality relations∑
k≤n≤m

dm,nd̄n,k =
∑

k≤n≤m

d̄m,ndn,k = δmk

and ∑
k≤n≤m

σ(m, n)σ̄(n, k) =
∑

k≤n≤m

σ̄(m,n)σ(n, k) = δmk

with δmk denoting the Kronecker delta, and it follows that there hold
the inverse relations

fn

n!
=

n∑
k=0

dn,k
gk

k!
⇐⇒ gn

n!
=

n∑
k=0

d̄n,k
fk

k!
. (3.3)

and



14 T. X. He, L. C. Hsu, and P. J.-S. Shiue

fn =
n∑

k=0

σ(n, k)gk ⇐⇒ gn =
n∑

k=0

σ̄(n, k)fk. (3.4)

For an element {pn(x)} in the Sheffer group ({pn(x)}, #), it is easy
to write its inverse {p̄n(x)} = {pn(x)}−1 as

p̄n(x) =
n∑

k=0

d̄n,k
xk

k!
=

1

n!

n∑
k=0

σ̄(n, k)xk,

which are generated by

A(ḡ(t))−1exḡ(t) =
∑
n≥0

p̄n(x)tn,

with p̄0(x) = 1.
We shall give an application of the inverse formulas (3.3)-(3.4) based

on the following result.

Theorem 3.3 The Sheffe-type operator pn(D) has an expression of the
form

pn(D) =
1

n!

n∑
k=0

σ(n, k)Dk, (3.5)

where σ(n, k) (associated with A(t) and g(t)) may be written in the form

σ(n, k) =
n∑

r=k

(n

r

)
αn−rBrk(a1, a2, · · · ) (3.6)

provided that A(t) =
∑

m≥0 αmtm/m! and g(t) =
∑

m≥1 amtm/m! with
α0 = 1, a1 6= 0.

Proof. Note that (3.6) follows from (1.6). Moreover, recall a known
expression for potential polynomials (cf. e.g., Comtet [5], § 3.5, Theorem
B, etc.). We have

1

k!
(g(t))k =

∞∑
r≥k

tr

r!
Brk(a1, a2, · · · ).
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Substituting this into (3.2) and comparing the resulting expression with
the RHS of (3.2), we see that (3.6) is true.

Corollary 3.4 Formula (2.5) may be rewritten in the form

A(t)f(g(t)) =
∞∑

n=0

tn

n!
(

n∑
k=0

σ(n, k)f (k)(0))

=
∞∑

n=0

tn(
n∑

k=0

dn,k

k!
f (k)(0)), (3.7)

where σ(n, k)’s are defined by (3.1) and given by (3.6).

Corollary 3.5 For the case A(t) = 1, (3.6) gives

σ(n, k) = Bn,k(a1, a2, · · · )

and

dn,k =
k!

n!
Bn,k(a1, a2, · · · ),

where the incomplete Bell polynomial Bn,k(a1, a2, · · · ) has an explicit
expression (cf. Comtet [5])

Bn,k(a1, a2, · · · ) =
∑
(c)

n!

c1!c2! · · ·

(a1

1!

)
c1

(a2

2!

)
c2 · · · ,

where the summation extends over all integers c1, c2, · · · ≥ 0, such that
c1 + 2c2 + 3c3 + · · · = n, c1 + c2 + · · · = k.

Corollary 3.6 The generalized exponential polynomials related to the
generalized Stirling numbers σ(n, k) and σ̄(n, k) are given respectively
by the following

n!pn(x) =
n∑

k=0

σ(n, k)xk (3.8)

and
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n!p̄n(x) =
n∑

k=0

σ̄(n, k)xk, (3.9)

where pn(x) and p̄n(x) are Sheffer-type polynomials associated with {A(t),
g(t)} and {A(ḡ(t))−1, ḡ(t)}, respectively

Applying the reciprocal relations (3.4) to (3.8)-(3.9) we get

Corollary 3.7 There hold the relations

n∑
k=0

σ̄(n, k)k!pk(x) = xn (3.10)

and

n∑
k=0

σ(n, k)k!p̄k(x) = xn. (3.11)

These may be used as recurrence relations for pn(x) and p∗n(x) respec-
tively.

(3.10) and (3.11) are equivalently{ ∑n
k=0 d̄n,kpk(x) = xn

n!
,∑n

k=0 dn,kp̄k(x) = xn

n!
.

(3.12)

Evidently (3.4) and (3.7) imply a higher derivative formula for A(t)f(g(t))
at t = 0, namely

(
dn

dtn
) (A(t)f(g(t)))|t=0 =

n∑
k=0

σ(n, k)f (k)(0) = n!pn(D)f(0).

Certainly, this will reduce to the Faa di Bruno formula when A(t) = 1.
Example 3.1 As a simple instance take {σ(n, k), σ̄(n, k)} to be the
ordinary Stirling numbers {s(n, k), s̄(n, k)} of the 1st and 2nd kinds.
Then (3.9) yields the Bell number W (n) at x = 1, namely,

W (n) = n!p̄n(1) =
n∑

k=0

s(n, k).
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Consequently, (3.11) gives the simple identity

n∑
k=0

s(n, k)W (k) = 1.

More examples could be constructed using Sheffer polynomials listed in
the table at the end of Section 2.

4 Higher dimensional extension

We now extend the Riordan group to the higher dimensional setting. In
what follows we shall adopt the multi-index notational system. Denote

t̂ ≡ (t1, · · · , tr), x̂ ≡ (x1, · · · , xr),

t̂ + x̂ ≡ (t1 + x1, · · · , tr + xr),

0̂ ≡ (0, · · · , 0), ĝ(t) ≡ (g1(t1), · · · , gr(tr)),

x̂ · ĝ(t) ≡
r∑

i=1

xigi(ti).

Also, Ei means the shift operator acting on ti, namely for 1 ≤ i ≤ r,

Eif(· · · , ti, · · · ) = f(· · · , ti + 1, . . . ),

Exi
i f(· · · , ti, · · · ) = f(· · · , ti + xi, · · · ).

Formally we may denote Ei = eDi = exp (∂/∂ti). Moreover, we write
tλ ≡ tλ1

1 · · · tλr
r with λ ≡ λ̂ ≡ (λ1, · · · , λr), r being positive integer. Also,

λ ≥ 0̂ means λi ≥ 0 (i = 1, · · · , r), and λ ≥ µ means λi ≥ µi for all
i = 1, · · · , r.

We first give an analog of Definition 1.2

Definition 4.1 Let t̂ = (t1, t2, . . . , tr), A(t̂), ĝ(t) = (g1(t1), g2(t2), · · · , gr(tr))
and f(t̂) be any given formal power series over the complex number field
Cr with A(0̂) = 1, gi(0) = 0 and g′i(0) 6= 0 (i = 1, 2, · · · , r). Then the
polynomials pn̂(x̂) (n̂ ∈ Nr ∪ 0̂) as defined by the GF

A(t̂)ex̂·dg(t) =
∑
n̂≥0̂

pn̂(x̂)tn̂ (4.1)
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are called Sheffer-type polynomials with p0̂(x̂) = 1. Accordingly, pn̂(D̂)
with D̂ ≡ (D1, D2 · · · , Dr) is called Sheffer-type differential operator of

degree n̂ associated with A(t̂) and ĝ(t). In particular, p0̂(D̂) ≡ I is the
identity operator.

For formal power series f(t̂), the coefficient of tλ = (tλ1
1 , tλ2

2 , · · · , tλr
r )

is usually denoted by [tλ]f(t̂). Accordingly, (4.1) is equivalent to the

expression pλ(x̂) = [tλ]A(t̂)ex̂·dg(t). Also, we shall frequently use the
notation

pλ(D̂)f(0̂) = [pλ(D̂)f(t̂)]t̂=0̂ (4.2)

and λ! ≡ λ̂! = λ1!λ2! · · ·λr!.

Definition 4.2 Let A(t̂) and ĝ(t) be any formal power series defined
on Cr, with A(0̂) = 1, gi(0) = 0 and g′i(0) 6= 0 (i = 1, 2, · · · , r). Then
we have a multivariate weighted Stirling-type pair {σ(n̂, k̂), σ∗(n̂, k̂)} as
defined by

1

k̂!
A(t̂)Πr

i=1 (gi(ti))
ki =

∑
n̂≥k̂

σ(n̂, k̂)
tn̂

n̂!
(4.3)

1

k̂!
A(ĝ∗(t))

−1

Πr
i=1 (g∗i (ti))

ki =
∑
n̂≥k̂

σ∗(n̂, k̂)
tn̂

n̂!
, (4.4)

where ĝ∗(t) = (g∗1(t1), g
∗
2(t2), · · · , g∗r(tr)), g∗i ≡ gi

〈−1〉 is the composi-
tional inverse of gi (i = 1, 2, · · · , r) with g∗i (0) = 0, [ti]g

∗
i (ti) 6= 0, and

σ(0̂, 0̂) = σ∗(0̂, 0̂) = 1. We call σ(n̂, k̂) the dual of σ∗(n̂, k̂) and verse
vise. We will also call

dn̂,k̂ :=
k̂

n̂
σ(n̂, k̂)

d∗
n̂,k̂

:=
k̂

n̂
σ∗(n̂, k̂)

the multivariate Riordan arrays and denote them by
(
A(t̂), ĝ(t)

)
and(

1/A(ĝ∗(t)), ĝ∗(t)
)
, respectively.
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Example 4.1 As an example, considering A(t̂) = 1 and ĝ(t) = t̂, we
obtain the pλ(x̂) defined by (4.1), namely,

pλ(x̂) =
xλ

λ!
.

Thus the multivariate weighted Stirling-type pair {σ(n̂, k̂), σ∗(n̂, k̂)} de-
fined as (4.3)-(4.4) is (σ(n̂, k̂), σ∗(n̂, k̂)), where

σ(n̂, k̂) = σ∗(n̂, k̂) = δn̂,k̂.

The corresponding multivariate Riordan array pair is (dn̂,k̂, d
∗
n̂,k̂

), where

dn̂,k̂ = d∗
n̂,k̂

=
k̂

n̂
δn̂,k̂.

A similar argument as (2.3) and (2.4) can be established as follows.

Theorem 4.3 The equations (4.3) and (4.4) imply the biorthogonality
relations

∑
m̂≥n̂≥k̂

σ(m̂, n̂)σ∗(n̂, k̂) =
∑

m̂≥n̂≥k̂

σ∗(m̂, n̂)σ(n̂, k̂) = δm̂k̂ (4.5)

with δm̂k̂ denoting the Kronecker delta, i.e., δm̂k̂ = 1 if m̂ = k̂ and 0
otherwise, and it follows that there hold the inverse relations

fn̂ =
∑

n̂≤k̂≤0̂

σ(n̂, k̂)gk̂ ⇐⇒ gn̂ =
∑

n̂≤k̂≤0̂

σ∗(n̂, k̂)fk̂. (4.6)

Proof. Transforming ti by g∗i (ti) in (4.3) and multiplying A
(
ĝ∗(t)

)−1

(k̂!)

on the both sides of the resulting equation yields

tk̂ =
∑
n̂≥k̂

σ(n̂, k̂)
k̂!

n̂!
A(ĝ∗(t))

−1

Πr
i=1 (g∗i (ti))

ni . (4.7)

By substituting (4.4) into the above equation, we obtain
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tk̂ =
∑
n̂≥k̂

σ(n̂, k̂)
∑
m̂≥n̂

σ∗(m̂, n̂)
k̂!

m̂!
tm̂

=
∑
m̂≥k̂

k̂!

m̂!
tm̂

∑
m̂≥n̂≥k̂

σ∗(m̂, n̂)σ(n̂, k̂).

Equating the coefficients of the terms tm̂ on the leftmost side and the
rightmost side of the above equation leads (4.5) and (4.6). This com-
pletes the proof.

Remark 4.1 [σ(m̂, n̂)] and [σ∗(n̂, k̂)] are a pair of inverse r-dimensional
matrices, which may be useful in the higher dimensional matrix theory.

From (4.5), we can see that the 2r dimensional infinite matrices
σ(n̂, k̂) and σ∗(n̂, k̂) are invertible for each other, i.e., their product is

the identity matrix
[
δn̂,k̂

]
n̂≥k̂≥0̂

.

By introducing group multiplication

(
A(t̂), ĝ(t)

)
∗
(
B(t̂), ĥ(t)

)
=
(
A(t̂)B(ĝ(t)), ĥ(g(t))

)
, (4.8)

where ĥ(g(t)) = (h1(g1(t1)), · · · , hr(gr(tr))), from Theorem 4.3, we im-

mediately see that the inverse of
(
A(t̂), ĝ(t)

)
is
(
1/A(̂̄g(t)), ̂̄g(t)

)
be-

cause their multiplication result is the identity I = (1, t̂). Hence, similar
to [23], we obtain the following corollary.

Corollary 4.4 Let A(t̂) and ĝ(t) be any formal power series defined
on Cr, with A(0̂) = 1, gi(0) = 0 and g′i(0) 6= 0 (i = 1, 2, · · · , r). Then

with respect to the multiplication defined by (4.8), {
(
A(t̂), ĝ(t)

)
} forms a

group with the identity I = (1, t̂) and for any element
(
A(t̂), ĝ(t)

)
in the

group, its inverse is
(
1/A(ĝ∗(t)), ĝ∗(t)

)
, where ĝ∗(t) = (g∗1(t1), g

∗
2(t2),

· · · , g∗r(tr)), g∗i ≡ gi
〈−1〉 is the compositional inverse of gi (i = 1, 2, · · · ,

r) with g∗i (0) = 0, [ti]g
∗
i (0) 6= 0.
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Proof. This proof is an analog of the proof on the one variable Riordan
group (cf. [23]). Indeed, from (4.8) we have(

A(t̂), ĝ(t)
)
∗ I =

(
A(t̂), ĝ(t)

)
,

((
A(t̂), ĝ(t)

)
∗
(
B(t̂), ĥ(t)

))
∗
(
C(t̂), f̂(t)

)
=

(
A(t̂)B

(
ĝ(t)

)
C
(
ĥ(g(t))

)
, ̂f(h(g(t)))

)
=

(
A(t̂), ĝ(t)

)
∗
((

B(t̂), ĥ(t)
)
∗
(
C(t̂), f̂(t)

))
and

(
A(t̂), ĝ(t)

)
∗

 1

A
(
ĝ∗(t)

) , ĝ∗(t)


=

A(t̂)
1

A
(

̂g∗(g(t))
) , ̂g∗(g(t))


= (1, t̂) = I.

This completes the proof of the corollary.

From Definition 4.1, we have

pλ(x̂) = [tλ]A(t̂)ex̂·dg(t)

= [tλ]
∑
k̂≥0̂

1

k̂!
A(t̂)Πr

i=1 (gi(ti))
λi xλi

i

=
∑

λ≥k≥0̂

dλ,k̂

xλ

k̂!
.

Therefore, we establish a one-to-one and onto mapping θr from [dn̂,k̂]

to pn̂(x̂), where θ1 ≡ θ shown as in (2.9). By defining the operation,
denoted as #, to two higher dimensional Sheffer type polynomial se-
quences, {pn̂(x̂) =

∑
n̂≥λ≥0̂ pn̂,λx

λ} and {qn̂(x̂) =
∑

n̂≥λ≥0̂ qn̂,λx
λ}, as
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follows, the set {{pn̂}, #} forms a group, called the higher dimensional
Sheffer group.

{pn̂}#{qn̂} = {
∑

n̂≥λ≥0̂

rn̂,λx
λ},

where

rn̂,λ =
∑

n̂≥ˆ̀≥λ

ˆ̀!pn̂,ˆ̀qˆ̀,λ.

Similar to Theorem 2.2, we can establish the following result.

Theorem 4.5 The set {{pn̂}, #} with the operation # is a group, called
the higher dimensional Sheffer group that is isomorphic to the higher
dimensional Riordan group defined in Corollary 4.4.

Example 4.2 As an example of (4.1), we set A(t̂) = 1 and exp(x̂·ĝ(t)) =
exp(x1(e

t1 − 1) + x2(e
t2 − 1) + · · ·+ xr(e

tr − 1)) in (4.1) and obtain

exp(x̂ · ĝ(t)) =
∑
λ≥0̂

τ̂λ(x̂)tλ, (4.9)

where

τ̂λ(x̂) = Πr
j=1τλj

(xj)

and τu(t) is the Touchard polynomial of degree u. Hence, we may call
τ̂λ(x̂) the higher dimensional Touchard polynomial of order λ.

Example 4.3 Sheffer-type expansion (4.1) also includes the following
two special cases shown as in [14]. Let A(t̂) = 2m/(exp

∑r
i=1 ti+1)m and

exp
(
x̂ · ĝ(t)

)
= exp (

∑r
i=1 xiti). Then the corresponding Sheffer-type

expansion of (4.1) shown as in [14] has the form

A(t̂)exp
(
x̂ · ĝ(t)

)
=
∑
λ≥0̂

E
(m)
λ (x̂)

λ!
tλ,

where E
(m)
λ (x̂) (λ ≥ 0̂) is defined as the mth order r-variable Euler’s

polynomial in [14].
Similarly, substituting A(t̂) = (

∑r
i=1 ti)

m
/(exp

∑r
i=1 ti − 1)m and

exp
(
x̂ · ĝ(t)

)
= exp (

∑r
i=1 xiti) into (4.1) yields
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A(t̂)exp
(
x̂ · ĝ(t)

)
=
∑
λ≥0̂

B
(m)
λ (x̂)

λ!
tλ,

where B
(m)
λ (x̂) (λ ≥ 0̂) is called in [14] the mth order r-variable Bernoulli

polynomial. Some basic properties of E
(m)
λ (x̂) and B

(m)
λ (x̂) were studied

in [14].
Since

(
2m

(exp
∑r

i=1 ti + 1)
m , t̂

)
∗
(

(
∑r

i=1 ti)
m

(exp
∑r

i=1 ti + 1)
m , t̂

)
=

(
(
∑r

i=1 2ti)
m

(exp
∑r

i=1 2ti + 1)
m , t̂

)
,

we have {
E

(m)
λ (x̂)

}
#
{

B
(m)
λ (x̂)

}
=
{

B
(m)
λ (2x̂)

}
.

Example 4.4 For the case A(t̂) = 1 and if ĝ(t) =
∑

m̂≥(1,··· ,1) am

tm/(m̂)!, where am = a(1)
m1 · · · a(r)

mr , it follows that ex̂·dg(t) may be writ-
ten in the form

exp(x̂ · ĝ(t)) = Πr
`=1exp {x`

∑
m`≥1

a(`)
m`

t`
m`

m`!
}

= Πr
`=1

(
1 +

∑
k`≥1

t`
k`

k`!
{

k∑̀
j`=1

x`
j`Bk`j`

(a(`)
1, a

(`)
2, · · · )}

)
(4.10)

so that

pλ(x̂) = [tλ]ex̂·dg(t) = Πr
`=1

1

λ`!

λ∑̀
j`=1

x`
j`Bλ`j`

(a(`)
1, a

(`)
2, · · · ).

Consequently we have

[tλ]f(ĝ(t)) = Πr
`=1

1

λ`!

λ∑̀
j`=1

Bλ`j`
(a(`)

1, a
(`)

2, · · · )D`
j`f(0̂).
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This is precisely the multivariate extension of the univariate Faa di
Bruno formula (cf. [6] for another type extension.)

[(d/dt)kf(g(t))]t=0 =
k∑

j=1

Bkj(g
′(0), g′′(0), · · · )f (j)(0). (4.11)

In this paper, examples seems not so enough to illustrate the merit of
the theoretical results obtained. Interested reader might do something
including more applications subsequently.
Remark 4.2 The properties of the higher dimensional Sheffer group,
such as construction of the subgroup with certain orders, application to
the multivariate expansions, combinatorial identities, etc., remain much
to be investigated while some application results in this topic can be
referred to [7].
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