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a b s t r a c t

A convolution locally convex algebraU of holomorphic functions is introduced as a natural
setting where to place special functions, which are continuously indexed counterparts
to sequences of the classical orthogonal polynomials arising in the umbral calculus. In
this way, such functions become semigroups, or Sheffer-type classes associated with
semigroups, in the algebra U. A central role in this approach is to be played by the Gamma
function. We also discuss the Hermite and Lerch functions to illustrate the theory.

© 2013 Elsevier Inc. All rights reserved.

0. Introduction

This paper originates from two basic observations about special functions. Orthogonal sequences of classical polynomials
are associated with corresponding systems of special functions which are labeled by continuous parameters. Both discrete
and continuous families may be obtained as eigenfunctions of the same differential equation (in each case) in suitable
different intervals. The link between those sequences of polynomials and their continuously indexed counterparts is
provided by the Mellin transform acting on the generating functions of the polynomial families; see [8, p. 61], for instance.

We are interested in polynomial sequences which appear in the umbral calculus; see [6,14]. Let S be the algebra of all
complex sequences a = (a(n))∞n=0 endowed with the convolution product defined by

(a ∗ b)(n) :=

n
k=0

a(k)b(n − k), n ≥ 0, a, b ∈ S.

A sequence of polynomials (pn(t))∞n=0 is said to be of binomial type, or binomial for short, if it satisfies the rule pn(s + t) =n
k=0

 n
k


pk(t)pn−k(s). If we putpn(t) =

pn(t)
n! then we have

pn(t + s) =

n
k=0

pk(t)pn−k(s),

so that one can regard the sequencept = (pn(t))∞n=0 as a semigroup in t > 0 (or a group if t runs over R) in S, that is,p s+t
=p s

∗pt holds for all s, t > 0. Alternatively,pt is to be identified with the semigrouppt =


∞

n=0pn(t)Xn in the algebra
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of formal power series C[[X]] endowed with multiplication
∞
n=0

anXn


∞
n=0

bnXn


=

∞
n=0

cnXn,

where cn =
n

k=0 akbn−k for all n ≥ 0.
Thus the umbral calculus may well be considered as the study of semigroups – with polynomial coefficients – and

associated families in C[[X]] (by duality methods) [6,14]. A familypn(t) as above will be called here a normalized binomial
sequence. Among other families of polynomials naturally related with binomial sequences, the most important seems to be
the one formed by Sheffer sequences. Let (pn)n be a binomial sequence. A Sheffer (polynomial) sequence for (pn)n is another
polynomial sequence (σn)n such that, for all n ∈ N,

σn(s + t) =

n
k=0

n
k


σk(s)pn−k(t).

Puttingσn =
σn
n! ,pn =

pn
n! , one has

σn(s + t) =

n
k=0

σk(s)pn−k(t),

that is to say, σs+t = σs ∗pt (s, t ∈ R), where σs(n) := σn(s). When (pn(t))n = (tn)n, a family (σn)n as above (and, by
extension, its normalized (σn)n) is called an Appell sequence; see [6, p. 8].

In the present article we introduce a metrizable complete locally convex algebra U which is formed by holomorphic
functions and is endowed with a convolution product. This algebra U contains Mellin transforms of generating functions of
Sheffer sequences, so it is a suitable version of the pre-umbral algebra of complex sequences in a continuous framework. The
Gamma and Beta functions are examples of semigroups, and the Hermite and Lerch functions are examples of Sheffer-type
families, in U; see Sections 3 and 4 below.

The leading idea to construct the algebra U is simple. Let us assume for a moment that F :C → C and f :R → C are two
functions related by the identity

∞
n=0

F(n)
n!

xn = f (x), (0.1)

so that f is the generating function of the sequence (F(n)). Under suitable conditions, which should entail in particular
analyticity of F in ℜz < 0, we would have

Γ (z)F(−z) = M[f (−·)](z) :=


∞

0
f (−x)xz−1 dx, ℜz > 0,

where M is the Mellin transform, or, conversely,
∞
n=0

(−1)n

n!
F(n)xn (= f (−x)) =

1
2π i


ℜz=c

Γ (z)F(−z)x−zdz, (0.2)

for every x, c > 0.
Our aim is to define a vector space U where functions Γ (z)F(−z) are to be contained. Moreover, in analogy with the

convolution ∗ of sequences (F(n)/n!) ∈ S, the space U should be endowed with a convolution, also denoted by ‘‘∗’’, for
which the product of functions (Γ (·) F(−·) ∗ Γ (·)G(−·))(z) would correspond to pointwise multiplication of functions
f (−x)g(−x). For such a convolution it is simple to get semigroups (and Sheffer families) in U. It is enough to take a family
(Ft(z))t>0 of entire functions in z such that the generating function f t of (Ft(n)) in (0.1) has the form f t(x) = etψ(x) (note
that it means that (Ft(n)/n!)t>0 is a semigroup in the algebra S). By (0.2), the functionF t(z) := Γ (z) Ft(−z), which under
mild assumptions on Ft is expected to be in U, is a semigroup, that is,F s+t

=F s
∗F t .

An important example (for Ft(z) = tz) of the above situation involves the exponential and Gamma functions. From the
integral formula for the Gamma function,

Γ (z) =


∞

0
xz−1 e−x dx (ℜz > 0),

one obtains, for any c > 0, the well known converse relation

e−tx
=

1
2π i


ℜz=c

t−z Γ (z) x−z dz (x > 0, t > 0)

(which reflects the above discussion by passing to−x in the identity


∞

n=0(t
nxn)/n! = etx). Hence we have that the function

γ t : z → t−zΓ (z) should become a semigroup in our virtual algebraU. Since this semigroup is the analog to the fundamental
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semigroup n → tn/n! of the umbral calculus, the algebra U must be sufficiently large (but not very big, to be useful) to
contain the function γ t .

In summary, we propose a framework where to find special functions arising as continuous versions of classical
polynomial sequences of the umbral calculus. More precisely, we pay attention on the underlined convolution structures.
We do not develop here the duality of U. This is a much more involved question than in the discrete case, due to the lack
of appropriate bases in U. For relationships between umbral calculus and special functions more general than polynomials,
there is the work [15]. The approach followed in [15] is very different from ours. Papers [9,10], where the umbral calculus
is considered in an ambient of analytic functions (convergent series), must also be cited.

The paper is divided into four sections. In Section 1 we introduce the Banach space U giving its definition and first
properties. Section 2 is devoted to define a convolution in U and to prove that for this convolution U is a locally convex
algebra in the sense defined in [1]. We also study the characters of U and its Gelfand transform. The semigroup γ t in U
defined by the Gamma function Γ is discussed in Section 3. It is to be noticed that on the basis of this semigroup one can
construct other semigroups in L1(R) different from those usually considered in the literature. Finally, in Section 4 we show
that the Hermite and Lerch functions are examples of Appell families in U, that is, they are Sheffer families with respect to
the semigroup γ t . In fact, quite a number of classical special functions are Appell families in U. For space reasons, we leave
the discussion of such examples to a forthcoming paper.

1. A continuous pre-umbral space

Put C+
:= {z ∈ C : ℜz > 0}. Let Hol(C+) denote the usual topological algebra of holomorphic functions on C+ endowed

with the compact convergence topology τc . We define U as the space of functions F ∈ Hol(C+) such that

∥F∥a,b := sup
a≤x≤b


∞

−∞

|F(x + iy)|dy < ∞ (0 < a ≤ b),

endowed with the locally convex vector space topology generated by the system of seminorms {∥ · ∥a,b}a≤b. Note that each
seminorm ∥ · ∥a,b is in fact a norm by the continuation principle for analytic functions. Clearly, the system {∥ · ∥ 1

n ,n
}
∞

n=1 is a
fundamental subfamily of norms which generates the topology of U. Therefore U is metrizable.

The proof of the following lemma follows the pattern of [11, p. 125]; see also [7]. For x > 0, let γx be the vertical line
x + iR parameterized from −∞ to ∞.

Lemma 1.1 (Representation Lemma). For F ∈ U and z such that 0 < a < ℜz < b, we have

F(z) =
1

2π i


γa,b

F(w)
w − z

dw

where γa,b = {−γa} ∪ γb.

Proof. Take y > 0 such that |ℑz| < y. Put for x = a, b and u = ±y,

I(x, y) :=

 y

−y

F(x + it)
x + it − z

dt, J(u) :=

 b

a

F(s + iu)
s + iu − z

ds.

Take now Y > 2y. Then

2π iF(z) =
1
Y

 2Y

Y
2π iF(z)dy

=
i
Y

 2Y

Y
(I(b, y)− I(a, y))dy −

1
Y

 2Y

Y
(J(y)− J(−y))dy,

where we have used in the second equality Cauchy’s formula on the closed path formed by the union of segments
[a − iy, b − iy] ∪ [b − iy, b + iy] ∪ [b + iy, a + iy] ∪ [a + iy, a − iy].

Since

1
Y

 2Y

Y
|J(±y)|dy ≤

2
Y 2

 b

a

 2Y

Y
|F(s ± iy)|dyds ≤

4π(b − a)
Y 2

∥F∥a,b

the integrals 1
Y

 2Y
Y |J(±y)|dy vanish as Y → +∞ and then it follows that

2π iF(z) = lim
Y→∞

i
Y

 2Y

Y
(I(b, y)− I(a, y))dy.



J.S. Campos-Orozco, J.E. Galé / J. Math. Anal. Appl. 405 (2013) 286–296 289

Moreover, for x = a, b, we have

lim
Y→∞

1
Y

 2Y

Y
I(x, y)dy = lim

Y→∞


2I(x, 2Y )− I(x, Y )


= lim

Y→∞


2
 2Y

−2Y
−

 Y

−Y


F(x + it)
x + it − z

dt


=


∞

−∞

F(x + it)
x + it − z

dt,

and the result follows. �

The above representation formula is a key tool in this paper, for it implies almost immediately several structural
consequences. It is also possible to obtain a representation formula of Poisson type for functions in U. For horizontal strips,
such an explicit formula is given in [3].

Proposition 1.2. For 0 < a < b put Ωa,b := {z ∈ C : a < ℜ z < b}.

(i) For every F ∈ U,

lim
|y|→∞


sup

x∈Ωa,b

|F(x + iy)|


= 0; hence


ℜz=a

F =


ℜz=b

F .

(ii) For every compact subset K ⊆ Ωa,b,

sup
z∈K

|F(z)| ≤
2
µK

∥F∥a,b (F ∈ U),

where µK := min{d(b + iR, K), d(a + iR, K)}. Hence the inclusion map U ↩→ Hol(C+) is continuous. Moreover, U is
dense in Hol(C+).

(iii) The metrizable locally convex space U is complete.

Proof. (i) Take a0, b0 with 0 < a0 < a < b < b0. Then, by Lemma 1.1,

sup
a≤x≤b

|F(x + iy)| ≤
1
2π


∞

−∞


|F(b0 + it)|

[(b0 − b)2 + (t − y)2]1/2
+

|F(a0 + it)|
[(a − a0)2 + (t − y)2]1/2


dt

and the integral tends to 0 as |y| → ∞ by the dominated convergence theorem. In particular one deduces that F is bounded
on every vertical strip. Then a standard application of Cauchy’s formula gives us the identity


ℜz=a F =


ℜz=b F .

(ii) The inequality for the supremum follows readily by Lemma 1.1, similarly to the estimate obtained in part (i) above.
Then the continuity of the mapping U ↩→ Hol(C+) follows automatically.

To show the density of U in Hol(C+), note first that the family of functions ht,N(z) := etz
2
((z − 1)/(z + 1))N , z ∈ C+,

belongs to U for all t > 0 and N = 0, 1, 2, . . . . Set D := {w ∈ C : |w| < 1}. For |w| ≤ r < 1 we have |(1+w)/(1−w)| ≤

|(1+r)/(1−r)| and therefore limt→0+ exp

t
 1+w
1−w

2
= 1 inHol(D) for τc . Then, since the analytic polynomials are dense in

Hol(D)we have that the span of the family of functions

exp


t
 1+w
1−w

2
· wN

: t > 0,N = 0, 1, 2, . . .

is dense in Hol(D).

So, through the isomorphism between Hol(D) and Hol(C+) induced by the Cayley transform z = (1 + w)(1 − w)−1 we
obtain that Hol(C+) = span


ht,N : t > 0,N = 0, 1, 2, . . .


. This implies that U is dense in Hol(C+) as well.

(iii) Let a, b such that 0 < a ≤ b. We denote by ℓ∞([a, b], L1(R)) the Banach space of all families g = (gx)x∈[a,b] such that
gx ∈ L1(R) for all x ∈ [a, b] and ∥g∥L1,∞ := supx∈[a,b] ∥gx∥L1(R) < ∞.

Let (Fn)∞n=1 be a Cauchy sequence in U. By part (ii) of this proposition (Fn)n is also a Cauchy sequence in Hol(C+). Since
Hol(C+) is complete for τc , there exists F ∈ Hol(C+) such that limn→∞ Fn = F in τc on C+. On the other hand, the fact that
limm,n ∥Fm − Fn∥a,b = 0 means that Fn = (Fn(x+ i·))x∈[a,b] is a Cauchy sequence in ℓ∞([a, b], L1(R)), for all 0 < a ≤ b. Then
there exists g ∈ ℓ∞([a, b], L1(R)) such that limn→∞ Fn = g in ∥ · ∥L1,∞. For fixed x in [a, b], there is a subsequence Fnk of Fn
such that limk→∞ Fnk(x + iy) = gx(y) for every y ∈ R a.e. Since limn Fn = F in Hol(C+)we obtain that gx(y) = F(x + iy) for
every x, y ∈ R, x > 0. Finally, we notice again that F = g = limn Fn in ℓ∞([a, b], L1(R))means that F = limn Fn in ∥ · ∥a,b.
Since this holds true for all a, b such that 0 < a ≤ bwe have that F = limn Fn on U. Thus U is complete. �

We finish this section with a result about density by translates. Put Uτ := {G ∈ U : G = F(· + z); F ∈ U, z ∈ C+
}.

Clearly, Uτ is a vector subspace of U, the elements of Uτ are functions defined in particular on C+ = {z ∈ C : ℜz ≥ 0} and
their restrictions on iR are integrable on iR.

Proposition 1.3. Uτ is dense in U.
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Proof. Take a, b, ϵ > 0 such that a ≤ b and ϵ < b/2. For x ∈ [a, b] and y, u ∈ R we have |w − x − ϵ − iy|2|w − x − iy|2 ≥

(a2/4)+ (u−y)2, ifw = (a/2)+ iu; and |w− x−ϵ− iu|2 ≥ (b2/4)+ (u−y)2, |w− x− iy|2 ≥ b2 + (u−y)2, ifw = 2b+ iu.
On the other hand, by Lemma 1.1 we have

F(x + ϵ + iy)− F(x + iy) =


γ a
2 ,2b

ϵ F(w)
(w − x − ϵ − iy)(w − x − iy)

dw
2π i

,

and therefore, by the preceding estimates,
∞

−∞

|F(x + ϵ + iy)− F(x + iy)|dy ≤


∞

−∞

dy
y2 + (a2/4)


∥F∥a/2,2b ϵ = 2π

∥F∥a/2,2b

a
ϵ.

Hence limϵ→0+ ∥F(· + ϵ)− F∥a,b = 0. Since it holds for all 0 < a ≤ bwe have that limϵ→0+ F(· + ϵ) = F in U. �

2. Convolution and characters

As it has been explained in the Introduction, one needs to define a convolution product in U which corresponds to the
pointwise product of inverse Mellin transforms of the elements of U.

Lemma 2.1. Let F ,G ∈ U and z ∈ C+. Then the integral
ℜw=c

F(z − w)G(w)dw

exists for, and it is independent of c such that 0 < c < ℜz.

Proof. The existence of the integral is a consequence of the fact that G is bounded onℜw = c and F ∈ U. The independence
of c follows by the Cauchy formula as in former arguments. �

By Lemma 2.1 the following definition is well posed.

Definition 2.2. Let z ∈ C+ and let F ,G ∈ U. Put

F ∗ G(z) :=
1

2π i


ℜw=c

F(z − w)G(w)dw

for any c such that 0 < c < ℜz. Obviously, F ∗ G = G ∗ F .

Proposition 2.3. Let α, a, b be such that 0 < α < a < b. Then, for every F ,G ∈ U,

∥F ∗ G∥a,b ≤ ∥F∥a−α,b−α∥G∥α,α.

So in particular F ∗ G ∈ U.

Proof. For any F ,G ∈ U we have that F ∗ G is continuous in C+ (by the dominated convergence theorem). Furthermore,
using Fubini’s theorem one gets


∂△

F ∗ G(z)dz = 0 for the boundary ∂△ of any closed triangle in C+. Hence by Morera’s
theorem F ∗ G is holomorphic in C+. Finally, for 0 < α < a ≤ x ≤ b and y ∈ R,

∞

−∞

|F ∗ G(x + iy)|dy ≤


∞

−∞


∞

−∞

|F(x − α + i(y − u))| · |G(α + iu)|dudy

=


∞

−∞

|G(α + iu)|du


∞

−∞

|F(x − α + ir)|dr

.

Thus taking the supremum for x running over [a, b], in both members of the inequality, we obtain ∥F ∗ G∥a,b ≤

∥F∥a−α,b−α∥G∥α,α , as we wanted to show. �

The inequality obtained in Proposition 2.3(ii) means that U is a (complete and metrizable) locally convex algebra in the
sense defined in [1]. Next, we describe the continuous characters and Gelfand transform of U. A character ϕ of U is by
definition a complex algebra homomorphism ϕ:U −→ T.

Theorem 2.4. All non-zero continuous characters of U are of the form ϕ = ϕλ, λ > 0, where ϕλ(F) :=
1

2π i


ℜz=c λ

−zF(z)dz
(F ∈ U) is independent of c > 0.
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Proof. First we show that the functional ϕλ is a continuous character of U for every λ > 0. Note that for every F ∈ U the
function z → λ−zF(z) is also in U. Hence ϕλ is well defined and independent of c > 0. Moreover, using Fubini’s theorem,
we easily obtain that ϕλ(F ∗ G) = ϕλ(F)ϕλ(G) for every F ,G ∈ U. Thus ϕλ is a character of U, and ϕλ is certainly non null
because e−λ

= ϕλ(Γ ) [2, p. 85]. Note thatΓ ∈ U; see [2, Corollary 1.4.4]. Finally, the continuity of themappingϕλ:U −→ C
follows from the bound |ϕλ(F)| ≤ (2π)−1λ−c

∥F∥c,c (F ∈ U; c > 0).
Conversely, let ϕ be a non-zero continuous character of U. Then there exists F ∈ Uτ such that ϕ(F) ≠ 0. For y ∈ R, put

δyF := F(· − iy) andϕ(y) := ϕ(δyF)ϕ(F)−1. If G is another function in Uτ with ϕ(G) ≠ 0 then (δyG) ∗ F = G ∗ (δyF) and
therefore we get ϕ(δyG)ϕ(G)−1

= ϕ(δyF)ϕ(F)−1. Thus the definition ofϕ does not depend on the choice of F . It is readily
seen thatϕ:R −→ T is a group homomorphism. Further,ϕ is continuous: similarly to the proof of Proposition 1.3, we have
∥δyF − F∥a,b ≤ (2π |y|/a)∥F∥a/2,2b (0 < a ≤ b), which implies that limy→0 δyF = F and from here the continuity ofϕ
follows immediately.

It is well known that every continuous group homomorphism from R into T must be an exponential function; therefore,
there exists ξ ∈ C such thatϕ(y) = eξy (y ∈ R). Now, since ϕ is continuous, we have

|ϕ(y)| ≤ |ϕ(F)|−1C max
1≤j≤m

∥δyF∥aj,bj = C |ϕ(F)|−1 max
1≤j≤m

∥F∥aj,bj

for some 0 < aj ≤ bj (j = 1, 2, . . . ,m), constant C , and all y ∈ R. Hence ξ = ic with c ∈ R. Set t = e−c > 0, so thatϕ(y) = t−iy (y ∈ R).
Let G be an arbitrary element of Uτ . It is straightforward to see that

F ∗ G =
1

2π i


ℜw=0

G(w)δ−iwFdw

in the topology of the algebra U for every F ∈ U. Then, since ϕ is continuous,

ϕ(F)ϕ(G) = ϕ(F ∗ G) =
1

2π i


ℜw=0

G(w)ϕ(δ−iwF)dw

=


1

2π i


ℜw=0

G(w)ϕ(−iw)dw

ϕ(F),

whence one obtains that

ϕ(G) =
1

2π i


ℜw=0

G(w)λ−wdw =
1

2π i


ℜz=c

G(z)λ−zdz,

for every c > 0. In conclusion we have shown that ϕ = ϕλ on Uτ . Then, by continuity of ϕ and ϕλ and the density of Uτ in
U, we obtain that ϕ = ϕλ on U, as it was claimed. �

Put R+
:= (0,∞), and let C0(R+

; λc) denote the space of continuous functions f :R+
→ C such that

lim
λ→0+

λc f (λ) = 0 and lim
λ→∞

λc f (λ) = 0 (c > 0).

Endowed with the pointwise multiplication and the locally convex topology defined by the family of seminorms

∥f ∥∞,c := sup
λ>0

|λc f (λ)|, f ∈ C0(R+
; λc),

the space C0(R+
; λc) is a metrizable complete locally convex algebra.

Proposition 2.5. For F ∈ U and λ > 0, setF(λ) := ϕλ(F) and G(F) := F . ThenF ∈ C0(R+
; λc) for every F ∈ U. Moreover,

the mapping G:U → C0(R+
; λc) is an injective and continuous algebra homomorphism with dense range.

Proof. (i) Let F ∈ U. The continuity ofF is an obvious consequence of the dominated convergence theorem. Regarding its
behavior at 0 and infinity, it is enough to notice that for any c > 0 we have

λcF(λ) =
1

2π i


∞

−∞

λ−iyF(c + iy)dy (λ > 0),

where F(c + i·) ∈ L1(R).
(ii) Clearly, G is linear and the homomorphism property follows by the identity ϕλ(F ∗ G) = ϕλ(F)ϕλ(G), for every

F ,G ∈ U and λ > 0. The injectivity of G follows from the identity

F(λ) =
λ−c

2π
(F Fc)(log λ), ∀c, λ > 0,

and the injectivity of F , where Fc = F(c + i·) ∈ L1(R) and F is the Fourier transform. Finally, note that for all λ > 0 we
have |λcF(λ)| ≤ ∥F∥c,c for any c > 0. This implies the continuity of G.
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It remains to show the density of G(U) in C0(R+, λc). By straightforward methods, one proves that the space of the test
functions C∞

c (0,∞) is dense in C0(R+, λc). For f ∈ C∞
c (0,∞), set F(z) =


∞

0 f (λ)λz−1dλ (z ∈ C+). Integrating by parts
twice one obtains that |F(z)| ≤ C(|z ∥ z +1|)−1 for each z ∈ C+, which implies that F ∈ U. Clearly, G(F) = f . Since it holds
for every f ∈ C∞

c (0,∞), we have that G(U) is dense in C0(R+, λc). �

We call G the Gelfand transform of U.

3. Semigroups in the algebra U

The Gamma function Γ and Beta function B are essential in the study of special functions [2, p. xiv]. Both functions yield
corresponding semigroups in U.
Gamma semigroups families. For t, α > 0 let γ t

α be the function in U defined by

γ t
α(z) :=

1
α
t−z/αΓ (z/α), z ∈ C+. (3.1)

Proposition 3.1. The family (γ t
α)t>0 is a semigroup in U with Gelfand transform given byγ t

α(λ) = e−tλα (λ > 0). (3.2)

Moreover, the vector-valued mapping t → γ t
α, (0,∞) → U is a C∞ function with derivatives

dn

dtn
γ t
α(z) = (−1)nγ t

α(z + nα), z ∈ C+, n ≥ 1.

Proof. The integral formula Γ (z) =


∞

0 λz−1e−λdλ for the Gamma function Γ gives rise to the identity
∞

0
xz−1e−txαdx =

1
α
t−z/αΓ (z/α),

for z ∈ C+, t, α > 0. In turn, the last equality can be expressed in inverse form by

e−txα
=

1
2π i


ℜz=c

x−zγ t
α(z)dz, x, t > 0,

for any c > 0. This gives us the first part of the statement.
The C∞ differentiability of t → γ t

α as well as the formula for the derivatives is a consequence of the dominated
convergence theorem. �

We call (γ t
α)t>0 the α-Gamma semigroup in U. Actually, the semigroup property reads

(t + s)−z/αΓ (z/α) =
t−z/α

2παi


ℜw=c


t
s

w/α
Γ


z − w

α


Γ

w
α


dw,

for every z ∈ C+ and t, s, α > 0.

Remark 3.2. Restrictions of γ t
α on vertical lines of C+ provide us with examples of semigroups on L1(R) (for other

semigroups in L1(R) involving special functions; see [4]). Define for a, t > 0 and y ∈ R,

γ a,t
α (y) =

1
2πα

t−a/αt−iy/αΓ


a + iy
α


. (3.3)

We have that γ a,t
α ∈ L1(R)with Fourier transform

F (γ a,t
a )(ξ) =

1
2πα


∞

−∞

t−(a+iy)/αΓ


a + iy
α


e−iξydy

=
eaξ

2π iα


ℜz=a

(eξ )−z t−z/αΓ (z/α)dz = eaξ γ t
α(λ)

= exp(aξ) exp(−teαξ ) = exp(aξ − teαξ ), ξ ∈ R.

Hence it follows that γ a,t
α ∗γ b,s

α = γ a+b,t+s
α for every a, b, t, s > 0. This means that (γ a,t

α )a,t>0 is a (continuous) bi-parameter
semigroup in L1(R). Taking a = t in (3.3) and setting

Γ t
α(y) :=

1
2πα

t−(t+iy)/αΓ


t + iy
α


, y ∈ R, (3.4)
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one obtains that the family (Γ t
α)t>0 is a continuous semigroup in L1(R)with Fourier transform (F Γ t

α)(ξ) = exp(−t(eαξ −

ξ)), ξ ∈ R.

Beta semigroup. It is known that

(1 − x)s−1
+

=
Γ (s)
2π i


ℜz=c

x−z Γ (z)
Γ (z + s)

dz (x, s, c > 0); (3.5)

see [2, p. 85], for instance. This formula gives rise to the following proposition. Recall that the Beta function B is given by
B(z, w) = Γ (z + w)−1Γ (z)Γ (w) for z, w, z + w ∉ {0,−n : n ∈ N}. Let us define

β t(z) := B(z, t + 1), z ∈ C+, t > 0.

Proposition 3.3. The family (β t)t>0 is a continuous semigroup in U with Gelfand transform β t(λ) = (1 − λ)t
+
, λ > 0.

Proof. Take t > 0. Putting s = t + 1 in (3.5) one obtains

(1 − x)t
+

=
1

2π i


ℜz=c

x−zB(z, t + 1)dz (x > 0). (3.6)

From the estimate of the Gamma function on vertical lines (see [2, p. 21]), one has that the latter integral is absolutely
convergent and, moreover, that β t

∈ U for all t > 0. The continuity in t follows then readily and we get that (β t)t>0 is a
continuous semigroup in U. Finally, from (3.6) is evident that β t(λ) = (1 − λ)t

+
for every λ, t > 0. �

Remark 3.4. There are indeed many semigroups in U, other than γ t or β t . Since the Gelfand transform G of Proposition 2.5
is an injective algebra homomorphism with the inverse Mellin transform M, it is enough to choose Borel functions
ψ: (0,∞) → (0,∞) making the integral Ψ t(z) :=


∞

0 λz−1etψ(λ)dλ convergent for z ∈ C+ and such that Ψ t
∈ U for

every t > 0, to get a semigroup (F t)t>0 in U (see the Introduction). So is the case for the Gaussian function Gt(z) :=

ez
2/4t/

√
4π t (ℜz ≥ 0; t > 0), for which ψ(λ) = − log(λ)2. This and other examples will be discussed in a forthcoming

paper.

4. Sheffer families for U

In this section we introduce the notion of Sheffer families associated with semigroups in the algebra U.

Definition 4.1. A family (St)t>0 of functions St :C+
→ C is called a Sheffer family in U if there is a semigroup (F t)t>0 in U

such that, in the notation of the introduction,

Ss+t = F s
∗ St , s, t > 0.

Evidently, each semigroup in U is a Sheffer family. Another important subclass of Sheffer families is the following one:
(S)t>0 is said to be an Appell family if it is a Sheffer family for the Gamma semigroup (γ t)t>0 given by γ t

:= γ t
1 , t > 0. There

are a number of special functions which are Appell families in U. Here we give two examples.
Hermite function. For n ∈ N, the Hermite polynomial Hn is defined by

Hn(t) := (−1)net
2 dn

dtn
e−t2

with generating function

e−x2e2tx =

∞
n=0

Hn(t)
xn

n!
; (4.1)

see [2, p. 278], for instance. Among other properties, one has

Hn(s + t)
n! 2n

=

n
k=0

Hk(s)
k! 2k

tn−k

(n − k)!
(s, t > 0; n ∈ N); (4.2)

see [6, p. 36], so (Hn(t)/(n! 2n))∞n=1 is an Appell sequence.
It is well known that the sequence (Hn)

∞

n=1 can be interpolated to an entire function H−z which for z ∈ C+, and t > 0, is
given by

H−z(t) :=
1

Γ (z)


∞

0
xz−1e−x2e−2txdx

=
2−z

Γ (z)


∞

0
λz−1e−λ2/4e−tλdλ; (4.3)
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see [5, p. 347]. Suggested by the Appell relation expressed in (4.2), we define

ht(z) := 2zΓ (z)H−z(t), t > 0.

By (4.3) the Gelfand transform of ht isht(λ) = e−λ2/4e−tλ, and so

(hs ∗ γ t)∧(λ) = hs(λ)γ t(λ) = e−λ2/4e−(s+t)λ,

for every s, t, λ > 0. This implies that

hs+t(z) = 2zΓ (z)H−z(s + t) = (hs ∗ γ t)(z) (z ∈ C+),

whence it follows that ht is an Appell family in U.

Remark 4.2. The subordination formula
Hn(t)
n!

=
1

√
π


∞

−∞

2n(t + is)n

n!
e−s2ds,

see for example [12, p. 254] (note that the Hermite polynomials considered in [12] are given in a slightly different form from
here), is interesting because it enables us to express the Appell polynomial Hn(t)/2nn! as the convolution of the sequence
tn/n! and the sequence

1
√
π


∞

−∞

insn

n!
e−s2ds =

in(1 + (−1)n)
2
√
πn!

Γ


n + 1
2


.

Analogously, one has the equality

H−z(t) =
1

√
π


∞

−∞

2−z(t + is)−ze−s2ds (z ∈ C+, t > 0), (4.4)

which can be proved taking the inverse Mellin transform of the function z → (1/
√
π)


∞

−∞
2−z(t + is)−zΓ (z)e−s2ds and

then applying (4.3).
Then, by (4.4),

2zΓ (z)H−z(t) =
1

√
π


∞

−∞

(t + is)−zΓ (z)e−s2ds

=


1

√
π


∞

−∞

γ t+ise−s2ds

(z),

where γ t+is is defined by γ t+is(z) := (t + is)−zΓ (z), ℜz > 0. Thus one can write the function z → 2zΓ (z)H−z(t) as the
formal convolution

1
√
π


∞

−∞

γ ise−s2ds


∗ γ t (t > 0)

where with the formal integral


∞

−∞
γ ise−s2dswe denote the function

φ(z) := Γ (z)


∞

−∞

e−z log(is)e−s2ds (z ∈ C+).

Here, log is the branch of the logarithmwith argument lying in [−π, π). This integral is absolutely convergent if 0 < ℜz < 1
since

e−z log(is)
 = |s|−ℜz e−sgn(s)(ℑz) π2 , s ≠ 0. For such values of z, we have

φ(z) = Γ (z) 2 cos
πz

2

  ∞

0
s−ze−s2ds = cos

πz
2


Γ


1 − z
2


Γ (z),

whence it follows that φ extends to C \ {0,−2,−4, . . .}.

Lerch function. For t ∈ C \ {0,−1, . . .} and z ∈ C if |α| < 1, or ℜz > 1 if |α| = 1, the transcendent Lerch function Φ is
defined by

Φ(α, z, t) =

∞
n=0

αn

(n + t)z
;

see for instance [12, p. 32]. Special cases of the transcendent Lerch function are the Lerch zeta function Φ(2π iw, z, t), the
Hurwitz zeta functionΦ(1, z, t) and zeta function ζ (z) := Φ(1, z, 1), and others.
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Let now take t > 0 for simplicity. Then, forℜz > 0 if |α| ≤ 1with α ≠ 1, orℜz > 1 if α = 1, one gets the representation

Φ(α, z, t) =
1

Γ (z)


∞

0

xz−1e−tx

1 − αe−x
dx, (4.5)

just developing (1 − αe−x)−1 in powers of x in the integral; see [12, p. 34]. For t > 0 and |α| ≤ 1, let us define the functionBt,α:C+
→ C byBt,α(z) := Γ (z + 1)Φ(α, z + 1, t), ℜz > 0.

Equality (4.5) implies that the function Bt,α defines an Appell family (Bt,α)t>0 in U such that Bt,α(λ) = λe−tλ(1 −

αe−λ)−1, λ > 0.
The above facts obey the general pattern that we are considering in the paper: the family Bn(t, α) of the so-called

Apostol–Bernoulli polynomials is defined by

xetx

αex − 1
=

∞
n=0

Bn(t, α)
xn

n!
. (4.6)

Then Bn(t, α) = −nΦ(α, 1 − n, t) on various domains of analytic continuation; see [13, Introduction]. On the other
hand, (Bn(t, α))n is an Appell sequence, see for instance [13, proof in Theorem 3], and so the normalized sequenceBn(t, α) :=

1
n!Bn(t, α) satisfies

Bn(s + t, α) =

∞
k=0

Bn(s, α)
tn−k

(n − k)!
.

Thus in accordance with our general procedure, applying the Mellin transform to the generating function of (4.6)
evaluated at −x one recaptures (4.5),

∞

0
xz−1 xe−tx

1 − αe−x
dx = Bt,α(z),

for |α| ≤ 1 and ℜz > 0, so that Bt,α(z) can be regarded as the continuous version of the normalized Bernoulli sequence,
satisfying the Appell propertyBs+t,α = Bs,α ∗ γ t s, t > 0.

Note that the case α = 1 corresponds to the Bernoulli polynomial sequence; see [6, p. 36].
The family of Apostol–Euler polynomials En(t, α) is defined by

2etx

αex + 1
=

∞
n=0

En(t, α)
n!

xn, α ≠ −1,

and the discussion carried out for the Apostol–Bernoulli polynomials can be done for the Apostol–Euler polynomials in a
similar manner.

However, there is an alternative way to deal with Euler polynomials or functions: it is noticed in [13, Lemma 2] that one
can transfer results between the Apostol–Bernoulli and Apostol–Euler polynomials using the relation (n + 1)En(t, α) =

−2Bn+1(t,−α), that is,En(t, α)(z) = −2Bn(t,−α), α ≠ −1. (4.7)

In our setting, if we put, for |α| ≤ 1 with α ≠ −1,

Et,α(z) :=


∞

0

2e−tx

1 + αx
xz−1 dx, ℜz > 0,

then by simple substitution we get the equalityEt,α(z + 1) = 2Bt,α(z), ℜz > 0,

which is the continuous counterpart to (4.7).
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