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ABSTRACT

In 1939, I.M. Sheffer proved that every polynomial sequence belongs to one and only one

type. Sheffer extensively developed properties of the B-Type 0 polynomial sequences and

determined which sets are also orthogonal. He subsequently generalized his classification

method to the case of arbitrary B-Type k by constructing the generalized generating func-

tion A(t)exp
[
xH1(t) + · · ·+ xk+1Hk(t)

]
=
∑∞

n=0 Pn(x)tn, with Hi(t) = hi,it
i + hi,i+1t

i+1 +

· · · , h1,1 6= 0. Although extensive research has been done on characterizing polynomial

sequences, no analysis has yet been completed on sets of type one or higher (k ≥ 1). We

present a preliminary analysis of a special case of the B-Type 1 (k = 1) class, which is an

extension of the B-Type 0 class, in order to determine which sets, if any, are also orthogonal

sets. Lastly, we consider an extension of this research and comment on future considerations.

In this work the utilization of computer algebra packages is indispensable, as computational

difficulties arise in the B-Type 1 class that are unlike those in the B-Type 0 class.
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CHAPTER 1: INTRODUCTION

The field of mathematical analysis is one that is constantly expanding and the study of

orthogonal polynomials and special functions is no exception. Richard A. Askey states in

the foreword of [14]:

“When I started to work on orthogonal polynomials and special functions, I

was told by a number of people that the subject was out-of-date, and some even

said dead. They were wrong. It is alive and well. The one variable theory is far

from finished. . .”

We have witnessed the field of orthogonal polynomials and special functions extend itself

from the cases of Hermite, Laguerre and Jacobi to the q-analogues discovered by W. Al-

Salam, R. Askey, M. E. H. Ismail and others. As the extensions continue we see researchers

in this field encompassing many branches of mathematics, utilizing a multitude of tech-

niques and thusly producing a wide range of material. As a result, new theorems related

to orthogonal polynomials appear not only in journals of pure mathematics but in applied

and computational journals as both theoretical and practical applications seem to increase

in number, see [9], [11], [17] and [14] for four of many examples.

The particular sub-branch of orthogonal polynomials and special functions that is of

particular interest for this study is characterization theorems. As the name implies, charac-

terization theorems give a very complete description of a polynomial sequence and are quite

useful in both theory and physical applications, see [14] and [17]. In order to aptly motivate
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the presentation of our original research we briefly discuss some fundamental results in the

characterizations of orthogonal polynomial sequences.

We begin with Appell polynomial sets {pn}, which in general are defined as

A (t) ext =
∞∑

m=0

pm (x) tm, A (t) =
∞∑

n=0

ant
n, a0 = 1, (1.1)

refer to [1] or [18]. An example of an Appell polynomial set are the polynomials defined as{
xn

n!

}
, which is clear since

ext =
∞∑

n=0

xn

n!
tn.

This set can readily be shown not to be orthogonal and therefore, not all Appell sets are

orthogonal and it is then natural to attempt to discover which polynomial sets are Appell

and orthogonal. To discover these polynomials we will need the following theorem that is

motivated by (1.1), see [1].

Theorem 1.1. A polynomial sequence {pn} is Appell if and only if

(i) pn (x) =
n∑

k=0

an−k
xk

k!

or

(ii) p′n (x) = pn−1 (x)

for n = 0, 1, 2, . . .

A simple example of an Appell sequence that is also orthogonal is the Hermite polyno-

mial sequence, see [15] or [20]. Hermite polynomial sequences can be characterized by two

2



structures; a generating function and a three-term recurrence relation. In fact, all poly-

nomial sequences that are also orthogonal can be characterized by exactly one three-term

recurrence relation (it may be in an unrestricted form or a monic form, which we discuss in

Chapter 2), and can also be characterized by at least one generating function, see [14] or [15]

for details and examples - both generating functions and three-term recurrence relations will

be discussed in more detail in Chapter 2. Below we characterize the Hermite polynomial

sequences, as an example of an Appell sequence that is also orthogonal.

The three-term recurrence relation for the Hermite polynomial sequence {Hn} (in unre-

stricted form) is

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

A generating function for the Hermite polynomial sequence {Hn} is

exp(2xt− t2) =
∞∑

n=0

Hn(x)

n!
tn.

Now, there is one and only one type of Appell polynomial sequence that is also orthogonal

and we state this result as our next theorem, see [1].

Theorem 1.2. The only Appell polynomial sequences that are orthogonal are the Hermite

polynomial sequences.

Now, if we examine the three-term recurrence relation for the Hermite polynomial se-

quence {Hn} it is clear that with only knowledge of the first two polynomials (H0 and H1)

all subsequent polynomials can be obtained. In addition, if we examine the generating func-
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tion for {Hn} above, it is clear that the kth Hermite polynomial can also be obtained by

computing the coefficient of tk on both sides of the equation. This logic is consistent for all

orthogonal polynomial sequences as well.

We now turn our attention to the “classical” orthogonal polynomial sequences of Hermite,

Laguerre and Jacobi and it should be noted that the Hermite and Laguerre sequences are

actually special cases of the Jacobi sequences - see [14] and [15] for details. These sequences

are deemed “classical” because they were among the first to be fully characterized and each

of them has six properties, which we discuss below, refer to [1] and [2]. It is also important to

mention that in contemporary mathematics, the term “classical” refers to any Askey-Wilson

orthogonal polynomial sequences or their special and limiting cases, c.f. [15].

Property I: All classical orthogonal polynomial sequences satisfy a Sturm-Liouville dif-

ferential equation:

σ (x) y′′ (x) + τ (x) y′ (x) + λny (x) = 0

with σ(x) at most quadratic and τ (x) a linear polynomial, both independent of n and λn is

independent of x.

Property II: All classical orthogonal polynomial sequences have derivatives which form

orthogonal polynomials sequences.

For example, the fact that the derivative of a Hermite polynomial is another Hermite poly-

nomial can be verified by direct computation or by using their generating function, see [20].
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Property III: All classical orthogonal polynomial sequences possess a Rodrigues formula

Pn (x) =
1

Knw (x)

dn

dxn
[w (x)σn (x)] n = 0, 1, 2, . . .

where w (x) is the respective weight function of the orthogonal polynomial sequence and σ (x)

is a polynomial in x independent of n.

Property IV: Given a classical orthogonal polynomial sequence the respective weight func-

tion satisfies a differential equation of the form

d

dx
(σ (x)w (x)) = τ (x)w (x) .

To illustrate this, consider the weight function of the Laguerre polynomials: w(x) = xαe−x,

see [18]. We should also mention that the equation above is often referred to as the Pearson

differential equation.

Property V: All classical orthogonal polynomial sequences satisfy the following differential-

difference equation

π (x) p′n (x) = (αnx+ βn) pn (x) + γnpn−1 (x) .

For an example see [14].

Property VI: All classical orthogonal polynomial sequences satisfy a non-linear equation

of the form

σ (x)
d

dx
[pn (x) pn−1 (x)] = (αnx+ βn) pn(x)pn−1 (x) + γnp

2
n (x) + δp2

n−1 (x)

5



As it turns out, each of the aforementioned six properties has a converse, so any poly-

nomial sequence that satisfies any one of the six properties must be one of the classical

orthogonal polynomial sequences, i.e. Hermite, Laguerre or Jacobi. Several authors con-

tributed to establishing these converse results. For example, as far back as 1929 Bochner

determined all polynomial solutions of the second order linear ODE of Property I in [6]. It

is worth noting that Ismail generalized Bochner’s work in [13].

Polynomial sequences can also be characterized by generating functions with a convolu-

tion structure [3]. Consider the Brenke polynomials [7], which are defined as follows:

Bn (x) =
n∑

k=0

an−kbkx
k, (1.2)

with bk 6= 0 and a0 = b0 = 1. Multiplying both sides of the above relationship (1.2) by tn

and summing for n = 1, 2, . . . we see

∞∑
n=0

Bn (x) tn =
∞∑

j=0

ajt
j

∞∑
k=0

(xt)k

so we can equivalently define the Brenke polynomials in terms of their generating relation

∞∑
n=0

Bn (x) tn = A (t)C (xt) .

It is important to note that Chihara determined all of the polynomial sequences that are of

Brenke-type and are also orthogonal in [7] and [8].

We now discuss a way that the Brenke polynomials can be generalized. Notice that if in

(1.2) we replace xk with wk(x) where,

wk (x) =
k∏

j=1

(x− xj)

6



we therefore have

Gn (x) =
n∑

k=0

an−kbkwk (x), n = 0, 1, 2, . . . (1.3)

This leads us to one of the most important unsolved problems in characterization theory,

entitled “The Geronimus Problem” see [1] and [12]:

(The Geronimus Problem): Describe all orthogonal polynomial sequences {Gn} that

satisfy (1.3) for arbitrary sequences {an} and {bn} and {xk}, with bk 6= 0 and a0 = b0 = 1.

This problem was raised by Geronimus in 1947 in his paper [12]. He did not solve this

problem and it currently remains unsolved in its full generality. However, Geronimus did

provide some necessary and sufficient conditions on the coefficient sequences {an} and {bn}

and the sequence {xk}. We state this result as a theorem.

Theorem 1.3 The polynomials {Gn} in (1.3) satisfy

Pn+1 (x)

bn+1

= [x− cn]
Pn (x)

bn
− λn

Pn−1 (x)

bn−1

, n ≥ 1

if and only if ak+1 (Bn−k −Bn+1) = a1ak (Bn −Bn+1) + λn

Bn−1
ak−1 + ak (xn+1 − xn−k+1) ,

for k = 0, 1, 2, . . . , n, where Bn = bn−1

bn
and B0 = 0.

7



Now that several examples of characterization theorems have been briefly discussed,

we turn our attention to the motivation of our present research. In 1939, I.M. Sheffer

proved that every polynomial sequence belongs to one and only one type, see [19]. In

essence, Sheffer actually established several abstract relationships that characterized poly-

nomial sequences that are more general than the Appell sets. Moreover, one of his fore-

most results involved extensively developing properties of the B-Type 0 polynomial se-

quences and determining which of these sets are also orthogonal. He subsequently gen-

eralized his classification method to the case of arbitrary B-Type k by constructing the

generalized generating function A(t)exp
[
xH1(t) + · · ·+ xk+1Hk(t)

]
=
∑∞

n=0 Pn(x)tn, with

Hi(t) = hi,it
i + hi,i+1t

i+1 + · · · , h1,1 6= 0. Our research focuses on continuing the work of

Sheffer by utilizing this generating function. We now discuss the main elements of each of

the chapters to follow.

In Chapter 2 we cover definitions, preliminary ideas and rudimentary theorems that

will be necessary in the following chapters including a brief discussion regarding generating

functions and three-term recurrence relations. We also cover Sheffer’s research [19] on B-

Type 0 polynomial sequences that are also orthogonal. Lastly, we explain that in this work

the utilization of computer algebra packages, like Mathematica [21], is indispensable as

computational difficulties arise in the B-Type 1 class that are unlike those in the B-Type 0

class. We conclude this chapter with an example of the format for which the computations

are displayed in this work.

8



Chapter 3 can be viewed as the crux of our research. Although extensive research has

been done on characterizing polynomial sequences, no analysis has yet been completed on

Sheffer sets classified as type one or higher (k ≥ 1). In this chapter we present a preliminary

analysis on a special case of the B-Type 1 (k = 1) class, which is an extension of the B-Type

0 class, in order to determine which, if any, sets are also orthogonal sets. Our methodology

basically utilizes only the generalized generating function defined above for k = 1 and a

corresponding three-term recurrence relation, which we develop from the generating function.

From these two structures we develop conditions for the B-Type 1 polynomial sequences to

be orthogonal by constructing and attempting to solve a simultaneous system of nonlinear

algebraic equations. In Chapter 4 we extend the work completed in Chapter 3 by using the

methods and knowledge gleaned from Chapter 3 to consider a special case of the B-Type 2

class.

Lastly, in Chapter 5 we formally state two problems based on the results achieved in

Chapters 3 and 4. We also reflect on the previous chapters by further discussing several

of the key elements of this work and commenting on preliminary approaches that were

unsuccessful. Additionally, we address additional extensions of this research and discuss

future considerations including how our method could be used to approach other problems

and motivate future researchers.
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CHAPTER 2: PRELIMINARIES

In this chapter we discuss the preliminary definitions, theorems, concepts and notational

conventions that are used throughout this work. We begin with the definitions of a polyno-

mial sequence and an orthogonal polynomial sequence from [1].

Definition 2.1. We shall always define a polynomial sequence as {Pn (x) : n = 0, 1, 2, . . .},

where the degree of Pn (x) is exactly n, which we denote as deg (Pn) = n.

Definition 2.2. By an orthogonal polynomial sequence we mean a polynomial sequence

orthogonal on the real line with respect to a positive measure dµ (x) supported on a subset

of the real line with finitely or infinitely many points of increase so that

∫ ∞

−∞
Pm (x)Pn (x) dµ (x) = hnδm,n

where δm,n denotes the Kronecker delta

δm,n :=


1 if m = n

0 if m 6= n

where the moments

µn =

∫ ∞

−∞
xndµ (x)

are finite for all n, see [1].

10



We first discuss a classical result in the field of orthogonal polynomials that is essen-

tial in all of our analysis, see [1].

Theorem 2.3. Every orthogonal polynomial sequence {Pn} that satisfies Definition 2.2

must necessarily satisfy a three-term recurrence relation, which may take on one of the fol-

lowing forms listed below.

(I) Orthonormal Form (hn = 1):

xPn(x) = an+1Pn+1(x) + cnPn(x) + anPn−1(x), an 6= 0, an, cn ∈ R (2.1)

(II) Monic Form (pn):

pn+1(x) = (x− dn)pn(x)− λnpn−1(x), λn > 0, dn ∈ R (2.2)

(III) Unrestricted Form:

Pn+1(x) = (Anx+Bn)Pn(x)− CnPn−1(x), AnAn−1Cn > 0 (2.3)

where P0(x) = 1 and P−1(x) = 0.

The converse of Theorem 2.3 is often entitled the Spectral Theorem- see [10] for a de-

tailed explanation.

Theorem 2.4. (Spectral Theorem) Any polynomial sequence {Pn} that satisfies either (2.1),

(2.2) or (2.3) must also be an orthogonal polynomial sequence.

11



In this work, we specifically utilize the three-term recurrence relation in the unrestricted form

(III) of Theorem 2.3. Additionally, we briefly cover two well-known examples of three-term

recurrence relations for emphasis.

Example 2.5. The three-term recurrence relation for the Hermite polynomial sequence

{Hn} in unrestricted form is

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

and the monic form is

xpn(x) = pn+1(x) +
n

2
pn−1(x),

where pn(x) := 2−nHn(x), refer to [15].

Example 2.6. The Laguerre polynomials have the unrestricted recurrence relation

(n+ 1)L
(α)
n+1(x)− (2n+ α+ 1− x)L(α)

n (x) + (n+ α)L
(α)
n−1(x) = 0

and the monic relation

xpn(x) = pn+1(x) + (2n+ α+ 1)pn(x) + n(n+ α)pn−1(x),

where pn(x) := (−1)nn!L
(α)
n (x), again refer to [15].

2.1 GENERATING FUNCTIONS

Here, we briefly discuss the standard notion of a generating function and supplement this

notion with some basic examples. We begin with the definition of a generating function from

12



[18] and discuss some of its important subtleties.

Definition 2.7. Consider a function F (x, t), which has a formal power series expansion

in t where the coefficient of tn is a function of x:

F (x, t) =
∞∑

n=0

fn(x)tn. (2.4)

We say that the expansion of F (x, t) generates a set {fn}∞n=0 and F (x, t) is therefore the

generating function for {fn}∞n=0.

However, it is very important to note that the series defined by the left hand side of

(2.4) need not converge for the relation (2.4) to define {fn}∞n=0 and to be useful in establish-

ing properties of those functions [18]. We have the following, also well-known, examples of

generating functions, see [14] or [18].

Example 2.8. A generating function for the Jacobi polynomial sequence
{
P

(α,β)
n

}
is

2α+β

R(1 +R− t)α(1 +R + t)β
=

∞∑
n=0

P (α,β)
n (x)tn, R =

√
1− 2xt+ t2.

Example 2.9. The Laguerre polynomials have a generating function of the form

(1− t)−(α+1)exp

(
−xt
1− t

)
=

∞∑
n=0

L(α)
n (x)tn.

13



2.2 THE SHEFFER B-TYPE 0 ORTHOGONAL POLYNOMIAL
SEQUENCES

In this section we discuss one of the main results established by I. M. Sheffer in [19]. More

specifically, we cover an overview of the analysis that Sheffer completed to determine which

B-Type 0 polynomial sequences are orthogonal. Our overview is essentially based on [1].

For more discussions on this aspect of Sheffer’s work refer [14] and [18]. We begin with the

definition of the Sheffer B-Type 0 polynomial sequences.

Definition 2.10. A polynomial sequence {Sn} is considered Sheffer B-Type 0 if it sat-

isfies the generating relation

A(t)exu(t) =
∞∑

n=0

Sn(x)tn, (2.5)

where A(0) = 1, u(0) = 0 and u′(0) = 1.

In 1934 Meixner [16] endeavored to discover all orthogonal polynomial sequences that had a

generating function of the form (2.5) and later in 1939 Sheffer conducted a complete analysis

of all polynomial sets that satisfy (2.5) and also posed the same question as Meixner.

In order to determine which B-Type 0 polynomial sequences are also orthogonal poly-

nomial sequences, Sheffer defined a differential operator J of infinite order that commutes

with the standard differential operator d/dx and acts on polynomials in the same way d/dx

acts on the powers. He took the formal inverse of u(t) defined by u (J(t)) = J (u(t)) = t so

that from (2.5) J (D)Sn(x) = Sn−1(x), which is a degree-lowering operator analogous to the
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derivative. Both Meixner and Sheffer proved the following result.

Theorem 2.11. The polynomial sequence {Sn} as defined by (2.5) is an orthogonal polyno-

mial sequence if and only if {Sn} satisfies the three-term recurrence relation:

Sn+1(x) = [x− (an+ b)]Sn(x)− n(c− dn)Sn−1(x).

Sheffer then proved that Theorem 2.11 implies

J ′(u) = 1− ct+ kt2 = (1− αt)(1− βt) =
1

u′(t)

and

A′(t)

A(t)
=

γt

(1− αt)(1− βt)
,

where of course c = α+β and k = αβ. Upon considering all of the possible cases that result

in the above analysis, which were based on the nature of α and β, Sheffer determined that

{Sn} must in fact be one of the classes listed below. It should be noted that all of the five

classes below have been rescaled so they fit the standard contemporary form as they appear

in [15].

Case 1: α = β = 0

This case yields the Hermite polynomial sequences as defined in Example 2.5.
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Case 2: α = β 6= 0

This case results in the Laguerre polynomial sequence as defined by the generating function

in Example 2.9.

Case 3: α 6= 0, β = 0

This gives the Charlier polynomials defined as

et

(
1− t

a

)x

=
∞∑

n=0

cn(x; a)
tn

n!
,

refer to [15].

Case 4: α 6= β and α, β ∈ R

Here, we obtain the Meixner polynomial sequences, which are defined as

(
1− t

c

)x

(1− t)−(x+β) =
∞∑

n=0

(β)n

n!
Mn(x; β, c)tn,

also see [15].

Case 5: α 6= β (complex-conjugates)

In this case we achieve the Meixner-Pollaczek [15] orthogonal polynomial sequences {Pn},

which satisfy the three-term recurrence relation

(n+ 1)P
(λ)
n+1(x;φ)− 2[xsinφ+ (n+ λ)cosφ]P (λ)

n (x;φ)

+ (n+ 2λ− 1)P
(λ)
n−1(x;φ) = 0.
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Sheffer also generalized the generating relation of (2.5) to the arbitrary case of B-Type k

as follows:

A(t)exp
[
xH1(t) + · · ·+ xk+1Hk(t)

]
=

∞∑
n=0

Pn(x)tn,

with Hi(t) = hi,it
i + hi,i+1t

i+1 + · · · , h1,1 6= 0. (2.6)

It is clear that if we take k = 0 in (2.6) we obtain the relation (2.5). Also, if we take k = 1

we obtain the Sheffer B-Type 1 polynomial sequences

A(t)exp
[
xH1(t) + x2H2(t)

]
=

∞∑
n=0

Pn(x)tn,

with Hi(t) = hi,it
i + hi,i+1t

i+1 + · · · , h1,1 6= 0, (2.7)

and if we take k = 2 we obtain the Sheffer B-Type 2 polynomial sequences

A(t)exp
[
xH1(t) + x2H2(t) + x3H3(t)

]
=

∞∑
n=0

Pn(x)tn,

with Hi(t) = hi,it
i + hi,i+1t

i+1 + · · · , h1,1 6= 0. (2.8)

2.3 SOME REMARKS ON THE UTILIZATION OF MATHEMATICA

In this short section we discuss the importance of the role that symbolic computer algebra

packages, like Mathematica [21], play in this work and in the study of orthogonal polynomials

in general. In fact, much of the computational aspects of this work were completed with

Mathematica. In addition, many contemporary mathematicians have used such packages to

conduct research in orthogonal polynomials and special functions. For example, in [9] Gasper

demonstrates how to use symbolic computer algebra packages to derive formulas involving
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orthogonal polynomials and other special functions. Specifically, he derives transformation

formulas for the Racah and the q-Racah polynomials (see [15] for definitions); however, he

also alludes to the fact that these packages can be used in many other areas of orthogonal

polynomials as well. He says,

“Now that several symbolic computer algebra systems such as [Mathematica]

are available for various computers, it is natural for persons having access to such

a system to try to have it perform the tedious manipulations needed to derive

certain formulas involving orthogonal polynomials and special functions.”

In our present work, the utilization of Mathematica is not simply a convenience but a ne-

cessity, as the complexities involved in the computational aspects of this work are quite

tumultuous.

Throughout this work we clearly indicate when and how Mathematica was used. For

emphasis, we display the Mathematica calculations and their respective outputs with a dis-

tinctive font class that is analogous to the style used in the Mathematica notebook. In

addition, we use the same conventions that Gasper used in [9] for displaying a given Math-

ematica input and its respective output. We demonstrate this notion with an example from

Gasper’s work.

Example 2.12. Gasper demonstrates a method for deriving a certain Laguerre polyno-

mial expansion formula using Mathematica. His displays his input and respective output in
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a similar manner as seen below:

In[5] := p[b + 1, n]p[−n, j]xj/(p[1, n]p[1, j]p[b + 1, j])

Out[5]=
xjp[−n, j]p[1 + b, n]

p[1, j]p[1, n]p[1 + b, j]

Of course, the point of emphasis in the above example is not the actual computation but the

fashion in which it is presented, as this type of display is consistent for all of the Mathematica

computations in this work.
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CHAPTER 3: A SPECIAL CASE OF THE SHEFFER B-TYPE
1 POLYNOMIAL SEQUENCES

In endeavoring to ascertain which polynomial sequences, if any, arise from (2.7) and are

also orthogonal, of course results in two considerations. The first amounts to developing an

analogue of Sheffer’s method as discussed in Chapter 2. This approach is tantamount to uti-

lizing various functional relationships and producing a multitude of lemmas and theorems as

Sheffer did in [19]. The second consideration is to develop a novel approach to the problem.

In advocating this approach, the natural question that arises is whether or not a fundamen-

tally simpler method than Sheffer’s method can be implemented. As we show, this is the

case; however, even though the overall methodology is fundamentally simpler than Sheffer’s

approach, an exceedingly large amount of complexity is embedded within the simplicity.

Now, as discussed in Chapter 2, a necessary and sufficient condition for a sequence of

polynomials to be orthogonal is that it satisfies a three-term recurrence relation of the form

(2.3). Moreover, with only knowledge of the constant and linear polynomials all subse-

quent polynomials in the respective sequence can be discovered solely from this relation.

In addition, although computationally involved, any element of a polynomial sequence can

also be discovered entirely from its generating function. These two pieces of information

are well known and also indispensable. However, it is crucial to emphasize that the poly-

nomial sequences that arise from the Sheffer B-Type 1 class (or any polynomial sequence

for that matter) can be generated from these two separate structures and by unicity these
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polynomials must be indiscernible. Therefore, we develop a method of obtaining the Sheffer

B-Type 1 polynomial sequences from both the generating function as defined by (2.7) and

the three-term recurrence relation (2.3) in order to develop conditions for orthogonality.

3.1 LOWER-ORDER SHEFFER B-TYPE 1 POLYNOMIAL SEQUENCES
OBTAINED VIA GENERATING FUNCTION

We begin by constructing a method of effectively expanding the generating function (2.7)

that defines the Sheffer B-Type 1 polynomial sequences in order to acquire the coefficients of

xntn, xn−1tn and xn−2tn. We do this since only these coefficients and the constant and linear

polynomials discovered from the Sheffer B-Type 1 generating function (2.7) are required to

obtain all of the respective subsequent polynomials. We accomplish this by expanding the

generating function (2.7) using first principles and thusly acquire a sequence of polynomials

that must be identical to the sequence that we obtain from the three-term recurrence relation

(2.3), which will be completed in Section 3.2. By comparing these two sequences, conditions

for orthogonality are established for several of the constant terms (the a’s, h’s and g’s) in

(2.7).

For our analysis of the Sheffer B-Type 1 case, we define H1(t) := H(t) and H2(t) := G(t)

in (2.7) for ease of notation. Therefore, the Sheffer B-Type 1 polynomials sequences are

defined as all of the polynomials sequences {Pn} that satisfy

A(t)exp
[
xH(t) + x2G(t)

]
=

∞∑
n=0

Pn(x)tn. (3.1)
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Clearly, the left hand side of (3.1) involves a powers series expansion of power series

expansions and can be written as

∞∑
i=0

ait
i

∞∑
j=0

1

j!

[
x

∞∑
k=1

hk
kt

k + x2

∞∑
l=2

gl
lt

l

]j

=
∞∑

n=0

Pn(x)tn.

This is certainly not the most advantageous way to perceive (3.1), but it does demonstrate

its complexity. We ultimately expand (3.1) in a much more practical way. However, we first

discuss some initial assumptions. Namely, we take a0 = 1 and h1 = 1 and therefore, A(t)

and H(t) respectively have the following structures:

A(t) = 1 + a1t+ a2t
2 + · · · and H(t) = t+ h2t

2 + h3t
3 + · · · .

Now, we expand the left hand side of (3.1) in the following practical manner:

(1 + a1t+ a2t
2 + · · · )

[
exteh2xt2eh3xt3 · · ·

] [
eg2x2t2eg3x2t3eg4x2t4 · · ·

]
. (3.2)

Thus, expanding (3.2) in terms of the Maclaurin series of each product, yields:

∞∑
m=0

amt
m

∞∏
i=1

[
∞∑

j=0

hj
ix

jtij

j!

]
∞∏

k=2

[
∞∑
l=0

gl
kx

2ltkl

l!

]
. (3.3)

With this convention, we write out the general term in each of the products of (3.3) as

ak0t
k0 · x

k1tk1

k1!
· h

k2
2 x

k2t2k2

k2!
· h

k3
3 x

k3t3k3

k3!
· · · ·

·g
k4
2 x

2k4t2k4

k4!
· g

k5
3 x

2k5t3k5

k5!
· g

k6
4 x

2k6t4k6

k6!
· · · · , (3.4)

where {k0, k1, k2, . . .} are all non-negative integers. It is important to note that in the

expansion (3.4) we have only explicitly written the six terms above since only these terms

are needed to discover the coefficients of xntn, xn−1tn and xn−2tn, as we explain below.
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Notice, that the sums of the x-exponents and the t-exponents of (3.4) respectively take

on the form

k1 + k2 + k3 + 2k4 + 2k5 + 2k6 + · · · = r (3.5)

and

k0 + k1 + 2k2 + 3k3 + 2k4 + 3k5 + 4k6 + · · · = s. (3.6)

That is, if we wish to discover the coefficient of xrts we see that the sum defined by (3.5)

must add up to r and the sum defined by (3.6) must add up to s. It is clear that writing out

any additional terms in (3.5) or (3.6) is superfluous since upon subtracting (3.6) from (3.5)

the additional terms will not contribute to discovering the coefficients of xntn, xn−1tn and

xn−2tn since they will each be multiplied by a number greater than 2. In addition, by sub-

tracting (3.6) from (3.5) we immediately see that each of the coefficients in the polynomial

Pn defined by (3.1) is a finite sum. This logic will be the basis of the analysis involved in

discovering the aforementioned coefficients xntn, xn−1tn and xn−2tn, which we partition into

three parts.

(1.) The coefficient of xntn

From subtracting (3.6) from (3.5) with r = s = n we see that every k-value must be zero,

except k1 and k4, which can take on any non-negative integer values, i.e. are free variables.

Therefore, by studying (3.4) we realize that the only terms involved in the coefficient of xntn

are 1
k1!

and
g

k4
2

k4!
. Hence, by combining these two pieces of information we observe that the
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coefficient of xntn must be a sum taken over all non-negative integers k1 and k4 such that

k1 + 2k4 = n with argument
g

k4
2

k1!k4!
, as seen below

∑
k1+2k4=n

gk4
2

k1!k4!
. (3.7)

(2.) The coefficient of xn−1tn

Upon subtracting (3.6) from (3.5) with r = n− 1 and and s = n we obtain:

k0 + k2 + 2k3 + k5 + 2k6 = 1. (3.8)

Therefore, we see that k3 = k6 = 0 with k1 and k4 free variables, so (3.8) becomes

k0 + k2 + k5 = 1,

yielding three cases.

Case 1: k0 = 1, k2 = 0 and k5 = 0

In this case we see that (3.6) becomes

1 + k1 + 2k4 = n,

resulting in ∑
k1+2k4=n−1

a1g
k4
2

k1!k4!
.

Case 2: k2 = 1, k0 = 0 and k5 = 0

Here we see that (3.6) is now

k1 + 2 + 2k4 = n,
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yielding ∑
k1+2k4=n−2

h2g
k4
2

k1!k4!
.

Case 3: k5 = 1, k0 = 0 and k2 = 0

Lastly, we see that for this case (3.8) becomes

k1 + 2k4 + 3 = n,

yielding ∑
k1+2k4=n−3

g3g
k4
2

k1!k4!

and we now have exhausted all possibilities.

Therefore, the coefficient of xn−1tn is

∑
k1+2k4=n−1

a1g
k4
2

k1!k4!
+

∑
k1+2k4=n−2

h2g
k4
2

k1!k4!
+

∑
k1+2k4=n−3

g3g
k4
2

k1!k4!
. (3.9)

(3.) The coefficient of xn−2tn

Here, after subtracting (3.6) and (3.5) with r = n− 2 and s = n we obtain

k0 + k2 + 2k3 + k5 + 2k6 = 2.

Analogous to the previous coefficient derivations, the cases involved in determining the coef-

ficient of xn−2tn are determined by all of the non-negative integer solutions to the equation

above. In each case, the substitution of the these solutions (the k-values) into (3.6) with

s = n are written as (i) and the resulting sum as (ii). We have a total of 8 cases.

Case 1: k3 = 1 and k0 = k2 = k5 = k6 = 0

(i) k1 + 3 + 2k4 = n
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(ii)
∑

k1+2k4=n−3

h3g
k4
2

k1!k4!
.

Case 2: k6 = 1 and k0 = k2 = k3 = k5 = 0

(i) k1 + 2k4 + 4 = n

(ii)
∑

k1+2k4=n−4

g4g
k4
2

k1!k4!
.

Case 3: k0 = 2 and k2 = k3 = k5 = k6 = 0

(i) 2 + k1 + 2k4 = n

(ii)
∑

k1+2k4=n−2

a2g
k4
2

k1!k4!
.

Case 4: k2 = 2 and k0 = k3 = k5 = k6 = 0

(i) k1 + 4 + 2k4 = n

(ii)
∑

k1+2k4=n−4

h2
2g

k4
2

2!k1!k4!
.

Case 5: k5 = 2 and k0 = k2 = k3 = k6 = 0

(i) k1 + 2k4 + 6 = n

(ii)
∑

k1+2k4=n−6

g2
3g

k4
2

2!k1!k4!
.

Case 6: k0 = k2 = 1 and k3 = k5 = k6 = 0

(i) 1 + k1 + 2 + 2k4 = n
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(ii)
∑

k1+2k4=n−3

a1h2g
k4
2

k1!k4!
.

Case 7: k0 = k5 = 1 and k2 = k3 = k6 = 0

(i) 1 + k1 + 2k4 + 3 = n

(ii)
∑

k1+2k4=n−4

a1g3g
k4
2

k1!k4!
.

Case 8: k2 = k5 = 1 and k0 = k3 = k6 = 0

(i) k1 + 2 + 2k4 + 3 = n

(ii)
∑

k1+2k4=n−5

h2g3g
k4
2

k1!k4!
.

Hence, the coefficient of xn−2tn is

∑
k1+2k4=n−3

h3g
k4
2

k1!k4!
+

∑
k1+2k4=n−4

g4g
k4
2

k1!k4!
+

∑
k1+2k4=n−2

a2g
k4
2

k1!k4!

+
∑

k1+2k4=n−4

h2
2g

k4
2

2!k1!k4!
+

∑
k1+2k4=n−6

g2
3g

k4
2

2!k1!k4!
+

∑
k1+2k4=n−3

a1h2g
k4
2

k1!k4!
(3.10)

+
∑

k1+2k4=n−4

a1g3g
k4
2

k1!k4!
+

∑
k1+2k4=n−5

h2g3g
k4
2

k1!k4!
.

Now, notice that in (3.7), (3.9) and (3.10) each component was a sum involving the term

gk4
2

k1!k4!

and also, it can readily be shown that

∑
k1+2k4=n

gk4
2

k1!k4!
=

bn/2c∑
k=0

gk
2

(n− 2k)!k!
.
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Therefore, we define the following function

φn(x) :=

bn/2c∑
k=0

xk

(n− 2k)!k!

in order to simplify notation. Thus, taking φn(g2) := φn the coefficients of xntn, xn−1tn and

xn−2tn respectively have the following form:

cn,0 := φn (3.11)

cn,1 := a1φn−1 + h2φn−2 + g3φn−3 (3.12)

cn,2 := a2φn−2 + (h3 + a1h2)φn−3 +

(
g4 +

h2
2

2!
+ a1g3

)
φn−4

+ h2g3φn−5 +
g2
3

2!
φn−6. (3.13)

Based on this analysis we see that Pn(x) as defined by (3.1) now becomes

Pn(x) = cn,0x
n + cn,1x

n−1 + cn,2x
n−2 + L.O.T.

and upon expanding the substitution of Pn above into the three-term recurrence relation

(2.3) we obtain

cn+1,0x
n+1 + cn+1,1x

n + cn+1,2x
n−1 + L.O.T.

= Ancn,0x
n+1 + Ancn,1x

n + Ancn,2x
n−1 + L.O.T.

+Bncn,0x
n +Bncn,1x

n−1 +Bncn,2x
n−2 + L.O.T.

− Cncn−1,0x
n−1 − Cncn−1,1x

n−2 − Cncn−1,2x
n−3 + L.O.T.,

where L.O.T. represents the respective lower-order terms of each polynomial.
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Thus, comparing the coefficients of xn+1, xn and xn−1 above results in the following

lower-triangular simultaneous system of linear equations:


cn,0 0 0

cn,1 cn,0 0

cn,2 cn,1 −cn−1,0




An

Bn

Cn

 =


cn+1,0

cn+1,1

cn+1,2

 .

Since the diagonal terms cn,0 and cn−1,0 are non-zero, solving this system via elementary

methods gives the following:

An =
cn+1,0

cn,0

Bn =
cn+1,1cn,0 − cn+1,0cn,1

c2n,0

Cn =
cn+1,0(cn,0cn,2 − c2n,1) + cn,0(cn+1,1cn,1 − cn+1,2cn,0)

cn−1,0c2n,0

. (3.14)

We now can obtain any polynomial Pk by directly expanding (3.1). In order to discover

Pk we first compute the coefficient of tk since this coefficient must be a polynomial in x and

of degree k, which is clear since when writing (3.1) as

A(t)exp
[
xH(t) + x2G(t)

]
= P0 + P1t+ P2t

2 + · · ·+ Pkt
k + · · ·

it is readily seen that the coefficient of tk in the left-hand side of (3.1) must be Pk. We first

discover the polynomials P0, . . . , P5. The constant and linear polynomials are easily obtained

by ‘hand’ computations analogous to the method previously described for discovering the
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coefficients of xntn, xn−1tn and xn−2tn. For the constant polynomial P0, it is immediate that

a0 = 1 is the coefficient of t0. Therefore, P0(x) = 1. For the linear polynomial P1, we see

from direct computation that the coefficient of t1 is a1 + x and thus P1(x) = a1 + x.

Of course, P2, P3 and the latter polynomials can be calculated in the same fashion.

However, as would be the case for any polynomial sequence, the computations involved

become increasingly more complicated as n increases, which is certainly epitomized in the

Sheffer B-Type 1 class. Therefore, in order to determine polynomials Pk for k ≥ 2 we

utilize a Mathematica program entitled GenPoly where the results of which are presented as

discussed in Chapter 2. We explicitly demonstrate the procedure for P2 and P3 below.

We first find the coefficient of t2 by expanding the left-hand side of (3.1). Both the input

and the respective output are seen below.

In[1]:= Expand[Coefficient[(
1 +

10∑
m=1

amtm

)
∗

10∏
j=1

[
10∑
i=0

hi
jx

itij

i!

]
∗

10∏
k=2

[
10∑
l=0

gl
kx

2ltkl

l!

]
, t2, h1 = 1]]

Out[1]=
x2

2
+ x a1 + a2 + x2 g2 + x h2

Thus, we see that

P2(x) = a2 + (a1 + h2)x+

(
1

2!
+ g2

)
x2. (3.15)

For the coefficient the of t3 we have the following computation and respective output:

In[2]:= Expand[Coefficient[(
1 +

10∑
m=1

amtm

)
∗

10∏
j=1

[
10∑
i=0

hi
jx

itji

i!

]
∗

10∏
k=2

[
10∑
l=0

gl
kx

2ltkl

l!

]
, t3, h1 = 1]]
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Out[2]=
x3

6
+

x2a1

2
+ xa2 + a3 + x3g2 + x2a1g2 + x2g3 + x2h2 + xa1h2 + xh3

Therefore, we have

P3(x) = a3 + (a2 + a1h2 + h3)x+
(a1

2!
+ a1g2 + g3 + h2

)
x2 +

(
1

3!
+ g2

)
x3. (3.16)

It is important to mention that for the higher-order polynomials (Pk, k ≥ 4) the process

is slightly adjusted since the outputs quickly become much more compecated than the ones

above. For these polynomials, we first discover the coefficient of tn and then compute each

x-coefficient individually. To demonstrate this procedure we show all of the computations

needed to construct P4.

We first discover the coefficient of t4:

In[3]:= Expand[Coefficient[(
1 +

10∑
m=1

amtm

)
∗

10∏
j=1

[
10∑
i=0

hi
jx

itji

i!

]
∗

10∏
k=2

[
10∑
l=0

gl
kx

2ltkl

l!

]
, t4, h1 = 1]]

Out[3]=
x4

24
+

x3a1

6
+

x2a2

2
+ xa3 + a4 +

x4g2

2
+ x3a1g2 + x2a2g2 +

x4g2
2

2
+ x3g3

+x2a1g3 + x2g4 +
x3h2

2
+ x2a1h2 + xa2h2 + x3g2h2 +

x2h2
2

2
+ x2h3 + xa1h3 + xh4

For simplicity, we define the the above output as follows:

In[4]:= FOURTH :=
x4

24
+

x3a1

6
+

x2a2

2
+ xa3 + a4 +

x4g2

2
+ x3a1g2 + x2a2g2 +

x4g2
2

2

+x3g3 + x2a1g3 + x2g4 +
x3h2

2
+ x2a1h2 + xa2h2 + x3g2h2 +

x2h2
2

2
+ x2h3 + xa1h3 + xh4

Then we compute each coefficient separately.

For the coefficient of x4 we have
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In[5]:= Coefficient[FOURTH, x4]

Out[5]=
1

24
+

g2

2
+

g2
2

2

Then, for coefficient of x3 we see that

In[6]:= Coefficient[FOURTH, x3]

Out[6]=
a1

6
+ a1 g2 +

h2

2
+ g2 h2 + g3

Next, the coefficient of x2 is computed as

In[7]:= Coefficient[FOURTH, x2]

Out[7]=
a2

2
+ a2 g2 + a1 h2 +

h2
2

2
+ h3 + a1g3 + g4

For the coefficient of x we obtain

In[8]:= Coefficient[FOURTH, x]

Out[8]= a3 + a2 h2 + a1 h3 + h4

and for the constant term we achieve

In[9]:= Coefficient[x*FOURTH, x]

Out[9]= a4

Hence, putting these above pieces together we have

P4(x) =a4 + (a3 + a2h2 + a1h3 + h4)x

+

(
a2

2!
+ a2g2 + a1h2 +

h2
2

2!
+ h3 + a1g3 + g4

)
x2

+

(
a1

3!
+ a1g2 +

h2

2!
+ g2h2 + g3

)
x3 +

(
1

4!
+
g2

2!
+
g2
2

2!

)
x4. (3.17)
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Using the same process as demonstrated above we also obtain an expression for P5.

P5(x) = a5 + (a4 + a3h2 + a2h3 + a1h4 + h5)x

+

(
a3

2!
+ a3g2 + a2g2 +

a1h
2
2

2!
+ a1h3 + h2h3 + h4 + a2g3 + a1g4 + g5

)
x2

+

(
a2

3!
+ a2g2 +

a1h2

2!
+ a1g2h2 +

h2
2

2!
+
h3

2!
+ g2h3 + g3h2 + a1g3 + g4

)
x3

+

(
a1

4!
+
a1g2

2!
+
a1g

2
2

2!
+
h2

3!
+ g2h2 +

g3

2!
+ g2g3

)
x4 +

(
1

5!
+
g2

3!
+
g2
2

2!

)
x5 (3.18)

3.2 LOWER-ORDER SHEFFER B-TYPE 1 POLYNOMIAL SEQUENCES
OBTAINED VIA THREE-TERM RECURRENCE RELATION

We next discover the polynomials P0, . . . , P5 from three-term recurrence relation (2.3) with

the An, Bn and Cn as defined in (3.14). To accomplish this we utilize a Mathematica program

entitled ThreeTerm. We first define cn,0, cn,1 and cn,2, as established in (3.11), (3.12) and

(3.13), respectively.

In[1]:= c0[n−] :=

Floor[n/2]∑
k=0

gk
2

(n− 2k)!k!

In[2]:= c1[n−] := a1 ∗
Floor[(n−1)/2]∑

k=0

gk
2

(n− 1− 2k)!k!

+h2 ∗
Floor[(n−2)/2]∑

k=0

gk
2

(n− 2− 2k)!k!
+ g3 ∗

Floor[(n−3)/2]∑
k=0

gk
2

(n− 3− 2k)!k!
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In[3]:= c2[n−] := a2 ∗
Floor[(n−2)/2]∑

k=0

gk
2

(n− 2− 2k)!k!

+(h3 + a1 ∗ h2) ∗
Floor[(n−3)/2]∑

k=0

gk
2

(n− 3− 2k)!k!

+

(
g4 +

h2
2

2!
+ a1 ∗ g3

)
∗

Floor[(n−4)/2]∑
k=0

gk
2

(n− 4− 2k)!k!

+h2 ∗ g3 ∗
Floor[(n−5)/2]∑

k=0

gk
2

(n− 5− 2k)!k!

+
g2

3

2!
∗

Floor[(n−6)/2]∑
k=0

gk
2

(n− 6− 2k)!k!

Then we define the An, Bn and Cn, as derived in (3.14).

In[4]:= A[n−] :=
c0[n + 1]

c0[n]

In[5]:= B[n−] :=
c1[n + 1] ∗ c0[n]− c0[n + 1]c1[n]

c0[n]2

In[6]:= C[n−] :=
1

c0[n− 1] ∗ c0[n]2
(
c0[n + 1] ∗

(
c0[n] ∗ c2[n] + c1[n]2

)
+c0[n] ∗ (c1[n + 1] ∗ c1[n]− c2[n + 1] ∗ c0[n]))

Lastly, in accordance with the previous section, we assign the constant and linear polynomials

as seen below

P0 := 1 and P1 := a1 + x

Thus, we can now produce any polynomial defined by (3.1) of degree greater than one.

As an example of the process, we achieve P2 by separately computing the quadratic, linear

and constant terms and then amalgamating the results, as seen below.
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In[7]:= Together[Coefficient[ x ∗ A[1] ∗ P1 + B[1] ∗ P1 − C[1] ∗ P0, x2]]

Out[7]=
1

2!
+ g2

In[8]:= Together[Coefficient[ x ∗ A[1] ∗ P1 + B[1] ∗ P1 − C[1] ∗ P0, x]]

Out[8]= a1 + h2

In[9]:= Together[Coefficient[ x ∗ (x ∗ A[1] ∗ P1 + B[1] ∗ P1 − C[1] ∗ P0), x]]

Out[9]= a2

Therefore,

P2(x) = a2 + (a1 + h2)x+

(
1

2!
+ g2

)
x2,

which is equal to (3.15).

Continuing in the same manner, we discover that the cubic, quadratic and linear terms

of P3 as obtained in ThreeTerm coincide exactly with those in (3.16). However, the constant

term is quite different as seen below:

In[10]:= Together[Coefficient[ x ∗ (x ∗ A[2] ∗ P2 + B[2] ∗ P2 − C[2] ∗ P1), x]]

Out[10]=
1

3(1 + 2g2)2
(−a3

1 + 3a1a2 + 4a1a2g2 − 12a3
1g

2
2 + 12a1a2g

2
2−

2a2
1h2 + 4a2h2 + 12a2

1g2h2 − 4a1h
2
2 + 3a1h3 + 12a1g2h3 + 12a1g

2
2h3)

Therefore, we have developed a relationship for the constant term a3, since for {Pn} as

defined by (3.1) to be orthogonal it must be that

a3 =
1

3(1 + 2g2)2
(−a3

1 + 3a1a2 + 4a1a2g2 − 12a3
1g

2
2 + 12a1a2g

2
2

− 2a2
1h2 + 4a2h2 + 12a2

1g2h2 − 4a1h
2
2 + 3a1h3 + 12a1g2h3 + 12a1g

2
2h3). (3.19)
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For P4 we discover that the fourth-degree term, the cubic-term and the quadratic-term

are identical to those in (3.17). However, the linear and constant-terms are dissimilar to the

ones in (3.17). The linear-term is

In[11]:= Together[Coefficient[ x ∗ A[3] ∗ P3 + B[3] ∗ P3 − C[3] ∗ P2, x]]

Out[11]=
1

4 (1 + 2g2) (1 + 6g2)
2

(
−a3

1 + 3a1a2 + a3 − 8a3
1g2 + 28a1a2g2 + 20a3g2

48a3
1g

2
2 + 120a1a2g

2
2 + 120a3g

2
2 + 144a1a2g

3
2 + 240a3g

3
2 + 144a3

1g
4
2

−144a1a2g
4
2 + 144a3g

4
2 − 2a2

1h2 + 8a2h2 + 12a2
1g2h2 + 56a2g2h2

−72a2
1g

2
2h2 + 192a2g

2
2h2 − 144a2

1g
3
2h2 + 288a2g

3
2h2 − 4a1h

2
2

+48a1g2h
2
2 + 48a1g

2
2h

2
2 − 8h3

2 + 7a1h3 + 68a1g2h3 + 168a1g
2
2h3

−144a1g
3
2h3 − 144a1g

4
2h3 + 12h2h3 + 96g2h2h3 + 240g2

2h2h3

12a2
1g3 + 18a2g3 − 24a2

1g2g3 + 108a2g2g3 + 144a2
1g

2
2g3 + 72a2g

2
2g3

+288a2
1g

3
2g3 − 144a2g

3
2g3 − 36a1g

2
3 − 144a1g2g

2
3 + 144a1g

2
2g

2
3 + 8a1g4

+96a1g2g4 + 288a1g
2
2g4 − 42a1g3h2 − 108a1g2g3h2 + 216a1g

2
2g3h2

+144a1g
3
2g3h2 − 36g2

3h2 − 144g2g
2
3h2 + 144g2

2g
2
3h2 + 8g4h2 + 96g2g4h2

+288g2
2g4h2 − 192g2g3h

2
2 + 18g3h3 + 108g2g3h3 + 72g2

2g3h3 − 144g3
2g3h3

)
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The P4 constant-term computation is as follows:

In[12]:= Together[Coefficient[ x ∗ (x ∗ A[3] ∗ P3 + B[3] ∗ P3 − C[3] ∗ P2), x]]

Out[12]=
1

4 (1 + 2g2) (1 + 6g2)
2

(
−a2

1a2 + 2a2
2 + a1a3 − 8a2

1a2g2 + 20a2
2g2

+8a1a3g2 − 48a2
1a2g

2
2 + 72a2

2g
2
2 + 48a1a3g

2
2 + 144a2

2g
3
2 + 144a2

1a2g
4
2

−144a1a3g
4
2 − 2a1a2h2 + 6a3h2 + 12a1a2g2h2 + 36a3g2h2 − 72a1a2g

2
2h2

+120a3g
2
2h2 − 144a1a2g

3
2h2 + 144a3g

3
2h2 − 8a2h

2
2 + 6a2h3 + 60a2g2h3

+120a2g
2
2h3 − 144a2g

3
2h3 − 12a1a2g3 + 18a3g3 − 24a1a2g2g3

+108a3g2g3 + 144a1a2g
2
2g3 + 72a3g

2
2g3 + 288a1a2g

3
2g3 − 144a3g

3
2g3

−36a2g
2
3 − 144a2g2g

2
3 + 144a2g

2
2g

2
3 + 8a2g4 + 96a2g2g4

−48a2g3h2 − 192a2g2g3h2 + 288a2g
2
2g4h2

)
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Thus, equating the linear and constant-terms above with the linear and constant-terms

of (3.17) we discover that the linear-term comparison is

a3+a2h2 + a1h3 + h4 =

1

4 (1 + 2g2) (1 + 6g2)
2

(
−a3

1 + 3a1a2 + a3 − 8a3
1g2 + 28a1a2g2 + 20a3g2

48a3
1g

2
2 + 120a1a2g

2
2 + 120a3g

2
2 + 144a1a2g

3
2 + 240a3g

3
2 + 144a3

1g
4
2

−144a1a2g
4
2 + 144a3g

4
2 − 2a2

1h2 + 8a2h2 + 12a2
1g2h2 + 56a2g2h2

−72a2
1g

2
2h2 + 192a2g

2
2h2 − 144a2

1g
3
2h2 + 288a2g

3
2h2 − 4a1h

2
2

+48a1g2h
2
2 + 48a1g

2
2h

2
2 − 8h3

2 + 7a1h3 + 68a1g2h3 + 168a1g
2
2h3

−144a1g
3
2h3 − 144a1g

4
2h3 + 12h2h3 + 96g2h2h3 + 240g2

2h2h3

12a2
1g3 + 18a2g3 − 24a2

1g2g3 + 108a2g2g3 + 144a2
1g

2
2g3 + 72a2g

2
2g3

+288a2
1g

3
2g3 − 144a2g

3
2g3 − 36a1g

2
3 − 144a1g2g

2
3 + 144a1g

2
2g

2
3 + 8a1g4

+96a1g2g4 + 288a1g
2
2g4 − 42a1g3h2 − 108a1g2g3h2 + 216a1g

2
2g3h2

+144a1g
3
2g3h2 − 36g2

3h2 − 144g2g
2
3h2 + 144g2

2g
2
3h2 + 8g4h2 + 96g2g4h2

+288g2
2g4h2 − 192g2g3h

2
2 + 18g3h3 + 108g2g3h3 + 72g2

2g3h3 − 144g3
2g3h3

)
(3.20)
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and the constant-term comparison is

a4 =
1

4 (1 + 2g2) (1 + 6g2)
2

(
−a2

1a2 + 2a2
2 + a1a3 − 8a2

1a2g2 + 20a2
2g2

+8a1a3g2 − 48a2
1a2g

2
2 + 72a2

2g
2
2 + 48a1a3g

2
2 + 144a2

2g
3
2 + 144a2

1a2g
4
2

−144a1a3g
4
2 − 2a1a2h2 + 6a3h2 + 12a1a2g2h2 + 36a3g2h2 − 72a1a2g

2
2h2

+120a3g
2
2h2 − 144a1a2g

3
2h2 + 144a3g

3
2h2 − 8a2h

2
2 + 6a2h3 + 60a2g2h3

+120a2g
2
2h3 − 144a2g

3
2h3 − 12a1a2g3 + 18a3g3 − 24a1a2g2g3 + 108a3g2g3

+144a1a2g
2
2g3 + 72a3g

2
2g3 + 288a1a2g

3
2g3 − 144a3g

3
2g3 − 36a2g

2
3 − 144a2g2g

2
3

+144a2g
2
2g

2
3 + 8a2g4 + 96a2g2g4 − 48a2g3h2 − 192a2g2g3h2 + 288a2g

2
2g4h2

)
.

(3.21)

Now, continuing this process for P5 we obtain three additional relationships for the P5

quadratic, linear and constant-terms. The P5 quadratic-term is computed to be as follows:

In[13]:= Together[Coefficient[ x ∗ A[4] ∗ P4 + B[4] ∗ P4 − C[4] ∗ P3, x2]]

Out[13]=
(
−a3

1 + 3a1a2 + 2a3 − 24a3
1g2 + 76a1a2g2 + 76a3g2 − 260a3

1g
2
2

+788a1a2g
2
2 + 1008a3g

2
2 − 1152a3

1g
3
2 + 3744a1a2g

3
2 + 5664a3g

3
2 − 2160a3

1g
4
2

+7056a1a2g
4
2 + 12960a3g

4
2 − 5760a3

1g
5
2 + 8640a1a2g

5
2 + 8640a3g

5
2 − 8640a3

1g
6
2

+8640a1a2g
6
2 − 2a2

1h2 + 14a2h2 − 4a2
1g2h2 + 332a2g2h2 − 144a2

1g
2
2h2

+3216a2g
2
2h2 − 288a2

1g
3
2h2 + 14112a2g

3
2h2 + 4320a2

1g
4
2h2 + 21600a2g

4
2h2
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+8640a2
1g

5
2h2 + 8640a2g

5
2h2 + a1h

2
2 + 214a1g2h

2
2 + 1464a1g

2
2h

2
2 + 4176a1g

3
2h

2
2

+6480a1g
4
2h

2
2 + 4320a1g

5
2h

2
2 − 16h3

2 + 192g2
2h

3
2 + 13a1h3 + 336a1g2h3 + 3204a1g

2
2h3

+13440a1g
3
2h3 + 28080a1g

4
2h3 + 34560a1g

5
2h3 + 8640a1g

6
2h3 + 34h2h3 + 684g2h2h3

+4848g2
2h2h3 + 12960g3

2h2h3 + 12960g4
2h2h3 + 8640g5

2h2h3 + 2h4 + 76g2h4

+1008g2
2h4 + 5664g3

2h4 + 12960g4
2h4 + 8640g5

2h4

−18a2
1g3 + 40a2g3 − 180a2

1g2g3 + 744a2g2g3 − 720a2
1g

2
2g3

+4896a2g
2
2g3 − 3744a2

1g
3
2g3 + 14976a2g

3
2g3 − 18720a2

1g
4
2g3 + 23040a2g

4
2g3

−25920a2
1g

5
2g3 + 17280a2g

5
2g3 − 180a1g

2
3 − 1728a1g2g

2
3 − 3744a1g

2
2g

2
3

−11520a1g
3
2g

2
3 − 25920a1g

4
2g

2
3 − 432g3

3 − 4320g2g
3
3 − 8640g2

2g
3
3

−17280g3
2g

3
3 + 26a1g4 + 620a1g2g4 + 4656a1g

2
2g4 + 10656a1g

3
2g4

+7200a1g
4
2g4 + 8640a1g

5
2g4 + 120g3g4 + 2208g2g3g4 + 12096g2

2g3g4

+17280g3
2g3g4 + 17280g4

2g3g4 − 252a1g2g3h2 + 2256a1g
2
2g3h2 + 7200a1g

3
2g3h2

−4320a1g
4
2g3h2 − 8640a1g

5
2g3h2 − 684g2

3h2 − 6624g2g
2
3h2 − 12960g2

2g
2
3h2

−17280g3
2g

2
3h2 − 8640g4

2g
2
3h2 + 64g4h2 + 1344g2g4h2 + 8448g2

2g4h2

+11520g3
2g4h2 − 240g3h

2
2 − 1872g2g3h

2
2 − 2304g2

2g3h
2
2 + 90g3h3

+1548g2g3h3 + 8496g2
2g3h3 + 18720g3

2g3h3 + 30240g4
2g3h3 + 8640g5

2g3h3

)
/
(
10 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
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The P5 linear-term is

In[14]:= Together[Coefficient[ x ∗ A[4] ∗ P4 + B[4] ∗ P4 − C[4] ∗ P3, x]]

Out[14]=
(
−a2

1a2 + 2a2
2 + a1a3 + a4 − 22a2

1a2g2 + 48a2
2g2 + 22a1a3g2 + 38a4g2

−216a2
1a2g

2
2 + 432a2

2g
2
2 + 216a1a3g

2
2 + 504a4g

2
2 − 720a2

1a2g
3
2

+1728a2
2g

3
2 + 720a1a3g

3
2 + 2832a4g

3
2 − 720a2

1a2g
4
2 + 1440a2

2g
4
2

+720a1a3g
4
2 + 6480a4g

4
2 − 4320a2

1a2g
5
2 + 4320a1a3g

5
2 + 4320a4g

5
2

−a3
1h2 + a1a2h2 + 8a3h2 − 22a3

1g2h2 + 70a1a2g2h2

+144a3g2h2 − 216a3
1g

2
2h2 + 504a1a2g

2
2h2 + 1056a3g

2
2h2 − 720a3

1g
3
2h2

+2448a1a2g
3
2h2 + 2880a3g

3
2h2 − 720a3

1g
4
2h2 + 6480a1a2g

4
2h2 − 4320a3

1g
5
2h2

+4320a1a2g
5
2h2 − 2a2

1h
2
2 − 4a2h

2
2 + 72a2g2h

2
2 − 144a2

1g
2
2h

2
2 + 624a2g

2
2h

2
2

+1440a2g
3
2h

2
2 + 4320a2

1g
4
2h

2
2 − 12a1h

3
2 − 72a1g2h

3
2 − 432a1g

2
2h

3
2

−1440a1g
3
2h

3
2 + 11a2h3 + 246a2g2h3 + 1800a2g

2
2h3 + 5328a2g

3
2h3

+7920a2g
4
2h3 + 4320a2g

5
2h3 + 15a1h2h3 + 342a1g2h2h3 + 2280a1g

2
2h2h3

+6480a1g
3
2h2h3 + 10800a1g

4
2h2h3 + 4320a1g

5
2h2h3 − 12h2

2h3 − 72g2h
2
2h3

−432g2
2h

2
2h3 − 1440g3

2h
2
2h3 + 9h2

3 + 198g2h
2
3 + 1368g2

2h
2
3

+3600g3
2h

2
3 + 6480g4

2h
2
3 + 4320g5

2h
2
3 + a1h4 + 22a1g2h4

+216a1g
2
2h4 + 720a1g

3
2 h4 + 720a1g

4
2h4 + 4320a1g

5
2h4 + 8h2h4

−18a1a2g3 + 36a3g3 − 144a1a2g2g3 + 576a3g2g3 − 432a1a2g
2
2g3

+2880a3g
2
2g3 − 2880a1a2g

3
2g3 + 5760a3g

3
2g3 − 12960a1a2g

4
2g3
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+8640a3g
4
2g3 − 216a2g

2
3 − 2160a2g2g

2
3 − 4320a2g

2
2g

2
3 − 8640a2g

3
2g

2
3

+24a2g4 + 528a2g2g4 + 3168a2g
2
2g4 + 2880a2g

3
2g4 − 18a2

1g3h2 − 90a2g3h2

−144a2
1g2g3h2 − 576a2g2g3h2 − 432a2

1g
2
2g3h2 + 720a2g

2
2g3h2 − 2880a2

1g
3
2g3h2

+5760a2g
3
2g3h2 − 4320g4

2g3h2 − 12960a2
1g

4
2g3h2 + 4320a2g

4
2g3h2 − 216a1g

2
3h2

−2160a1g2g
2
3h2 − 4320a1g

2
2g

2
3h2 − 8640a1g

3
2g

2
3h2 + 24a1g4h2 + 528a1g2g4h2

+3168a1g
2
2g4h2 + 2880a1g

3
2g4h2 − 1152a1g2g3h

2
2 − 2160a1g

2
2g3h

2
2 − 4320a1g

4
2g3h

2
2

+18a1g3h3 + 432a1g2g3h3 + 2448a1g
2
2g3h3 + 2880a1g

3
2g3h3 − 4320a1g

4
2g3h3

−216g2
3h3 − 2160g2g

2
3h3 − 4320g2

2g
2
3h3 − 8640g3

2g
2
3h3 + 24g4h3

+528g2g4h3 + 3168g2
2g4h3 + 2880g3

2g4h3 − 126g3h2h3 − 1152g2g3h2h3

−2160g2
2g3h2h3 + 36g3h4 + 576g2g3h4 + 2880g2

2g3h4 + 5760g3
2g3h4 + 8640g4

2g3h4

+144g2h2h4 + 1056g2
2h2h4 + 2880g3

2h2h4

)
/
(
5 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
and the constant-term is

In[15]:= Together[Coefficient[ x ∗ (x ∗ A[4] ∗ P4 + B[4] ∗ P4 − C[4] ∗ P3), x]]

Out[15]=
(
−a2

1a3 + 2a2a3 + a1a4 − 22a2
1a3g2 + 48a2a3g2

+22a1a4g2 − 216a2
1a3g

2
2 + 432a2a3g

2
2 + 216a1a4g

2
2 − 720a2

1a3g
3
2

+728a2a3g
3
2 + 720a1a4g

3
2 − 720a2

1a3g
4
2 + 1440a2a3g

4
2 + 720a1a4g

4
2

−4320a2
1a3g

5
2 + 4320a1a4g

5
2 − 2a1a3h2 + 8a4h2 + 144a4g2h2
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−144a1a3g
2
2h2 + 1056a4g

2
2h2 + 2880a4g

3
2h2 + 4320a1a3g

4
2h2 − 12a3h

2
2

−72a3g2h
2
2 − 432a3g

2
2h

2
2 − 1440a3g

3
2h

2
2 + 9a3h3 + 198a3g2h3

+1368a3g
2
2h3 + 3600a3g

3
2h3 + 6480a3g

4
2h3

−18a1a3g3 + 36a4g3 − 144a1a3g2g3 + 576a4g2g3 − 432a1a3g
2
2g3

+2880a4g
2
2g3 − 2880a1a3g

3
2g3 + 5760a4g

3
2g3 − 12960a1a3g

4
2g3 + 8640a4g

4
2g3

−216a3g
2
3 − 2160a3g2g

2
3 − 4320a3g

2
2g

2
3 − 8640a3g

3
2g

2
3 + 24a3g4

+528a3g2g4 + 3168a3g
2
2g4 + 2880a3g

3
2g4 − 126a3g3h2 − 1152a3g2g3h2

−2160a3g
2
2g3h2 − 4320a3g

4
2g3h2.

+4320a3g
5
2h3

)
/
(
5 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
.

This yields three new relations. First, we have the P5 quadratic-term comparison:

a3

2!
+ a3g2 + a2g2 +

a1h
2
2

2!
+ a1h3 + h2h3 + h4 =(

−a3
1 + 3a1a2 + 2a3 − 24a3

1g2 + 76a1a2g2 + 76a3g2 − 260a3
1g

2
2

+788a1a2g
2
2 + 1008a3g

2
2 − 1152a3

1g
3
2 + 3744a1a2g

3
2 + 5664a3g

3
2 − 2160a3

1g
4
2

+7056a1a2g
4
2 + 12960a3g

4
2 − 5760a3

1g
5
2 + 8640a1a2g

5
2 + 8640a3g

5
2 − 8640a3

1g
6
2

+8640a1a2g
6
2 − 2a2

1h2 + 14a2h2 − 4a2
1g2h2 + 332a2g2h2 − 144a2

1g
2
2h2

+3216a2g
2
2h2 − 288a2

1g
3
2h2 + 14112a2g

3
2h2 + 4320a2

1g
4
2h2 + 21600a2g

4
2h2

+8640a2
1g

5
2h2 + 8640a2g

5
2h2 + a1h

2
2 + 214a1g2h

2
2 + 1464a1g

2
2h

2
2 + 4176a1g

3
2h

2
2

+6480a1g
4
2h

2
2 + 4320a1g

5
2h

2
2 − 16h3

2 + 192g2
2h

3
2 + 13a1h3 + 336a1g2h3 + 3204a1g

2
2h3
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+13440a1g
3
2h3 + 28080a1g

4
2h3 + 34560a1g

5
2h3 + 8640a1g

6
2h3 + 34h2h3 + 684g2h2h3

+4848g2
2h2h3 + 12960g3

2h2h3 + 12960g4
2h2h3 + 8640g5

2h2h3 + 2h4 + 76g2h4

+1008g2
2h4 + 5664g3

2h4 + 12960g4
2h4 + 8640g5

2h4

−18a2
1g3 + 40a2g3 − 180a2

1g2g3 + 744a2g2g3 − 720a2
1g

2
2g3

+4896a2g
2
2g3 − 3744a2

1g
3
2g3 + 14976a2g

3
2g3 − 18720a2

1g
4
2g3 + 23040a2g

4
2g3

−25920a2
1g

5
2g3 + 17280a2g

5
2g3 − 180a1g

2
3 − 1728a1g2g

2
3 − 3744a1g

2
2g

2
3

−11520a1g
3
2g

2
3 − 25920a1g

4
2g

2
3 − 432g3

3 − 4320g2g
3
3 − 8640g2

2g
3
3

−17280g3
2g

3
3 + 26a1g4 + 620a1g2g4 + 4656a1g

2
2g4 + 10656a1g

3
2g4

+7200a1g
4
2g4 + 8640a1g

5
2g4 + 120g3g4 + 2208g2g3g4 + 12096g2

2g3g4

+17280g3
2g3g4 + 17280g4

2g3g4 − 252a1g2g3h2 + 2256a1g
2
2g3h2 + 7200a1g

3
2g3h2

−4320a1g
4
2g3h2 − 8640a1g

5
2g3h2 − 684g2

3h2 − 6624g2g
2
3h2 − 12960g2

2g
2
3h2

−17280g3
2g

2
3h2 − 8640g4

2g
2
3h2 + 64g4h2 + 1344g2g4h2 + 8448g2

2g4h2

+11520g3
2g4h2 − 240g3h

2
2 − 1872g2g3h

2
2 − 2304g2

2g3h
2
2 + 90g3h3

+1548g2g3h3 + 8496g2
2g3h3 + 18720g3

2g3h3 + 30240g4
2g3h3 + 8640g5

2g3h3

)
/
(
10 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
. (3.22)
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Next, we have the P5 linear-term comparison

a4 + a3h2 + a2h3 + a1h4 + h5 =(
−a2

1a2 + 2a2
2 + a1a3 + a4 − 22a2

1a2g2 + 48a2
2g2 + 22a1a3g2 + 38a4g2

−216a2
1a2g

2
2 + 432a2

2g
2
2 + 216a1a3g

2
2 + 504a4g

2
2 − 720a2

1a2g
3
2

+1728a2
2g

3
2 + 720a1a3g

3
2 + 2832a4g

3
2 − 720a2

1a2g
4
2 + 1440a2

2g
4
2

+720a1a3g
4
2 + 6480a4g

4
2 − 4320a2

1a2g
5
2 + 4320a1a3g

5
2 + 4320a4g

5
2

−a3
1h2 + a1a2h2 + 8a3h2 − 22a3

1g2h2 + 70a1a2g2h2

+144a3g2h2 − 216a3
1g

2
2h2 + 504a1a2g

2
2h2 + 1056a3g

2
2h2 − 720a3

1g
3
2h2

+2448a1a2g
3
2h2 + 2880a3g

3
2h2 − 720a3

1g
4
2h2 + 6480a1a2g

4
2h2 − 4320a3

1g
5
2h2

+4320a1a2g
5
2h2 − 2a2

1h
2
2 − 4a2h

2
2 + 72a2g2h

2
2 − 144a2

1g
2
2h

2
2 + 624a2g

2
2h

2
2

+1440a2g
3
2h

2
2 + 4320a2

1g
4
2h

2
2 − 12a1h

3
2 − 72a1g2h

3
2 − 432a1g

2
2h

3
2

−1440a1g
3
2h

3
2 + 11a2h3 + 246a2g2h3 + 1800a2g

2
2h3 + 5328a2g

3
2h3

+7920a2g
4
2h3 + 4320a2g

5
2h3 + 15a1h2h3 + 342a1g2h2h3 + 2280a1g

2
2h2h3

+6480a1g
3
2h2h3 + 10800a1g

4
2h2h3 + 4320a1g

5
2h2h3 − 12h2

2h3 − 72g2h
2
2h3

−432g2
2h

2
2h3 − 1440g3

2h
2
2h3 + 9h2

3 + 198g2h
2
3 + 1368g2

2h
2
3

+3600g3
2h

2
3 + 6480g4

2h
2
3 + 4320g5

2h
2
3 + a1h4 + 22a1g2h4

+216a1g
2
2h4 + 720a1g

3
2 h4 + 720a1g

4
2h4 + 4320a1g

5
2h4 + 8h2h4

−18a1a2g3 + 36a3g3 − 144a1a2g2g3 + 576a3g2g3 − 432a1a2g
2
2g3

+2880a3g
2
2g3 − 2880a1a2g

3
2g3 + 5760a3g

3
2g3 − 12960a1a2g

4
2g3 + 8640a3g

4
2g3
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−216a2g
2
3 − 2160a2g2g

2
3 − 4320a2g

2
2g

2
3 − 8640a2g

3
2g

2
3 + 24a2g4

+528a2g2g4 + 3168a2g
2
2g4 + 2880a2g

3
2g4 − 18a2

1g3h2 − 90a2g3h2

−144a2
1g2g3h2 − 576a2g2g3h2 − 432a2

1g
2
2g3h2 + 720a2g

2
2g3h2 − 2880a2

1g
3
2g3h2

+5760a2g
3
2g3h2 − 4320g4

2g3h2 − 12960a2
1g

4
2g3h2 + 4320a2g

4
2g3h2 − 216a1g

2
3h2

−2160a1g2g
2
3h2 − 4320a1g

2
2g

2
3h2 − 8640a1g

3
2g

2
3h2 + 24a1g4h2 + 528a1g2g4h2

+3168a1g
2
2g4h2 + 2880a1g

3
2g4h2 − 1152a1g2g3h

2
2 − 2160a1g

2
2g3h

2
2 − 4320a1g

4
2g3h

2
2

+18a1g3h3 + 432a1g2g3h3 + 2448a1g
2
2g3h3 + 2880a1g

3
2g3h3 − 4320a1g

4
2g3h3

−216g2
3h3 − 2160g2g

2
3h3 − 4320g2

2g
2
3h3 − 8640g3

2g
2
3h3 + 24g4h3

+528g2g4h3 + 3168g2
2g4h3 + 2880g3

2g4h3 − 126g3h2h3 − 1152g2g3h2h3

−2160g2
2g3h2h3 + 36g3h4 + 576g2g3h4 + 2880g2

2g3h4 + 5760g3
2g3h4

+8640g4
2g3h4 + 144g2h2h4 + 1056g2

2h2h4

+2880g3
2h2h4

)
/
(
5 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
(3.23)
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and finally, the P5 constant-term comparison is

a5 =
(
−a2

1a3 + 2a2a3 + a1a4 − 22a2
1a3g2 + 48a2a3g2(

−a2
1a3 + 2a2a3 + a1a4 − 22a2

1a3g2 + 48a2a3g2

+22a1a4g2 − 216a2
1a3g

2
2 + 432a2a3g

2
2 + 216a1a4g

2
2 − 720a2

1a3g
3
2

+728a2a3g
3
2 + 720a1a4g

3
2 − 720a2

1a3g
4
2 + 1440a2a3g

4
2 + 720a1a4g

4
2

−4320a2
1a3g

5
2 + 4320a1a4g

5
2 − 2a1a3h2 + 8a4h2 + 144a4g2h2

−144a1a3g
2
2h2 + 1056a4g

2
2h2 + 2880a4g

3
2h2 + 4320a1a3g

4
2h2 − 12a3h

2
2

−72a3g2h
2
2 − 432a3g

2
2h

2
2 − 1440a3g

3
2h

2
2 + 9a3h3 + 198a3g2h3

+1368a3g
2
2h3 + 3600a3g

3
2h3 + 6480a3g

4
2h3

−18a1a3g3 + 36a4g3 − 144a1a3g2g3 + 576a4g2g3 − 432a1a3g
2
2g3

+2880a4g
2
2g3 − 2880a1a3g

3
2g3 + 5760a4g

3
2g3 − 12960a1a3g

4
2g3 + 8640a4g

4
2g3

−216a3g
2
3 − 2160a3g2g

2
3 − 4320a3g

2
2g

2
3 − 8640a3g

3
2g

2
3 + 24a3g4

+528a3g2g4 + 3168a3g
2
2g4 + 2880a3g

3
2g4 − 126a3g3h2 − 1152a3g2g3h2

−2160a3g
2
2g3h2 − 4320a3g

4
2g3h2

+4320a3g
5
2h3

)
/
(
5 (1 + 6g2)

(
1 + 12g2 + 12g2

2

)2)
. (3.24)

Notice, that when comparing the above polynomials that resulted from the generating

function (3.1) with those that arose from the three-term recurrence relation (2.3) the xn, xn−1

and xn−2 coefficients for n = 3, 4, 5 were always identical and the remaining coefficients were

dissimilar. For example, for the P3 comparisons we observe that the x3, x2 and x-coefficients

from the polynomial P3 in (3.16) obtained from the generating function (3.1) were the same
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as those that arose from computing P3 from the three-term recurrence relation (2.3); however

the constant terms were different. This pattern continued for the P4 and P5 comparisons and

will continue for all other higher-order comparisons as well. This is apparent because the

coefficients xn, xn−1 and xn−2 obtained via three-term recurrence relation (2.3) are dependent

on An, Bn and Cn in (3.14), which were derived from the generating function, and the lower-

order coefficients xn−k for k = 3, 4, . . . , n − 1 are not. For example, when comparing the

coefficients of P6 we also establish relationships for the constant, linear, quadratic and cubic

terms, and as mentioned above, this pattern continues for all higher-order polynomials as

well.

Now that these relations have been discovered it is necessary to analyze them in order

to make inferences on their nature. However, we first note the complexity involved in the

above relations. Namely, if our approach is to be effective, we must make some additional

assumptions that simplify calculations and reduce our problem to a manageable format, the

details of which are discussed next.

3.3 SOME COMMENTS ON THE COMPLEXITY OF THE SHEFFER
B-TYPE 1 CLASS

We first discuss the ramifications of the complexity of the B-Type 1 polynomials P0, . . . , P5,

which were discovered in Section 3.1 and the comparisons obtained in Section 3.2. We

emphasize that the coefficients cn,0, cn,1 and cn,2 as respectively defined in (3.11), (3.12) and

(3.13) are sums involving the g2-term and other multiplicative constants that grow arbitrary
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large as n increases. In fact, it can readily be shown that all of the coefficients of a given

polynomial from the set {P0, P1, . . . , P5}, and all higher-order polynomials as well, are also

sums that grow arbitrary large as n increases. The notable exceptions to this are the constant

terms, since for a given polynomial Pk the constant term is ak. This is in stark contrast to

the B-Type 0 polynomials and is a crucial observation because the B-Type 0 polynomials

have coefficients that have a fixed structure.

To elaborate on this notion we take G(t) ≡ 0 in (3.1) and obtain

A(t)exp[xH(t)] =
∞∑

n=0

Pn(x)tn, (3.25)

which is the generating function for the Sheffer B-Type 0 polynomials. Also, we can obtain

the coefficients of xn, xn−1 and xn−2 for these polynomials by evaluating each of the expres-

sions in (3.11), (3.12) and (3.13) by assigning g2 = g3 = g4 = 0 since G(t) ≡ 0. We then see

that (3.11), (3.12) and (3.13) then respectively become

c̆n,0 :=
1

n!
(3.26)

c̆n,1 :=
a1

(n− 1)!
+

h2

(n− 2)!
(3.27)

c̆n,2 :=
a2

(n− 2)!
+
a1h2 + h3

(n− 3)!
+

h2
2

2!(n− 4)!
, (3.28)

where we have labeled these coefficients c̆n,0, c̆n,1 and c̆n,2 to distinguish them form the

B-Type 1 coefficients. It is now clear that for any n-value we have exactly one term in

(3.26), at most two terms in (3.27) and at most three terms in (3.28). Whereas (3.11) has

exactly bn/2c + 1 terms, (3.12) at most b(n− 1)/2c + b(n− 2)/2c + b(n− 3)/2c + 3 terms

and (3.13) at mostb(n− 2)/2c+ b(n− 3)/2c+ b(n− 4)/2c+ b(n− 5)/2c+ b(n− 6)/2c+ 5
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terms. Therefore, we obtain expressions for An, Bn and Cn (which we label Ăn, B̆n and C̆n)

in the three-term recurrence (2.3) using (3.26), (3.27) and (3.28) above:

Ăn :=
1

n+ 1

B̆n :=
a1 + 2nh2

n+ 1

C̆n :=
1

n+ 1
(a2

1 − 2a2 + 2a1h2 − 4h2
2 + 3h3 + (4h2

2 − 3h3)n).

Without any computations, it is intuitively obvious that the An, Bn and Cn in the B-Type

1 class will not be as simple to work with. For example, the expression for An was obtained

using Mathematica and is as follows:

Together[A[n]]

4Gamma[1 + n]HypergeometricU[−1
2
− n

2
, 1

2
,− 1

4g2
]

Gamma[1 + n]HypergeometricU[1
2
− n

2
, 3

2
,− 1

4g2
]
,

where

Gamma[z] := Γ(n) =

∫ ∞

0

tz−1e−tdt, Re(z) > 0

and

HypergeometricU[a, b, z] := 1F1(a; b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!
.

Proceeding a wealth of computing time, expressions were eventually obtained for Bn

and Cn as well. However, these expressions are so obtrusive that to display them would be

entirely disadvantageous - the actual size of the general expression for Cn exceeds two pages.

Nonetheless, we can omit displaying explicit forms for Bn and Cn with impunity because our
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point of emphasis has been demonstrated as evidenced by the An term alone.

The second aspect we address is the exceedingly cumbersome expressions that arise when

comparing respective coefficients from both the generating function (3.1) and the three-term

recurrence relation (2.3) of a given B-Type 1 polynomial as done in the previous section.

In particular, we see a wealth of g3 and g4 terms in the comparisons developed in section

3.2 - for a paradigm example, consider the P5 linear-term comparison. Therefore, the P4

and P5 comparisons of the coefficients obtained from the generating function (3.1) and the

three-term recurrence relation (2.3) (and any subsequent comparisons for that matter) would

be exceedingly more manageable if we additionally take gi = 0,∀i ≥ 3.

Now, there are some very important structures embedded in the comparisons themselves

and we address these next. We first turn our attention to the comparison of the coefficients

of the constant-term in the polynomial P3 that was derived in (3.19), which we rewrite below.

a3 =
1

3(1 + 2g2)2
(−a3

1 + 3a1a2 + 4a1a2g2 − 12a3
1g

2
2 + 12a1a2g

2
2−

2a2
1h2 + 4a2h2 + 12a2

1g2h2 − 4a1h
2
2 + 3a1h3 + 12a1g2h3 + 12a1g

2
2h3).

As seen above, and in all of the comparisons we established, g2 is one of the most abundant

terms, which is intuitively obvious since g2 is in the argument of each sum in (3.11), (3.12) and

(3.13). Therefore, the natural consideration that emerges is whether or not an assumption

can be made on g2 that will reduce the complexity of (3.19). We also mention that all

simplifying assumptions that are additional to the original suppositions a0 = 1 and h1 = 1

must be restricted to alterations of the G(t) terms, as varying the terms of H(t) or A(t)

would not reduce (3.1) to the B-Type 0 class when we take G(t) ≡ 0.
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Now, several assumptions on the g2-term were attempted before an appropriate choice

was made. Below is an example of a particular choice for g2 that could not be made, but led

to a beneficial discovery nonetheless.

Notice that (3.19) can be set equal to zero, thusly taking on the form

− a3
1 + 3a1a2 + 4a1a2g2 − 12a3

1g
2
2 + 12a1a2g

2
2 − 2a2

1h2 + 4a2h2

+ 12a2
1g2h2 − 4a1h

2
2 + 3a1h3 + 12a1g2h3 + 12a1g

2
2h3 − 3a3(1 + 2g2)

2 = 0.

Then, the choice of g2 = −1/2 would reduce the above to the following format:

−a3
1 + a1a2 − 4a2

1h2 + a2h2 − a1h
2
2 = 0.

However, the choice of g2 = −1/2 results in (3.15) becoming

P2(x) = a2 + (a1 + h2)x

since g2 = −1/2 is a zero of (3.11) for n = 2. Therefore, this choice is not permissible as it

violates Definition 2.1. Moreover, with this choice of g2 there would never be a polynomial

of degree 2 in the sequence {Pn} as defined by (3.1). In addition, g2 obviously cannot be a

solution to φn = 0.

Nonetheless, we now consider the choice of g2 = 1/2. This particular choice reduces

(3.19) to the following form:

−a3
1 + 2a1a2 − 3a3 + a2

1h2 + a2h2 − a1h
2
2 + 3a1h3 = 0.

This results in a modified expression for a3:

a3 =
1

3
(−a3

1 + 2a1a2 + a2
1h2 + a2h2 − a1h

2
2 + 3a1h3). (3.29)

52



Thus, in weighing (3.29) against (3.19) the discrepancies in the levels of complexity are

apparent. However, there is still an unanswered question. What does the choice of g2 = 1/2

do to the other comparisons that were discovered in Section 3.2? To answer this inquiry, we

refer to the later comparisons as developed in Section 3.2 and substitute g2 = 1/2 for each

case, starting with the constant and linear-term comparisons of P4 and continuing through

the constant, linear and quadratic-term comparisons of P5.

With the choice of g2 = 1/2 the P4 constant-term comparison (3.21) becomes

a4 =
1

16
(−a2

1a2 + 6a2
2 + a1a3 − 4a1a2h2 + 9a3h2 − a2h

2
2 + 6a2h3) (3.30)

and the P4 linear-term comparison (3.20) simplifies to

− a3
1+7a1a2 − 6a3 − 4a2

1h2 − a2h2 + 4a1h
2
2 − h2

2 − 9a1h3

+ 15h2h3 − 16h4 = 0.

Then, for the P5 constant-term comparison we see that (3.24) takes the form

a5 =
1

250
(−42a2

1a3 + 55a2a3 + 42a1a4 + 29a1a3h2 + 88a4h2

− 42a3h
2
2 + 180a3h3), (3.31)

the P5 linear-term comparison (3.23) becomes

− 42a2
1a2 + 55a2

2 + 42a1a3 − 120a4 − 42a3
1h2 + 126a1a2h2 − 162a3h2

+ 29a2
1h

2
2 + 46a2h

2
2 − 42a1h

3
2 − 15a2h3 + 297a1h2h3 − 42h2

2h3 + 180h2
3

− 208a1h4 + 88h2h4 − 250h5 = 0 (3.32)
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and the P5 quadratic-term comparison (3.22) is now

− 42a3
1 + 97a1a2 − 120a3 + 29a2

1h2 + 23a2h2 − 29a1h
2
2 + 2h3

2

+ 102a1h3 + 18h2h3 − 120h4 = 0 (3.33)

In all of the comparisons above, the reduction in complexity is evident.

Now that the above comparisons have been established, we see some very important

potential patterns. First, we notice that the highest h-term in the expression for a3 as

defined by (3.29) is h3. This is also the case for the expressions for a4 in (3.21) and a5 in

(3.24). Second, we observe that the highest h-term in the P4 linear comparison (3.20) is

h4 and the highest h-term in the P5 linear comparison (3.25) is h5. These observations are

important because they provide information on how to develop necessary conditions that

the terms a1, a2, a3 and h2 must satisfy in order for the B-Type 1 polynomials as defined

by (3.1), with g2 = 1/2 and gi = 0,∀i ≥ 3, to be orthogonal. We discuss this further.

With the assignment of g2 = 1/2 and gi = 0,∀i ≥ 3, we first discover an expression for

h3 by utilizing the relation for a3 in (3.29), which results in

h3 =
1

3a1

(a3
1 + 3a3 − 2a1a2 − a2

1h2 − a2h2 + a1h
2
2). (3.34)

Therefore, we have written h3 in terms of only a1, a2, a3 and h2. Now notice that the P4

linear comparison (3.20) can be solved for h4 as follows, with a3 replaced by (3.29)

h4 =
1

16
(a3

1 + 3a1a2 − 6a2
1h2 − 3a2h2 + 6a1h

2
2 − h3

2 − 15a1h3 + 15h2h3)

and the right-hand side of the above equation involves the terms a1, a2, h2 and h3. However,

we can then substitute (3.34) and obtain an expression for h4 that involves only a1, a2, a3
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and h2, as written below

h4 =
1

16a1

(
a3

1 + 3a1a2 − 6a2
1h2 − 3a2h2 + 6a1h

2
2 − h3

2

+ 5
(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
(3.35)

−5h2

a1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

))
.

Also, observe that the P5 linear-term comparison (3.23) can be solved for h5:

h5 =
1

250
(−42a2

1a2 + 55a2
2 + 42a1a3 − 120a4 − 42a3

1h2 + 126a1a6h2

− 162a3h2 + 29a2
1h2 + 46a2h

2
2 − 42a1h

3
2 − 15a2h3 + 297a1h2h3

− 42h2
2h3 + 180h2

3 − 208a1h4 + 88h2h4)

and the right-hand side of the above equation involves only the terms a1, a2, a3, a4, h2, h3

and h4. We then substitute in (3.34) and (3.35), with a4 replaced by (3.30), which results in

h5 =
1

250

[
−23a4

1

2
− 23a2

1a2

2
+ 10a2

2 + 46a3
1h2 +

29a1a2h2

2

− 59a2
1h

2
2 − 23a2h

2
2 +

69a1h
3
2

2

− 23

2
a1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
+

20

a1

a2

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
− 45

2
h2

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
+

14h2
2

a1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
+

20

a2
1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)2
− 13a1

(
a3

1 + 3a1a2 − 6a2
1h2 − 3a2h2 + 6a1h

2
2 − h3

2
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+
20

a2
1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)2
− 13a1

(
a3

1 + 3a1a2 − 6a2
1h2 − 3a2h2 + 6a1h

2
2 − h3

2

+ 5
(
a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
− 5h2

a1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)
+

11

2
h2

(
a3

1 + 3a1a2 − 6a2
1h2 − 3a2h2 + 6a1h

2
2 − h3

2

+5
(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

))
−5h2

a1

(
−a3

1 + 2a1a2 − 3a3 + a2
1h2 + a2h2 − a1h

2
2

)]
. (3.36)

Thus, (3.36) now only involves a1, a2, a3 and h2. Lastly, upon substituting (3.34) and

(3.35) into (3.33) and using some algebraic manipulations we see that the P5 quadratic-term

comparison becomes

1

2a1

(a1 − h2)
(
44a3

1 − 14a2
1h2 − 63 (a2h2 − 3a3) + a1

(
44h2

2 − 137a2

))
= 0. (3.37)

In the above analysis we were able to reduce (3.20) and (3.23) to expressions for h4

and h5 that involve only a1, a2, a3 and h2. In addition, in (3.37) we obtained an algebraic

equation that related all of the terms a1, a2, a3 and h2. Therefore, if the polynomials P6,

P7 and P8 behave in the same fashion as P3, P4 and P5 we can construct a system of four

simultaneous nonlinear equations with unknowns a1, a2, a3 and h2. Solving this system will

yield the conditions that a1, a2, a3 and h2 must satisfy in order for the B-Type 1 polynomials

as defined by (3.1), with g2 = 1/2 and gi = 0,∀i ≥ 3, to be orthogonal as was mentioned

earlier.

Based on the analysis that led to (3.37), we now derive comparisons between the gener-
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ating function (3.1) and the three-term recurrence relation (2.3) for the P6 cubic term, the

P7 fourth-degree term and the P8 fifth-degree term. That is, from our previous analysis it

appears that the highest h-term in each of the comparisons for the P6 cubic term, the P7

fourth-degree term and the P8 fifth-degree will be h4. We first construct the polynomials P6

and P7 using the same Mathematica program Genfunction and the methodology described

in Section 3.2. These computations are as follows.

The P6 polynomial that results from expanding (3.1) accordingly is

P6(x) =a6 + (a5 + a4h2 + a3h3 + a2h4 + a1h5 + h6)x

+

(
a4 + a3h2 +

a2h
2
2

2
+ a2h3 + a1h2h3 +

h2
3

2
+ a1h4 + h2h4 + h5

)
x2

+
1

6
(4a3 + 6a2h2 + 3a1h

2
2 + h3

2 + 6a1h3 + 6h2h3 + 6h4)x
3

+
1

12
(5a2 + 8a1h2 + 6h2

2 + 8h3)x
4

+
1

60
(13a1 + 25h2)x

5 +
19

180
x6 (3.38)
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and the P7 polynomial that results from (3.1) is discovered to be

P7(x) =a7 + (a6 + a5h2 + a4h3 + a3h4 + a2h5 + a1h6 + h7)x

+

(
a5 + a4h2 +

a3h
2
2

2
+ a3h3 + a2h2h3 +

a1h
2
3

2
+ a2h4

+a1h2h4 + h3h4 + a1h5 + h2h5 + h6)x
2

+

(
2a4

3
+ a3h2 +

a2h
2
2

2
+
a1h

3
2

6
+ a2h3 + a1h2h3 +

h2
2h3

2

+
h2

3

2
+ a1h4 + h2h4 + h5

)
x3

+

(
5a3

12
+

2a2h2

3
+
a1h

2
2

2
+
h3

2

6
+

2a1h3

3
+ h2h3 +

2h4

3

)
x4

+

(
13a2

60
+

5a1h2

12
+
h2

2

3
+

5h3

12

)
x5

+

(
19a1

180
+

13h2

60

)
x6 +

29

630
x7 (3.39)

Now that all of our simplifying assumptions have been finalized and all of our essential

computations have been completed, we restate our current problem.

The generating function (3.1) now becomes

A(t)exp

[
xH(t) +

1

2
x2t2

]
=

∞∑
n=0

Pn(x)tn (3.40)

and (3.11), (3.12) and (3.13) now have the form

cn,0 := φn(1/2)

cn,1 := a1φn−1(1/2) + h2φn−2(1/2)

cn,2 := a2φn−2(1/2) + (a1h2 + h3)φn−3(1/2) +
h2

2

2!
φn−4(1/2).

By using the same method as conducted in Section 3.2 we compare coefficients of xk from the

generating function (3.40) and the three-term recurrence relation (2.3) and thusly have the
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following results for the P6 cubic-term comparison, the P7 fourth-degree term comparison

and the P8 fifth-degree term comparison. We first state each respective comparison and then

substitute the expressions for h3 and h4, as discovered in (3.34) and (3.35), as necessary.

The P6 cubic-term comparison is

1

4a1

(−320a3
1 + 1438a1a2 − 1365a3 − 478a2

1h2 − 73a2h2 + 478a1h
2
2

− 135h3
2 − 1236a1h3 + 2601h2h3 − 3900h4) = 0.

Upon substituting (3.34) and (3.35) into the above expression we obtain

3 (a1 − h2)
(
324a3

1 + 92a2
1h2 − 469 (a2h2 − 3a3)

+a1

(
−1209a2 + 324h2

2

))
= 0. (3.41)

The P7 fourth-degree term comparison becomes

− 17225a3
1 + 43730a1a2 − 49647a3 + 7945a2

1h2 + 5917a2h2 − 7945a1h
2
2

+ 676h3
2 + 32139a1h3 + 17508h2h3 − 90896h4 = 0.

After substituting (3.34) and (3.35) into the above expression we have

3

a1

(a1 − h2)
(
5404a3

1 − 1148a2
1h2 − 7523 (−3a3 + a2h2)

+a1

(
−17183a2 + 5404h2

2

))
= 0. (3.42)

Lastly, the P8 fifth-degree term comparison is as follows

− 47708544a3
1 + 179640448a1a2 − 177307392a3 − 36514816a2

1h2

− 2333056a2h2 + 36514816a1h
2
2 − 11393920h3

2 − 102887808a1h3

+ 280195200h2h3 − 558581760h4 = 0.
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From substituting in (3.34) and (3.35) above we observe that

1280

a1

(a1 − h2)
(
45032a3

1 + 7168a2
1h2 − 63405 (a2h2 − 3a3)

+a1

(
45032h2

2 − 160637a2

))
= 0. (3.43)

Hence, (3.37), (3.41), (3.42) and (3.43) result in a simultaneous system of nonlinear algebraic

equations in the variables a1, a2, a3 and h2 as seen below.

EQUATION 1:

1

2a1

(a1 − h2)
(
44a3

1 − 14a2
1h2 − 63 (a2h2 − 3a3)

+a1

(
44h2

2 − 137a2

))
= 0 (3.44)

EQUATION 2:

3

4a1

(a1 − h2)
(
324a3

1 + 92a2
1h2 − 469 (a2h2 − 3a3)

+a1

(
324h2

2 − 1209a2

))
= 0 (3.45)

EQUATION 3:

3

a1

(a1 − h2)
(
5404a3

1 − 1148a2
1h2 − 7523 (a2h2 − 3a3)

+a1

(
5404h2

2 − 17183a2

))
= 0 (3.46)

EQUATION 4:

1

a1

1280 (a1 − h2)
(
45032a3

1 + 7168a2
1h2 − 63405 (a2h2 − 3a3)

+a1

(
45032h2

2 − 160637a2

))
= 0 (3.47)
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It is interesting that (3.44), (3.45), (3.46) and (3.47) all have the same structure. That is,

they all fit the format

d1

a1

(a1 − h2)
(
d2a

3
1 + d3a

2
1h2 + d4 (a2h2 − 3a3) + a1

(
d5h

2
2 − d6a2

))
= 0 (3.48)

for certain integer constants d1, d2, . . . , d6.

Now that the above system is established, our goal is to find all of its solutions, either

explicit or implicit, in the variables a1, a2, a3 and h2. Upon determining all of the system’s

solutions we obtain restrictions on the variables a1, a2, a3 and h2 that must be satisfied in

order for the polynomial sequences defined by (3.40) to be orthogonal. Namely, if all of the

restrictions lead to contradictions, then no orthogonal polynomial sequences can exist and if

at least one of the restrictions does not lead to a contradiction, then orthogonal polynomial

sequences will arise.

Determining all of the solutions to the above system is a daunting task and we again

utilize Mathematica, which has the ability to simultaneously solve nonlinear systems of

algebraic equations. The command we use here is entitled Solve, which yields only generic

solutions, i.e. conditions on the variables that one explicitly solves for, and not on any other

parameters in the system - refer to [21] for more details.

We first note that the factor (a1−h2) appears in all of the equations (3.44), (3.45), (3.46)

and (3.47) and that omitting this factor from each of them results in a second system, which

is as follows:
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EQUATION 1A:

1

2a1

(
44a3

1 − 14a2
1h2 − 63 (a2h2 − 3a3)

+a1

(
44h2

2 − 137a2

))
= 0 (3.49)

EQUATION 2A:

3

4a1

(
324a3

1 + 92a2
1h2 − 469 (a2h2 − 3a3) +

a1

(
324h2

2 − 1209a2

))
= 0 (3.50)

EQUATION 3A:

3

a1

(
5404a3

1 − 1148a2
1h2 − 7523 (a2h2 − 3a3)

+a1

(
5404h2

2 − 17183a2

))
= 0 (3.51)

EQUATION 4A:

1280

a1

(
45032a3

1 + 7168a2
1h2 − 63405 (a2h2 − 3a3)

+a1

(
45032h2

2 − 160637a2

))
= 0 (3.52)

The reminder of this section amounts to analyzing the solution sets to the system defined

by (3.49), (3.50), (3.51) and (3.52) that arise upon implementing the Solve command.

Now, even though the entire system comprising (3.49), (3.50), (3.51) and (3.52) can be

solved by Mathematica it is imperative to explain how this is accomplished, as there are

some subtleties.

First, we respectively assign the left-hand side of each of (3.49), (3.50), (3.51) and (3.52)

as {E1,. . .,E4}, then construct the following:
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In[1]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a1, a2, a3, h2}]

Out[1]=
{{

a3 → 2
3
a3

1, a2 → a2
1, h2 → a1

}
,
{
a3 → 2

3
a3

1, a2 → a2
1, h2 → a1

}}
Solve::svars : Equations may not give solutions for all “solve” variables.

This prompts Mathemtica to simultaneously solve the above system for each of the variables

a1, a2, a3 and h2. In this case we see that Mathematica outputs the preface; “Equations may

not give solutions for all “solve” variables” indicating that Mathematica did not necessarily

solve the system. In fact, if Mathematica does not display this preface, then the output

can be interpreted as definitive. Also, any combination of these variables can be treated as

parameters and then Mathematica can attempt to find implicit solutions. For example, we

can solve the above system for a1 and treat a2, a3 and h2 as parameters as seen below:

In[2]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a1}]

Out[2]={}

For this particular case, Mathematica outputs “{}”, which indicates that there does not

exist any solutions to the system for the variable a1. Therefore, to more accurately deter-

mine whether or not the system defined by (3.49), (3.50), (3.51) and (3.52) has any solutions

we must thusly exhaust all possible parameter selections and there are of course a total of∑4
n=1 C(4, n) = 15 choices. As it turns out, only the following choices yield non-null outputs:
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In[3]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a2, a3, h2}]

Out[3]=
{{

a3 → 2
3
a3

1, a2 → a2
1, h2 → a1

}}

In[4]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a1, a3, h2}]

Out[4]=
{{

a3 → −2
3
a

3/2
2 , h2 → −√a2, a1 → −√a2

}
,
{

a3 → 2
3
a

3/2
2 , h2 →

√
a2, a1 →

√
a2

}}

In[5]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a1, a2, h2}]

Out[5]=
{{

a2 →
(
−3

2

)2/3
a

2/3
3 , h2 → −

(
−3

2

)1/3
a

1/3
3 , a1 → −

(
−3

2

)1/3
a

1/3
3

}
,{

a2 →
(

3
2

)2/3
a3

2/3, h2 →
(

3
2

)1/3
a3

1/3, a1 →
(

3
2

)1/3
a3

1/3
}
,{

a2 → −(−1)1/3
(

3
2

)2/3
a

2/3
3 , h2 → (−1)2/3

(
3
2

)1/3
a

1/3
3 , a1 → (−1)2/3

(
3
2

)1/3
a

1/3
3

}}

In[6]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a1, a2, a3}]

Out[6]=
{{

a3 → 2
3
a3

1, a2 → a2
1, h2 → a1

}}

Each of the above implicit solution sets each has a multiplicity of 2. Mathematica actu-

ally outputs each of the above solution sets twice to indicate this in the same fashion it

solves the simple quadratic equation x2 − 2x+ 1 = 0 as:

In[6]:=Solve[x2 − 2x + 1 == 0,{x}]

Out[6]={{x→ 1} , {x→ 1}}
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We only write our solution sets once to avoid redundancies. Also, all of these solutions

can be back-substituted into Mathematica as an additional verification.

Now notice, that we only obtained a non-null solution set when we implicitly solved for

three of the variables a1, a2, a3 and h2. In particular, when we solved for a2, a3 and h2 we

obtained the same solution set as when we solved for a1, a2 and a3, i.e. when either a1 or h2

was omitted as a variable. When we solved for a1, a3 and h2, or a1, a2 and h2 we achieved

different solution sets and it is worth mentioning that these solution sets are very similar in

structure to the set that resulted when implicitly solving for a2, a3 and h2 or a1, a2 and a3.

For example, the solution set
{
a3 = −2

3
a

3/2
2 , h2 = −√a2, a1 = −√a2

}
can readily be

shown to be equivalent to
{
a3 = −2

3
a3

1, a2 = a2
1, h2 = a1; h2 < 0 and a1 < 0

}
. The other

relations can be arranged in a similar manor.

Although exceedingly difficult, the solutions obtained above can be derived without com-

puter algebra. For example, we derive the solution set
{
a3 = 2

3
a3

1, a2 = a2
1, h2 = a1

}
. We

first solve equation (3.49) for a2, which yields:

a2 =
44a3

1 + 189a3 − 14a2
1h2 + 44a1h

2
2

137a1 + 63h2

.

Substituting this expression into the equation (3.50) gives

−13212a3
1 − 53613a3 + 43959a2

1h2 + 5331a1h
2
2 − 336h3

2

274a1 + 126h2

= 0

and solving this equation for a3 we obtain

a3 =
−4404a3

1 + 14653a2
1h2 + 1777a1h

2
2 − 112h3

2

17871
.
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We next substitute these expressions for a2 and a3 into (3.51) resulting in

2954496 (a1 − h2)
2

5957
= 0,

which clearly has the solution h2 = a1 with a multiplicity of 2. Lastly, upon taking the

expression derived for a2, a3 and h2 above we see that the fourth equation is satisfied.

Moreover, with a2, a3 and h2 as defined above and a1 taken as a free variable we see a2 = a2
1,

a3 = 2
3
a3

1 and h2 = a1. The other relationships can be established in a similar way.

3.4 NECESSARY CONDITIONS FOR ORTHOGONALITY

From Section 3.3 we achieved restrictions on the a and h-terms that must be satisfied in

order for the polynomial sequence defined by (3.40) to be orthogonal via the Mathematica

command Solve. We thusly examine each of these solution sets in order to determine which,

if any, orthogonal sets arise. We begin with the solution set
{
h2 = a1, a2 = a2

1, a3 = 2
3
a3

1

}
.

We first note that if we expand Cn from (3.14) for n = 1 we have

C1 = a1h2 − a2. (3.53)

Then, using only the assumptions a1 = h2 and a2 = a2
1 of the solution set above, (3.53) clearly

becomes zero. However, this contradicts (2.3) as we originally required AnAn−1Cn > 0.

Thus, it is impossible for {Pn} as defined by (3.40) to be an orthogonal polynomial sequence

with respect to the restrictions
{
h2 = a1, a2 = a2

1, a3 = 2
3
a3

1

}
. Moreover, each of the other

solution sets obtained in Section 3.3 also result in (3.53) equaling zero, which can be readily

verified.
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We next consider the solution set {h2 = a1} to the unaltered system defined by (3.44),

(3.45), (3.46) and (3.47) and eventually determine what additional relationships must be

established along with this assignment. In order to accomplish this, we construct another

simultaneous system of equations. That is, in this case the assignment h2 = a1 must be true

for every polynomial defined by (3.40) and upon substituting h2 = a1 in the comparisons that

have been discovered, we obtain new conditions on the other a-terms that must be satisfied

in order for the polynomial sequences defined by (3.40) to be orthogonal. The system we

construct comprises the P7 cubic-term comparison, the P8 fourth-degree-term comparison

and the P9 fifth-degree-term comparison, which we list below.

By using the same methodology as in the previous section we discover that upon compar-

ing the P9 fifth-degree coefficient from the generating function (3.40) with the P9 fifth-degree

coefficient from the three-term recurrence relation (2.3) we achieve

− 2355761408a2
1a2 + 4000450688a2

2 + 2355761408a1a3 − 8468200448a4

− 4530310400a3
1h2 + 12934556928a1a2h2 − 14068309248a3h2 + 1367446400a2

1h
2
2

+ 1601051392a2h
2
2 − 1760236800a1h

3
2 + 79585280h4

2 − 262058112a2h3

+ 15976406400a1h2h3 + 4466400000h2
2h3 + 9558190080h2

3 − 19256371200a1h4

− 23084631040h2h4 − 23786681600h5 = 0. (3.54)
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In the same fashion we obtain an equation for the P8 fourth-degree comparison

− 18349440a2
1a2 + 50743040a2

2 + 18349440a1a3 − 111716352a4 − 29359104a3
1h2

+ 96503808a1a2h2 − 83940480a3h2 − 22470656a2
1h

2
2 − 2333056a2h

2
2 + 23741952a1h

3
2

− 8200704h4
2 + 20868864a2h3 − 30389760a1h2h3 + 186828288h2

2h3 − 7082496h2
3

− 170940416a1h4 − 275924992h2h4 − 200299520h5 = 0 (3.55)

and also for the P7 cubic-term comparison

− 13780a2
1a2 + 21204a2

2 + 13780a1a3 − 45448a4 − 20670a3
1h2

+ 58832a1a2h2 − 67626a3h2 + 9534a2
1h

2
2 + 11834a2h

2
2 − 12666a1h

3
2

+ 546h4
2 − 2964a2h3 + 98910a1h2h3 + 3348h2

2h3 + 58995h2
3

− 90480a1h4 − 45864h2h4 − 111150h5 = 0. (3.56)

We now take the equation (3.54) and substitute h2 = a1 and the expressions for h3, h4

and h5 as respectively defined in (3.34), (3.35) and (3.36), then we substitute the expression

for a4 as in (3.30) with g2 = 1/2 and after a wealth of algebra we eventually obtain

− 48896

a2
1

(
35270a6

1 − 170298a4
1a2 + 203820a2

1a
2
2 + 149637a3

1a3

−356013a1a2a3 + 154782a2
3

)
= 0. (3.57)

Next, for the equation defined by (3.55) we again substitute the expressions for h3, h4 and

h5 as respectively defined in (3.34), (3.35) and (3.36) and then substitute the expression for
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a4 as in (3.30) with g2 = 1/2 and ultimately achieve

− 44544

5a2
1

(
2805a6

1 − 15182a4
1a2 + 19925a2

1a
2
2 + 14358a3

1a3

−37002a1a2a3 + 16983a2
3

)
= 0. (3.58)

Finally, for the equation defined by (3.56) we repeat the same procedure that that was used

to obtain (3.58) and (3.59) and after some algebraic manipulations we obtain

− 57

a2
1

(
85a6

1 − 412a4
1a2 + 491a2

1a
2
2 + 363a3

1a3 − 855a1a2a3 + 369a2
3

)
= 0. (3.59)

We now solve the simultaneous nonlinear comprising (3.57), (3.58) and (3.59) in the

variables a1, a2 and a3 by again utilizing the Mathematica command Solve. In this case,

we assign the left-hand sides of (3.54), (3.56) and (3.57) as S1,S2 and S3 respectively and

obtain the following outputs.

In[1]:=Solve[{S1==0, S2==0, S3==0},{a2, a3}]

Out[1]=
{{

a3 → 2a3
1

3
, a2 → a2

1

}}

In[2]:=Solve[{S1==0, S2==0, S3==0},{a1, a3}]

Out[2]=
{{

a3 → −2
3
a

3/2
1 , a1 → −√a2

}}
{{

a3 → 2
3
a

3/2
1 , a1 →

√
a2

}}
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In[3]:=Solve[{S1==0, S2==0, S3==0},{a1, a2}]

Out[3]=
{

a2 →
(
−3

2

)2/3
a

2/3
3 , a1 →

(
−3

2

)1/3
a

1/3
3

}
{

a2 →
(

3
2

)2/3
a

2/3
3 , a1 →

(
3
2

)1/3
a

1/3
3

}
{

a2 → (−1)2/3
(

3
2

)2/3
a

2/3
3 , a1 → (−1)2/3

(
3
2

)1/3
a

1/3
3

}

Each of the above solution sets has a multiplicity of 2. In addition, all other outputs yield

null solution sets and the output with respect to the variable selection {a1, a2, a3} includes

the preface “Equations may not give solutions for all “solve” variables”.

These solutions can be obtained without the use of computer algebra as well. As an

example we derive the first solution set above. We begin by solving (3.57) for a2 yielding

a2 =
170298a3

1 + 2
√

61620801a3
1 + 356013a3 − 3

√
61620801a3

407640a1

or

a2 =
170298a3

1 − 2
√

61620801a3
1 + 356013a3 + 3

√
61620801a3

407640a1

.

Substituting the top branch into (3.58) and using a wealth of algebraic manipulations, we

eventually discover that the only solution for a3 is
{
a3 = 2

3
a3

1

}
. Putting these newly obtained

relationships for a2 and a3 into the left-hand side of (3.59) we see that the result is zero and

the equation (3.59) is satisfied.

Now notice that with a2 and a3 as defined above we see that a2 reduces to a2 = a2
1.

Hence, with respect to the top branch above of the solution of (3.57) for a2, the only

solution set to the simultaneous nonlinear system defined by (3.57), (3.58) and (3.59) is{
a3 = 2

3
a3

1, a2 = a2
1

}
.

70



In addition, if we take the bottom branch of the solution of (3.57) for a2 as shown above

and use the same method that was used for the top branch, we discover that the only solution

set is again
{
a3 = 2

3
a3

1, a2 = a2
1

}
.

Thus, with the assumption that a1 = h2 we additionally achieve
{
a3 = 2

3
a3

1, a2 = a2
1

}
.

This is, of course, equivalent to the solution set
{
h2 = a1, a2 = a2

1, a3 = 2
3
a3

1

}
, which led

to a contradiction. The other solution sets also lead to contradictions, as any of the restric-

tions resulting from these sets coupled with the assumption a1 = h2 make (3.53) zero. We

summarize as follows.

As originally discussed in Section 3.1, the polynomial sequences that result from (3.40)

are identical to the ones that results from (2.3) if and only if {Pn} as defined by (3.40) is

orthogonal. Now, Section 3.3 establishes several conditions that the terms in some of the

coefficients of the lower-order polynomials of the sequence {Pn} as defined by (3.40) must

satisfy for orthogonality. From the previous analysis, we have shown that all of these restric-

tions established thus far lead to a contradiction. Hence, we have the following summarizing

statement.

Result 3.1. The simultaneous nonlinear algebraic system defined by (3.44), (3.45), (3.46)

and (3.47) has an implicit solution set {h2 = a1}, which leads to a contradiction. When the

factor (a1 − h2) is omitted, the system defined by (3.49), (3.50), (3.51) and (3.52) emerges,

which has the following implicit solution sets:
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{
h2 = a1, a2 = a2

1, a3 =
2

3
a3

1

}
when solved for a1 or h2,{

a3 = ±2

3
a

3/2
2 , h2 = ±

√
a2, a1 = ±

√
a2

}

when solved for a2, and{
a2 =

(
±3

2

)2/3

a
2/3
3 , h2 = ±

(
±3

2

)1/3

a
1/3
3 , a1 = ±

(
±3

2

)1/3

a
1/3
3

}

and{
a2 = −(−1)1/3

(
3

2

)2/3

a
2/3
3 , h2 = (−1)2/3

(
3

2

)1/3

a
1/3
3 , a1 = (−1)2/3

(
3

2

)2/3

a
1/3
3

}

when solved for a3. Each of these solution sets has a multiplicity of 2 and all of the solutions

(restrictions) obtained thus far have resulted in no orthogonal polynomial sequences.

Remark: It is important to again mention that for the derivations of the h-terms in (3.35)

and (3.36) we substituted the a3 and a4-values as necessary. Namely, for the h4-term we

substituted the a3-value in (3.29) and for the h5-term we substituted the a4-value in (3.30),

whcih is defined in terms of a3. The h3 term did not involve any additional substitutions.

We comment on this further in Chapter 5.
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CHAPTER 4: THE SHEFFER B-TYPE 2 ORTHOGONAL
POLYNOMIAL SEQUENCES

In this chapter we address an extension to the research previously completed in Chapter 3

that amounts to analyzing a special case of (2.8). We again attempt to discover which, if

any, orthogonal polynomial sequences arise. Throughout this chapter we heavily rely on the

techniques and knowledge that was gained from Chapter 3.

We begin with modifying (2.8) by assuming that H2(t) ≡ 0, which results in

A(t)exp
[
xH1(t) + x3Ğ(t)

]
=

∞∑
n=0

Qn(x)tn, h1,1 6= 0 (4.1)

where we have assigned H3 := Ğ and Ğ(t) = g3t
3 + g4t

4 + · · · to be fairly consistent with

the notation of Chapter 3. Also, we initially assign a0 = h1 = 1 as was done in (3.1).

Now, notice that taking Ğ(t) ≡ 0 reduces the generating function (4.1) to the Sheffer B-

Type 0 generating function. It is also important to observe that (4.1) is structurally similar

to (3.1). In fact, the only differences are the x3 - term in (4.1) as opposed to the x2 - term in

(3.1) and the fact that Ğ(t) = ğ3t
3 + ğ4t

4 + · · · whereas G(t) = g2t
2 + g3t

3 + · · · . Therefore,

we attempt to complete analysis on (4.1) that is entirely analogous to the analysis that was

completed on (3.1) in Chapter 3.

As was done in (3.4), we write (4.1) as

∞∑
m=0

amt
m

∞∏
i=1

[
∞∑

j=0

hj
ix

jtij

j!

]
∞∏

k=3

[
∞∑
l=0

gl
kx

3ltkl

l!

]
.
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Writing out the general term for each of the products above results in

al0t
l0 · x

l1tl1

l1!
· h

l2
2 x

l2t2l2

l2!
· h

l3
3 x

l3t3l3

l3!
· · · ·

· ğ
l4
3 x

3l4t3l4

l4!
· ğ

l5
4 x

3l5t4l5

l5!
· ğ

k6
5 x

3l6t5l6

l6!
· · · · , (4.2)

where {l0, l1, l2, . . .} are all non-negative integers. For this case, the sums of the x-exponents

and the t-exponents of (4.2) respectively take on the form

l1 + l2 + l3 + 2l4 + 2l5 + 2l6 + · · · = r (4.3)

and

l0 + l1 + 2l2 + 3l3 + 3l4 + 4l5 + 5l6 + · · · = s. (4.4)

Then, using the same methodology as in Chapter 3 to discover the coefficients of xntn, xn−1tn

and xn−2tn as respectively defined as (3.7), (3.9) and (3.10) we obtain the following.

(1.) The coefficient of xntn:

∑
l1+3l4=n

ğl4
3

l1!l4!
(4.5)

(2.) The coefficient of xn−1tn:

∑
l1+3l4=n−1

a1ğ
l4
3

l1!l4!
+

∑
l1+3l4=n−2

h2ğ
l4
3

l1!l4!
+

∑
l1+3l4=n−4

ğ4ğ
l4
3

l1!l4!
(4.6)
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(3.) The coefficient of xn−2tn:

∑
l1+3l4=n−2

a2ğ
l5
3

l1!l4!
+

∑
l1+3l4=n−3

(a1h2 + h3)ğ
l4
3

l1!l4!
+

∑
l1+3l4=n−4

h2
2ğ

l4
3

2!l1!l4!

+
∑

l1+3l4=n−5

(ğ5 + a1ğ4)ğ
l4
3

l1!l4!
+

∑
l1+3l4=n−6

h2ğ4ğ
l4
3

l1!l4!
+

∑
l1+3l4=n−8

+
ğ2
4 ğ

l4
3

2!l1!l4!
(4.7)

We see that each of the terms above involve the expression

∑
l1+3l4=n

ğl4
3

l1!l4!

and that ∑
k1+3k4=n

ğl4
3

l1!l4!
=

bn/2c∑
k=0

ğk
3

(n− 3k)!k!
.

Therefore, we define

ψn(x) :=

bn/2c∑
k=0

xk

(n− 3k)!k!
.

Thus, taking ψn(ğ3) := ψn the coefficients of xntn, xn−1tn and xn−2tn become:

dn,0 := ψn (4.8)

dn,1 := a1ψn−1 + h2ψn−2 + ğ4ψn−4 (4.9)

dn,2 := a2ψn−2 + (a1h2 + h3)ψn−3 +
h2

2

2!
ψn−4 + (ğ5 + a1ğ4)ψn−5

+ h2ğ4ψn−6 +
ğ2
4

2!
ψn−8. (4.10)

Based on this analysis we see that Qn(x) as defined by (4.1) has the form

Qn(x) = dn,0x
n + dn,1x

n−1 + dn,2x
n−2 + L.O.T.
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We next write the unrestricted three-term recurrence relation of (2.3) as

Qn+1(x) = (Ănx+ B̆n)Qn(x)− C̆nQn−1(x), (4.11)

where P0(x) = 1, P−1(x) = 0, and ĂnĂn−1C̆n > 0. Expanding the substitution of Qn into

(4.11) we achieve

dn+1,0x
n+1 + dn+1,1x

n + dn+1,2x
n−1 + L.O.T.

= Ăndn,0x
n+1 + Ăndn,1x

n + Ăndn,2x
n−1 + L.O.T.

+ B̆ndn,0x
n + B̆ndn,1x

n−1 + B̆ndn,2x
n−2 + L.O.T.

− C̆ndn−1,0x
n−1 − C̆ndn−1,1x

n−2 − C̆ndn−1,2x
n−3 + L.O.T.

Thus, comparing the coeffiecents of xn+1, xn and xn−1 above results in the following lower-

triangular simultaneous system of linear equations:
dn,0 0 0

dn,1 dn,0 0

dn,2 dn,1 −dn−1,0




Ăn

B̆n

C̆n

 =


dn+1,0

dn+1,1

dn+1,2

 .

Since the diagonal terms dn,0 and dn−1,0 are non-zero, solving this system via elementary

methods yields the following:

Ăn =
dn+1,0

dn,0

B̆n =
dn+1,1dn,0 − dn+1,0dn,1

d2
n,0

C̆n =
dn+1,0(dn,0dn,2 − d2

n,1) + dn,0(dn+1,1dn,1 − dn+1,2dn,0)

dn−1,0d2
n,0

. (4.12)
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We can now obtain any polynomial in the sequence {Qn} from either the generating func-

tion (4.1) or the three-term recurrence relation (4.11) with Ă, B̆ and C̆ as defined in (4.12).

From there, we can develop enough comparisons to achieve conditions for the polynomial

sequence {Qn} as defined by (4.1) to be orthogonal, as was done in Chapter 3. However, our

work here is minimized since the analysis from Chapter 3 gave us many insights regarding

the complexities of the B-Type 1 class and thusly which simplifying assumptions to make.

Based on this reasoning, (4.1) would be exceedingly more manageable if we additionally

take gi = 0,∀i ≥ 4. Chapter 3 also gives us strong intuition as to which comparisons are

best suited for our analysis. Namely, we should only need to establish comparisons for the

Q5 quadratic-term, the Q6 cubic-term, the Q7 fourth-degree term and the Q8 fifth-degree

term. Lastly, as we took g2 = 1/2 in the B-Type 1 case, we take ğ3 = 1/3 for the B-Type

2 case. It is important to note that we discovered through much experimentation, in the

same fashion as Chapter 3, that in fact ğ2 = 1/3 appears to be the best choice for reducing

the complexities of the B-Type 2 class. These additional simplifications result in (4.8), (4.9)

and (4.10) becoming

dn,0 := ψn(1/3) (4.13)

dn,1 := a1ψn−1(1/3) + h2ψn−2(1/3) (4.14)

dn,2 := a2ψn−2(1/3) + (a1h2 + h3)ψn−3(1/3) +
h2

2

2!
ψn−4(1/3) (4.15)

and (4.1) transforming into:

A(t)exp

[
xH1(t) +

1

3
x3t3

]
=

∞∑
n=0

Qn(x)tn, h1,1 6= 0. (4.16)
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To develop each of these comparisons we use the same methodology that was used in

Chapter 3. In fact, we only need to slightly modify our program GenPoly by replacing x2 with

x3 and k = 3 as instead of k = 2. To avoid redundancies, we only display complete details

of the Q5 quadratic-term comparison and display only the final format for all subsequent

comparisons.

For the Q5 quadratic-term comparison we first expand (4.1) using GenPoly, which gives

us:

In[1]:= Expand[Coefficient[(
1 +

10∑
m=1

amtm

)
∗

10∏
j=1

[
10∑
i=0

hi
jx

itji

i!

]
∗

10∏
k=3

[
10∑
l=0

gl
kx

3ltkl

l!

]
, t2, h1 = 1]]

Out[1]=
x5

120
+

x4 a1

24
+

x3a2

6
+

x2a3

2
+ xa4 + a5 +

x5g3

2
+ x4a1g3 + x3a2g3 + x4g4

+x3a1g4 + x3g5 +
x4h2

6
+

x3a1h2

2
+ x2a2h2 + xa3h2 + x4g3h2 +

x3h2
2

2
+

x2a1h2
2

2

+
x3h3

2
+ x2a1h3 + xa2h3 + x2h2h3 + x2h4 + xa1h4 + xh5

It is clear that the coefficient of x2 is

a3

2
+ a2h2 +

a1h
2
2

2
+ a1h3 + h2h3 + h4. (4.17)

We next discover the Q5 quadratic coefficient via the three-term recurrence relation (4.11)

by first modifying our program ThreeTerm. We first define dn,0, dn,1 and dn,2, as established

in (4.13), (4.14) and (4.15), respectively.

In[1]:= d0[n−] :=

Floor[n/2]∑
k=0

gk
3

(n− 3k)!k!
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In[2]:= d1[n−] := a1 ∗
Floor[(n−1)/2]∑

k=0

gk
3

(n− 1− 3k)!k!
+ h2 ∗

Floor[(n−2)/2]∑
k=0

gk
3

(n− 2− 3k)!k!

In[3]:= d2[n−] := a2 ∗
Floor[(n−2)/2]∑

k=0

gk
3

(n− 2− 3k)!k!

+(a1h2 + h3) ∗
Floor[(n−3)/2]∑

k=0

gk
3

(n− 3− 3k)!k!
+

h2
2

2!
∗

Floor[(n−4)/2]∑
k=0

gk
3

(n− 4− 3k)!k!

Then we define the Ăn, B̆n and C̆n, as derived in (4.12).

In[4]:= A[n−] :=
d0[1 + n]

d0[n]

In[5]:= B[n−] :=
− (d0[1 + n] ∗ d1[n]) + d0[n] ∗ d1[1 + n]

d0[n]2

In[6]:= C[n−] :=
1

d0[−1 + n] ∗ d0[n]2
(
d0[1 + n] ∗

(
−d1[n]2 + d0[n] ∗ c2[n]

)
+c0[n] ∗ (d1[n] ∗ d1[1 + n]− d0[n] ∗ d2[1 + n]))

Lastly, in accordance with the methodology of Chapter 3, we assign the constant and linear

polynomials as Q0 := 1 and Q1 := a1 + x.
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Now, the Q5 quadratic coefficient from the three-term recurrence relation of (4.11) is

1

10 (1 + 6g3) (1 + 24g3)
2

(
−a3

1 + 3a1a2 + 2a3 + 18a3
1g3 + 180a3g3 − 1296a3

1g3
2

+ 1296a1a2g
2
3 + 3888a3g

2
3 − 8640a3

1g3
3 + 25920a1a2g

3
3 + 17280a3g

3
3 − 2a2

1h2

+ 14a2h2 + 360a2
1g3h2 + 144a2g3h2 − 6480a2

1g
2
3h2 + 6048a2g

2
3h2 − 17280a2

1g
3
3h2

+ 69120a2g
3
3h2 + 60g5h2 + 2880g3g5h2 + 34560g2

3g5h2 + a1h
2
2 + 1386a1g3h

2
2

− 11664a1g
2
3h

2
2 + 8640a1g

3
3h

2
2 − 16h3

2 + 1584g3h
3
2 − 6480g2

3h
3
2 + 17280g3

3h
3
2

+ 13a1h3 + 360a1g3h3 + 6480a1g
2
3h3 + 34560a1g

3
3h3 + 34h2h3 + 288g3h2h3

+4320g2
3h2h3 + 34560g3

3h2h3 + 2h4 + 180g3h4 + 3888g2
3h4 + 17280g3

3h4

)
(4.18)

Therefore, setting (4.17) and (4.18) equal to each other and assigning ğ3 = 1/3 we obtain

− 459a3
1+1107a1a2 − 81a3 − 1242a2

1h2 + 864a2h2

− 1728a1h
2
2 + 432h3

2 − 297a1h3 − 540h2h3 − 1296h4 = 0. (4.19)

We can now construct a simultaneous system of non-linear algebraic equations in the

variables a1, a2, a3 and h2 as we did in Chapter 3. Also like Chapter 3 we first must develop

expressions for h3, h4 and h5 that involve only a1, a2, a3 and h2. Since our method for

obtaining these new expressions is the same as the B-Type 1 case, we omit the all of the

details and discuss only the pertinent elements of the method to again avoid unnecessary

repetitiveness. We first set g3 = 1/2 and then achieve expressions for the h-terms.

In order to derive an expression for h3, we first utilize the Q3 linear-term comparison to
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arrive at

h3 := − 1

a1

(
a3

1 − a1a2 − a3 + 2 a2
1h2

)
. (4.20)

To establish an expression for h4, we employ the Q4 linear-term comparison and then sub-

stitute in (4.20) to attain

h4 :=
1

12

(
−3a1

3 − 3a1a2 − 3a3 + 6a2
1h2 − 24a2h2 + 24a1h

2
2 + 24h3

2

+3
(
a3

1 − a1a2 − a3 + 2a2
1h2

))
. (4.21)

Lastly, to attain an expression for h5, we make use of the Q5 linear-term comparison and

then substitute in (4.20) and (4.21) to achieve

h5 :=
(
−459a2

1a2 + 648a2
2 + 459a1a3 − 648a4 − 459a3

1h2 − 135a1a2h2 − 351a3h2

− 1242a2
1h

2
2 + 648a2h

2
2 − 216a1h

3
2 +

486a2 (a3
1 − a1a2 − a3 + 2a2

1h2)

a1

+ 297h2

(
a3

1 − a1a2 − a3 + 2a2
1h2

)
+

216h2
2 (a3

1 − a1a2 − a3 + 2a2
1h2)

a1

+
81 (a3

1 − a1 a2 − a3 + 2a2
1 h2)

2

a2
1

− 63a1

(
−3a3

1 − 3a1a2 − 3a3 + 6a2
1h2

−24a2h2 + 24a1h
2
2 + 24h3

2 + 3
(
a3

1 − a1a2 − a3 + 2a2
1h2

))
+ 72h2

(
−3a3

1 − 3a1a2 − 3a3 + 6a2
1h2 − 24a2h2 + 24a1h

2
2 + 24h3

2

+3
(
a3

1 − a1a2 − a3 + 2a2
1h2

))
/1215. (4.22)

We mention here that unlike the derivations of the h-terms in Chapter 3, we do not substitute

the a-terms. We do this in order to compare and contrast the types of systems that can be

obtained.
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Now, upon substituting (4.20) and (4.21) into (4.19) and using some algebraic manipu-

lations we have

−54

a1

(
3a4

1 − 27a2
1a2 − 5a1a3 + 26a3

1h2 − 54a1a2h2

+10a3h2 + 60a2
1h

2
2 + 40a1h

3
2

)
= 0. (4.23)

Next, we consider the Q6 cubic-term comparison. Following the same procedure as with the

Q5 quadratic-term comparison we ultimately arrive at

−486

a1

((
a4

1 − a2
1a2 + 17a1a3 − 18a3

1h2 − 34a1a2h2

−10a3h2 − 12a2
1h

2
2 + 8a1h

3
2

))
= 0. (4.24)

Next, we consider the Q7 fourth-degree comparison, again following the same procedure

as with the Q5 quadratic-term comparison and the Q6 cubic-term comparison resulting in

8748

a1

((
47a4

1 − 119a2
1a2 − 5a1a3 + 322a3

1h2 − 294a1a2h2

+138a3h2 + 908a2
1h

2
2 + 648a1h

3
2

))
= 0. (4.25)

Lastly, we use the Q8 fifth-degree comparison, following the same procedure obove and

discover

−43740

a1

((
4491a4

1 − 33663a2
1a2 − 8109a1a3 + 42354a3

1h2 − 67878a1a2h2

+11826a3h2 + 92876a2
1h

2
2 + 50952a1h

3
2

))
= 0. (4.26)

Now, (4.23) through (4.26) is our desired simultaneous system of non-linear algebraic equa-

tions in the variables a1, a2, a3 and h2. To solve this system, we again make use of Math-

ematica. In our Mathematica program we initially respectively assign the left-hand side of
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equation (4.23), (4.24), (4.25) and (4.26) as E1,. . .,E4. For example, our first assignment

appears as follows:

In[1]:=E1:=−54
a1

(3a4
1 − 27a2

1a2 − 5a1a3 + 26a3
1h2 − 54a1a2h2 + 10a3h2 + 60a2

1h
2
2 + 40a1h

3
2)

We then simultaneously solve the above system using the Solve command as discussed

in Chapter 3. Also as in Chapter 3, we must exhaust all
∑4

n=1 C(4, n) = 15 variable choices

in order to most efficiently attempt to determine all of the solutions to the system defined

by (4.23), (4.24), (4.25) and (4.26).

As it turns out, each of the 15 choices results in a null solution set {}. To illustrate this,

we display two of our results since displaying the remaining 13 choices is unnecessary.

In[2]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a2, h2}]

Out[2]:={}

In[14]:=Solve[{E1==0, E2==0, E3==0, E4==0},{a3}]

Out[14]:={}

We summarize this chapter with the following statement.
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Result 4.1. The simultaneous nonlinear algebraic system defined by (4.23), (4.24), (4.25)

and (4.26) has no solutions with respect to the Mathematica Solve command. Therefore, no

orthogonal polynomial sequences can thus far be determined.
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CHAPTER 5: EXTENSIONS AND CONCLUSIONS

5.1 FUTURE SHEFFER CHARACTERIZATION PROBLEMS

As we discussed in Chapters 1 and 2, Sheffer conducted a complete analysis on the B-Type 0

polynomial sequences. One of his foremost results was determining which of these polynomial

sequences are also orthogonal (at this time orthogonal sets were entitled Tchebycheff sets)

and Sheffer of course commented on the arbitrary class of B-Type k. Also in Sheffer’s paper

was an elaborate development of the A-Type 0 polynomial sequences and he proved that a

polynomial sequence is B-Type 0 if and only if it is A-Type 0. The crux of his work focused

on an aesthetic development of many of the properties of the A-Type 0 polynomial sequences

and therefore the B-Type 0 polynomial sequences which, as discussed in Chapter 2, depended

on arbitrary degree-lowering operators but also depended on several functional relationships

as well. Now, as it turned out the A-Type 0 polynomial sequences (and therefore the B-

Type 0 polynomial sequences) that are also orthogonal are the familiar cases covered in

Chapter 2 that have since been studied and utilized quite extensively - especially the cases

of Hermite and Laguerre. It is also important to mention that Sheffer also developed an

additional classification entitled C-Type and in [18] Rainville discusses another case of the

Sheffer classification entitled σ-Type.

However, Sheffer only briefly mentions the definition of higher type and does not conduct

any analysis on specific cases that are of higher type, like B-Type 1 or B-Type 2. Because
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of Sheffer’s aesthetic development of many of the properties of the B-Type 0 polynomial

sequences and his successful discovery of the sequences that were also orthogonal, it is quite

natural to inquire whether or not the B-Type 1 class or higher classes also possess such pleas-

ing properties or more interestingly, yield any new orthogonal polynomials. Quite simply,

the B-Type 1 and/or B-Type 2 polynomial sequences either contain orthogonal polynomial

sequences or they do not. If it is shown that they do, a very important discovery is clearly

made since a new orthogonal polynomial sequence would foster several new questions regard-

ing; the three-term recurrence relation, the generating function(s), the orthogonality relation

and its respective measure, the asymptotics and other considerations as well. This would be

a new sequence to add to [15] and would potentially aid mathematicians and other scientists

in applications as well. Now then, how do we deal with the second situation? Well, if the

B-Type 1 and/or B-Type 2 polynomial sequences do not contain orthogonal polynomial se-

quences we of course cannot establish any of the aforementioned characterizations. However,

we have in turn answered a very important question nonetheless and have tacitly directed

future researchers to consider other sequences for new orthogonal polynomials.

In our work we analyzed special cases of the B-Type 1 and B-Type 2 classes as we

discovered that our aspirations of conducting a complete analysis of the general B-Type 1

class, and even a special case of it, were premature as we discuss several additional aspects

that need to be addressed in Section 5.2. Similar conclusions are made on the B-Type 2

class in Section 5.3. Presently, we cannot definitively assess whether or not any orthogonal

polynomial sequences {Pn} or {Qn} as respectively defined by (3.40) and (4.16) exist and
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based on the research conducted in Chapters 3 and 4 we thusly pose the following problems:

Problem 5.1 Determine all orthogonal polynomial sequences {Pn} that satisfy the relation

A(t)exp

[
xH(t) +

1

2
x2

]
=

∞∑
n=0

Pn(x)tn

where

A(t) =
∞∑

j=0

ajt
j, a0 6= 0 and H(t) =

∞∑
k=1

hkt
k, h1 6= 0

and

Problem 5.2 Determine all orthogonal polynomial sequences {Qn} that satisfy the relation

A(t)exp

[
xH(t) +

1

3
x3

]
=

∞∑
n=0

Qn(x)tn

where

A(t) =
∞∑

j=0

ajt
j, a0 6= 0 and H(t) =

∞∑
k=1

hkt
k, h1 6= 0.

Exactly how these problems may be approached is further addressed in the following section.
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5.2 FUTURE CONSIDERATIONS FOR OUR SPECIAL CASES OF THE
SHEFFER B-TYPE 1 AND B-TYPE 2 POLYNOMIAL SEQUENCES

In this section we address in detail what future research must be completed in order to

definitively solve Problem 5.1 and Problem 5.2. We begin with our special case of the Sheffer

B-Type 1 polynomial sequences as analyzed in Chapter 3 and conclude by supplementing

the results of Chapter 4.

5.2.1 FUTURE RESEARCH FOR OUR SPECIAL CASE OF THE SHEFFER
B-TYPE 1 CLASS

To recap, in Chapter 3 we achieved a simultaneous system of nonlinear algebraic equations

in the variables a1, a2, a3 and h2, which resulted from comparing the polynomial sequences

that evolved from the generating function (3.40) and the polynomial sequences that evolved

the three-term recurrence relation (2.3), with An, Bn and Cn as defined by (3.14). Of

course solving this system yields conditions on the a1, a2, a3 and h2 terms that must be

satisfied for the polynomial sequence {Pn} as defined by (3.40) to be orthogonal. If all of

the solutions to this system are obtained, one can determine whether or not orthogonal

polynomial sequences arise. However, one must obtain all of the solutions to this system

before anything definitive can be asserted. Currently, we have only determined a certain

number of these aforementioned solutions, which resulted in contradictions and thusly, no

orthogonal polynomial sequences.

Now, as previously discussed in Chapters 3 and 4, Mathematica has the ability to simul-
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taneously solve nonlinear systems of algebraic equations. Moreover, it essentially has two

commands that accomplish this. The commands are Solve, which we implemented in both

Chapters 3 and 4, and Reduce and both of these commands function a little differently. The

important difference between the Solve command and the Reduce command is that Reduce

yields all the possible solutions to a system of equations, whereas the Solve command yields

only generic solutions, i.e. conditions on the variables that one explicitly solves for, and not

on any other parameters in the system. In addition, the Reduce command also disregards

multiplicities of solutions as it always displays each solution set only once - refer to [21] for

more details on these commands. To illustrate these differences, we consider the solution to

the general quadratic equation implementing both the Solve and Reduce commands as seen

below:

In[1]:=Solve[{a ∗ x2 + b ∗ x + c == 0},{x}]

Out[1]=
{{

x → −b−
√

b2−4 a c
2 a

}
,
{

x → −b+
√

b2−4 a c
2 a

}}

In[2]:=Reduce[{a ∗ x2 + b ∗ x + c == 0},{x}]

Out[2]=x = −b−
√

b2−4 a c
2 a

&& a 6= 0 || x = −b+
√

b2−4 a c
2 a

&& a 6= 0

a = 0 && b = 0 && c = 0 || a = 0 && x = −
(

c
b

)
&& b 6= 0

We see that the Solve commands solves the equation with respect to x and disregards

any restrictions on the other term, e.g. a 6= 0 and the Reduce command considers all pos-
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sible scenarios, e.g. the linear solution when a = 0. Therefore, to aid in assuring that we

determine all of the solutions to the system we should implement both the Solve command

and the Reduce command to the system defined by (3.44), (3.45), (3.46) and (3.47) and the

system defined by (3.49), (3.50), (3.51) and (3.52).

Thus far we utilized the Solve command on the system defined by (3.49), (3.50), (3.51)

and (3.52) in Chapter 3. Below we display the solutions obtained by Mathematica using the

Reduce command on this system, again exhausting all
∑4

n=1 C(4, n) = 15 possible param-

eter selections. We note that && represents the “and” operator and || represents the “or”

operator as in C programming.

In[1]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a2, a3, h2}]

Out[1]=a2 == a2
1 && a3 ==

2a3
1

3
&& h2 == a1 && a1 6= 0

In[2]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a2, a3, h2}]

Out[2]=a2 == a2
1 && a3 ==

2a3
1

3
&& h2 == a1 && a1 6= 0

In[3]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a3, h2}]

Out[3]=a1 = −√a2 && a3 =
−2 a

3/2
2

3
&& h2 = −√a2 && a2 6= 0 ||

a1 =
√

a2 && a3 =
2 a

3/2
2

3
&& h2 =

√
a2 && a2 6= 0
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In[4]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a2, h2}]

Out[4]=a1 = −
((
−
(

3
2

)) 1
3 a

1
3
3

)
&& a2 =

(
−
(

3
2

)) 2
3 a

2
3
3

&& h2 = −
((
−
(

3
2

)) 1
3 a

1
3
3

)
&& a3 6= 0 ||

a1 =
(

3
2

) 1
3 a

1
3
3 && a2 =

(
3
2

) 2
3 a

2
3
3 && h2 =

(
3
2

) 1
3 a

1
3
3 && a3 6= 0 ||

a1 = (−1)
2
3
(

3
2

) 1
3 a

1
3
3 && a2 = −

(
(−1)

1
3
(

3
2

) 2
3 a3

2
3

)
&& h2 = (−1)

2
3
(

3
2

) 1
3 a3

1
3 && a3 6= 0

In[5]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a2, a3}]

Out[5]=a1 = h2 && a2 = h2
2 && a3 =

2 h3
2

3
&& h2 6= 0

In[6]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a2}]

Out[6]=a1 =
3 a3+h3

2

3h2
2

&& a2 =
3 a3+h3

2

3 h2
&& 9 a2

3 − 12 a3 h3
2 = −4 h6

2 && h2 6= 0

In[7]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, a3}]

Out[7]=a1 = a2

h2
&& a3 =

−(h2 (−3 a2+h2
2))

3
&& a2

2 − 2 a2 h2
2 = −h4

2 && h2 6= 0

In[8]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1, h2}]

Out[8]=a1 =
3 a3−

√
−4 a3

2+9 a2
3

2 a2
&& 9 a2

3 = 4 a3
2 && h2 =

−2 a2
2

−3 a3+
√
−4 a3

2+9 a2
3

&& a2 6= 0 ||

a1 =
3 a3+

√
−4 a3

2+9 a2
3

2 a2
&& 9 a2

3 = 4 a3
2 && h2 =

2 a2
2

3 a3+
√
−4 a3

2+9 a2
3

&& a2 6= 0
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In[9]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a2, a3}]

Out[9]=a2 = a1 h2 && a3 =
−(a2

1 (a1−3 h2))
3

&& − 2 a1 h2 + h2
2 = −a2

1 && a1 6= 0

In[10]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a2, h2}]

Out[10]=a2 = a1
3+3 a3

3 a1
&& − 12 a3

1 a3 + 9 a2
3 = −4 a6

1 && h2 =
a3
1+3 a3

3 a2
1

&& a1 6= 0

In[11]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a3, h2}]

Out[11]=−2 a1
2 a2 + a2

2 = −a4
1 && a3 =

−(a1 (a2
1−3 a2))
3

&& h2 = a2

a1
&& a1 6= 0

In[12]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a1}]

Out[12]=a1 = a2

h2
&& 3 a3 = h2 (3 a2 − h2

2) && a2
2 − 2 a2 h2

2 = −h4
2 && h2 6= 0

In[13]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a2}]

Out[13]=a2 = a1 h2 && 3 a3 = a2
1 (−a1 + 3 h2) && − 2 a1 h2 + h2

2 = −a2
1 && a1 6= 0

In[14]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{a3}]

Out[14]=a2 = a1 h2 && a3 =
−(a2

1 (a1−3 h2))
3

&& − 2 a1 h2 + h2
2 = −a2

1 && a1 6= 0

In[15]:=Reduce[{E1==0, E2==0, E3==0, E4==0},{h2}]

Out[15]=2 a2
1 a2 + a2

2 = −a4
1 && 3 a3 = a1 (−a2

1 + 3 a2) && h2 = a2

a1
&& a1 6= 0
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We first observe that when we use the Reduce command for variable selections {a1, a2, a3, h2},

{a2, a3, h2}, {a1, a3, h2}, {a1, a2, h2} and {a1, a2, a3} we obtained essentially the same solu-

tions as with the Solve command. However, the remaining solutions above were not obtained

when using the Solve command. In fact, the solve command outputted “{}” for each of

these cases. It is also very important to mention that these new relationships do not result

in contradictions in the same way the relationships acquired using the Solve command did

in Sections 3.3 and 3.4.

We now reconsider the unaltered system defined by (3.44), (3.45), (3.46) and (3.47).

In Chapter 3, we originally only considered the obvious solution a1 = h2 to this system.

To determine the ramifications to this solution set we constructed an additional system of

equations. Thus far only the solution sets that resulted from using the Solve command

were considered. To determine additional solutions we must again implement the Solve and

Reduce commands in the same fashion we did above. We begin by displaying the following

inputs and respective outputs below, which are the only ones that do not output the preface

“Equations may not give solutions for all “solve” variables” that was discussed in Section 3.4.

In[4]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{a2, a3}]

Out[4]={}
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In[2]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{a1}]

Out[2]={{a1 → h2}}

In[3]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{a2}]

Out[3]={}

In[4]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{a3}]

Out[4]={}

In[5]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{h2}]

Out[5]={{a1 → h2}}

From this we have learned that there exists no solution to this system, either implicitly

or explicitly, for the variables a2 or a3 or the combination {a2, a3}. We also learned that if

we try to solve the system for either a1 or h2, we determine that a1 = h2.

The remaining solution sets all include the preface “Equations may not give solutions for

all “solve” variables” and we essentially observe a repeat of the solution sets obtained for
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the system (3.49), (3.50), (3.51) and (3.52) when using the Solve and Reduce commands,

with the only difference being that the multiplicities are displayed as well - not inclusive of

the variable choice {a1, h2}. For this case there is a drastic difference that occurs when we

solve for the variable selections {a1, h2}, i.e. when we endeavor to discover the outputs of

the following:

In[1]:=Solve[{(a1 − h2) ∗ E1 == 0, (a1 − h2) ∗ E2 == 0, (a1 − h2) ∗ E3 == 0,

(a1 − h2) ∗ E4 == 0},{a1, h2}]

In fact, the outputs for these variable choices are so complicated that to display them would

take five pages. To illustrate these complications, consider one of these outputs, which is

listed below:

a1 = 200 2
1
3 a2(

−27944028 a3+
√
−350113536000000 a3

2+780868700864784 a2
3

) 1
3

+

(
−27944028 a3+

√
−350113536000000 a3

2+780868700864784 a2
3

) 1
3

222 2
1
3

&&

h2 = 200 2
1
3 a2(

−27944028 a3+
√
−350113536000000 a3

2+780868700864784 a2
3

) 1
3

+

(
−27944028 a3+

√
−350113536000000 a2

3+780868700864784 a3
2
) 1

3

222 2
1
3

It is imperative to note that when using the Reduce command we obtained essentially the

same solutions as previously discovered using the Solve command and for the variable choice

{a1, h2} we achieved the same solutions with some additional restrictions.

95



Based on this additional experimentation it is clear what needs to be completed in order

to determine which, if any, orthogonal polynomial sequences arise from (3.40). First off, all

of these additional solution sets need to be tested to determine if they lead to contradictions

or result in new orthogonal polynomial sequences, although this may prove to be difficult -

especially when we solve the system defined by (3.44), (3.45), (3.46) and (3.47) for variable

choices {a1, h2}, as addressed previously. From there, all of the solutions would need to be

determined in a rigorous fashion and then tested accordingly.

Lastly, we mention some novel approaches to solving the system defined by (3.44), (3.45),

(3.46) and (3.47) that were not yet examined. First, it may prove to be advantageous to

consider a change-of-variables approach that would subsequently reduce the system to a more

manageable format. Second, would be to consider a geometric approach by considering

each equation as a surface in space and determining all of the intersection regions. In

any case, we chose using the Mathematica approach to solving the system to be consistent

with the ways the lower-order polynomials defined by (3.40), subsequent comparisons and

simultaneous systems were obtained. Lastly, it will be very beneficial to construct (and

analyze accordingly) a simultaneous system without substituting the a-values into the h-

terms as was done in Chapter 3 and mentioned in the Remark.
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5.2.2 FUTURE RESEARCH FOR OUR SPECIAL CASE OF THE SHEFFER
B-TYPE 2 CLASS

In this short section we discuss some extensions of the research that was completed in

Chapter 4. As in Chapter 3, we ultimately developed a simultaneous system of nonlinear

algebraic equations in the variables a1, a2, a3 and h2 as defined by (4.23), (4.24), (4.25) and

(4.26). This system resulted from comparing the polynomial sequences that evolved form the

generating function (4.16) and the polynomial sequences that evolved from the three-term

recurrence relation (2.3), with Ăn, B̆n and C̆n as defined by (4.12). Of course solving this

system yields necessary conditions on the a1, a2, a3 and h2 terms that must be satisfied for

the polynomial sequences {Qn} defined by (4.16) to be orthogonal.

In Chapter 4 we again utilized the Mathematica Solve command as was done in Chapter

3. In Result 4.1 we concluded that there are no solutions to this system with respect to this

command. Interestingly enough, upon utilizing the Reduce command we obtain the same

results as with the Solve command. To demonstrate this we display two of these calculations

as follows.

In[6]:=Reduce[{E1 == 0,E2 == 0,E3 == 0,E4 == 0},{a1, a2}]

Out[6]=False

In[10]:=Reduce[{E1 == 0,E2 == 0,E3 == 0,E4 == 0},{a2, h2}]

Out[10]=False
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We see that when using the Reduce command Mathematica outputs “False” as opposed

to a {} when using the Solve command. In conclusion, it is not exactly definite that no

solutions exist for this system, as all of the solutions would need to be determined in a

rigorous fashion and then tested before any logical conclusions can be drawn.

Also, in Chapter 4 we constructed a simultaneous system without substituting the a-

values as was done in Chapter 3. This emphasizes the fact that the most important aspect

of our research is the template that can be utilized to develop a system of equations that will

lead to conditions for orthogonality. In addition, each equation in the system that resulted

in Chapter 4 had an a1-term in the denominator. Omitting this term and analyzing the

solutions to the modified system would be beneficial as it may give insights into additional

relationships to study.

5.3 OTHER APPROACHES TO THE ANALYSIS OF THE SHEFFER
B-TYPE 1 AND B-TYPE 2 POLYNOMIAL SEQUENCES

As discussed in Chapter 1, although extensive work has been completed on characterization

theorems, little to no work has been done on the cases of higher Sheffer type classification.

Because of this, the goal of this work was to conduct a preliminary analysis on the B-Type 1

class and subsequently the B-Type 2 class. As we talked about in Chapter 3, this amounts

to developing an analogue of Sheffer’s method, as discussed in Section 2.2, or considering

a novel approach to the problem. We of course adopted the latter consideration and the

reasons for this need to be elaborated on.
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In [19] Sheffer determined which B-Type 0 sets are also orthogonal by using the B-Type

0 three-term recurrence relation and several other functional relationships. The B-Type 0

three-term recurrence relation for an arbitrary polynomial sequence {Qn} is as follows - we

use the same notation that Sheffer used in [19]:

Qn(x) = (x+ λn)Qn−1(x) + µnQn−2(x), n = 1, 2, . . .

with λn, µn ∈ R µn 6= 0, n > 1. What is important here is the fact that Sheffer proved that

the n-dependent constants λn and µn have the following structure:

λn = α+ bn and µn = (n− 1)(c+ dn).

Namely, λn is linear in n and µn is at most quadratic in n. By substituting enqn for Qn

above and replacing n with n+ 1 we attain a difference equation of the form

en+1qn+1 = enqnx+ (α+ b+ bn)en − (cn+ dn2 + dn)en−1qn−1, n = 1, 2, . . .

We next choose {en} as {n!} so µn is linear in n. After making this substitution and dividing

both sides of the relationship by n! we see that

(n+ 1)qn+1 = xqn + (α+ b+ bn)qn − (a+ dn)qn−1,

where a = c + d. Now, multiplying both sides of the relation by tn and summing from

n = 0, 1, . . . we obtain a partial differential equation of the form:

∂F

∂t
=

(x+ α+ b− (a+ d)t)F

(1− bt+ dt2)
,
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where F :=
∑∞

n=0 qnt
n. This equation can be solved by using partial fraction decomposition

and the solutions lead to the five classes of orthogonal polynomial sequences as addressed in

Chapter 2, which are all of the sequences that are B-Type 0 and also orthogonal.

This method of transforming a three-term recurrence relation into a partial differential

equation was not used by Sheffer in [19]; however it is often utilized in the study of orthogonal

polynomials, see [14] for several examples. As evidenced in Chapter 3, the Cn term is quite

complicated and using the method outlined above would therefore be difficult for the B-Type

1 class. This fact coupled with the natural computational complexities may be one of the

reasons that Sheffer and subsequent researchers have not addressed the higher B-Type classes

further.

5.4 FUTURE CONSIDERATIONS

We conclude this work with some remarks on future research of the Sheffer classifications.

We begin by discussing how our method provides a framework for future characterization

problems to be studied.

5.4.1 THE UTILITY OF OUR ANALYSIS

Our method that was used in Chapters 3 and 4 was elementary in the sense that we only made

use of Sheffer’s generalized generating function for k = 1 and k = 2 and the resulting three-

term recurrence relations. As we have seen, although the overall idea behind our method

was simplistic, a wealth of complexities were embedded in its implementation. Nonetheless,

what we have accomplished is the establishment of a procedure that can be used to attain
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new information on unsolved problems in characterization theory. Namely, we have shown

that with only the knowledge of a generating function, the respective three-term recurrence

and the aid of computer algebra systems, like Mathematica, one can determine conditions

for orthogonality.

By following the procedure that is outlined in Chapter 3, one can discover new knowledge

regarding the Sheffer B-Type 3, B-Type 4 and higher classes, as well as the aforementioned

C-Type and σ-Type classes. Moreover, it would be very interesting to consider using our

method to try to gain insights on the unsolved problems of Chapter 2, like the Geronimus

Problem, for example.

There is another interesting extension to consider as well. Recall the Brenke polynomial

sequences {Bn} as defined by (1.2). These polynomials have a generating function of the

form
∞∑

n=0

Bn (x) tn = A (t)C (xt) ,

with C defined as

C(w) :=
∞∑

n=0

cnw
n.

Taking the right-hand side of this generating relation and multiplying it by exp[βxt2] we

obtain

A(t)C(xt)exp[βxt2]. (5.1)

The question then arises as to which polynomial sequences satisfy (5.1) and are also orthog-

onal. We pose this formally.
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Problem 5.3 Which, if any, orthogonal polynomial sequences
{
B̃n

}
satisfy the relation-

ship

∞∑
n=0

B̃n (x) tn = A(t)C(xt)exp[βxt2], A(t) =
∞∑

j=0

akt
k, a0 = 1. (5.2)

Now observe that the right-hand side of (5.2) can be expanded as follows:

∞∑
j=0

ajt
j

∞∑
k=0

ckx
ktk

∞∑
l=0

βlxlt2l

l!
.

This is structure is entirely analogous to the expansions of the B-Type 1 class and the B-Type

2 class as studied in Chapters 3 and 4 respectively and is actually even simpler as there are

no products. Thus, one can conduct analysis on Problem 5.3 using the method outlined in

this work.

5.4.2 CHARACTERIZING THE GENERAL B-TYPE 1 AND B-TYPE 2 POLY-
NOMIAL SEQUENCES

Exactly how to characterize the general B-Type 1 and B-Type 2 classes in the most effi-

cient and elegant way is still in its infancy. In theory, one could use the method outlined

in this work without any simplifying assumptions and attempt to obtain conditions for or-

thogonality. However, as was discovered in Chapters 3 and 4, we needed to implore several

simplifying assumptions to manipulate the problem into a manageable format. Moreover,
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even with these assumptions the complexities were quite great, as many of the relation-

ships that were developed took up more than a page - consider the P5 linear and quadratic

comparisons in Chapter 3 for example.

It is therefore easy to imagine just how complicated the details involved with using this

method will become in the general cases. Due to these difficulties, one would have to rely on

powerful computers in order to use the computer algebra packages, like Mathematica, that

are necessary for this method to be successful and would also have difficulties in managing

and organizing the lengthy computations that will result.

Also of interest is the possibility of approaching the general B-Type 1 and B-Type 2

classes from an analytical approach without any expansions of the generating function or

the three-term recurrence relation analogous to Sheffer’s work on the B-Type 0 class in [19].

As we have previously addressed, this approach may very well be extremely difficult or even

impossible as we observed the discrepancies between the B-Type 0 class and the classes of

B-Type 1 and B-Type 2 throughout Chapters 3 and 4 and in Section 5.3. In any case, we

hope that our analysis completed on the special cases of the B-Type 1 and B-Type 2 classes

will encourage researchers to further consider studying these cases by not only modifying

our method, but also considering alternative approaches, whatever they may be.
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