Elliptic Askey-Wilson functions and associated elliptic Schur functions

Masatoshi NOUMI (Kobe University)

EIS, Leiden (July 15, 2013)

In this talk I discuss a family of elliptic functions that generalize Askey-Wilson polynomials, with emphasis on their difference equations. Also, I investigate a class of multivariable elliptic functions of Schur type built up from them by determinants. This class of functions can be regarded as an elliptic extension of Koornwinder polynomials with t=q, and carries various characteristic properties. I will describe in particular difference equations for this class, and an explicit formula for rectangular cases.

目次

目次

1	Askey-Wilson polynomials and Koornwinder polynomials	3
2	Very well-poised elliptic hypergeometric series	11
3	Elliptic Askey-Wilson functions	14
4	Elliptic Schur functions with two parameters	19
5	Schur functions associated with elliptic Askey-Wilson functions	24

- 1 Askey-Wilson polynomials and Koornwinder polynomials
- Askey-Wilson polynomials

q-Hypergeometric series:

$$p_n(z; a, b, c, d|q) = {}_{4}\phi_{3} \begin{bmatrix} abcdq^{n-1}, q^{-n}, az, a/z \\ ab, ac, ad \end{bmatrix}; q, q$$

$$= \sum_{k=0}^{n} \frac{(abcdq^{n-1}; q)_{k}(q^{-n}; q)_{k}(az; q)_{k}(a/z; q)_{k}}{(q; q)_{k}(ab; q)_{k}(ac; q)_{k}(ad; q)_{k}} q^{k}$$

$$(a; q)_{k} = (1-a)(1-qa)\cdots(1-q^{k-1}a) \qquad (k = 0, 1, 2, ...)$$

q-Difference equation: $p_n(z) = p_n(z; a, b, c, d|q)$ satisfies

$$\frac{(1-az)(1-bz)(1-cz)(1-dz)}{(1-z^2)(1-qz^2)}(T_{q,z}-1)p_n(z)
+ \frac{(a-z)(b-z)(c-z)(d-z)}{(1-z^2)(q-z^2)}(T_{q,z}^{-1}-1)p_n(z)
= -p_n(z)(1-abcdq^{n-1})(1-q^{-n})$$

where $T_{q,z}f(z) = f(qz)$.

Spectral duality: Regarding the values at the reference points $z = aq^k \ (k = 0, 1, 2, ...)$,

$$p_{l}(aq^{k}; a, b, c, d|q) = {}_{4}\phi_{3} \begin{bmatrix} abcdq^{l-1}, q^{-l}, a^{2}q^{k}, q^{-k} \\ ab, ac, ad \end{bmatrix}; q, q$$

$$= {}_{4}\phi_{3} \begin{bmatrix} \alpha^{2}q^{l}, q^{-l}, \alpha\beta\gamma\delta q^{k-1}, q^{-k} \\ \alpha\beta, \alpha\gamma, \alpha\delta \end{bmatrix}; q, q \end{bmatrix} = p_{k}(\alpha q^{l}; \alpha, \beta, \gamma, \delta|q)$$

with the involutive transformation on parameters $(a, b, c, d) \leftrightarrow (\alpha, \beta, \gamma, \delta)$:

$$\alpha = \sqrt{abcd/q}, \quad \beta = \sqrt{abq/cd}, \quad \gamma = \sqrt{acq/bd}, \quad \delta = \sqrt{adq/bc}.$$

Namely,

$$p_l(aq^k; a, b, c, d|q) = p_k(\alpha q^l; \alpha, \beta, \gamma, \delta|q) \qquad (k, l = 0, 1, 2, \ldots).$$

Symmetry with respect to (a, b, c, d): The monic Askey-Wilson polynomials

$$\frac{(ab, ac, ad; q)_l}{a^l (abcdq^{l-1}; q)_l} p_l(z; a, b, c, d|q, t) = (z^l + z^{-l}) + \cdots$$

are symmetric with respect to the parameters (a, b, c, d).

· · · Sears' transformation formula for terminating $_4\phi_3$.

Koornwinder polynomials

Macdonald polynomials of type BC, multivariable Askey-Wilson polynomials $x = (x_1, \ldots, x_m)$: canonical coordinates of $\mathbb{T}^m = (\mathbb{C}^*)^m$ a, b, c, d, q, t: generic complex parameters $W_m = W(BC_m) = \{\pm 1\}^m \rtimes \mathfrak{S}_m$: Weyl group of type BC_m (hyperoctahedral group) W_m acts on (x_1, \ldots, x_m) through permutations of indices and inversions $x_i \to x_i^{-1}$.

Koorwinder's q-difference operator \mathcal{D}_x is defined by

$$\mathcal{D}_{x} = \sum_{i=1}^{m} A_{i,+}(x)(T_{q,x_{i}} - 1) + \sum_{i=1}^{m} A_{i,-}(x)(T_{q,x_{i}}^{-1} - 1)$$

$$A_{i,+}(x) = \frac{(1 - ax_{i})(1 - bx_{i})(1 - cx_{i})(1 - dx_{i})}{(abcdq^{-1})^{\frac{1}{2}}(1 - x_{i}^{2})(1 - qx_{i}^{2})} \prod_{1 \leq j \leq m; \ j \neq i} \frac{(1 - tx_{i}/x_{j})(1 - tx_{i}x_{j})}{t(1 - x_{i}/x_{j})(1 - x_{i}x_{j})},$$

$$A_{i,-}(x) = A_{i,+}(x^{-1}) \qquad (i = 1, \dots, m).$$

To make the formula shorter, we use the multiplicative notation $\langle z \rangle = z^{\frac{1}{2}} - z^{-\frac{1}{2}} = -z^{-\frac{1}{2}}(1-z)$ of the sine function:

$$A_{i,+}(x) = \frac{\langle ax_i \rangle \langle bx_i \rangle \langle cx_i \rangle \langle dx_i \rangle}{\langle x_i^2 \rangle \langle qx_i^2 \rangle} \prod_{1 \le j \le m; j \ne i} \frac{\langle tx_i / x_j \rangle \langle tx_i x_j \rangle}{\langle x_i / x_j \rangle \langle x_i x_j \rangle} \quad (i = 1, \dots, m).$$

For each partition $\lambda = (\lambda_1, \dots, \lambda_m)$, there exists a unique W_m -invariant Laurent polynomial

$$P_{\lambda}(x) = P_{\lambda}(x; a, b, c, d|q, t) \in \mathbb{C}[x_1^{\pm 1}, \dots, x_m^{\pm 1}]^{W_m}$$

such that

(1) In terms of orbit sums $m_{\mu}(x) = \sum_{\nu \in W_{m\mu}} x^{\nu}$, $P_{\lambda}(x)$ is expressed in the form

$$P_{\lambda}(x) = m_{\lambda}(x) + \sum_{\mu < \lambda} p_{\lambda,\mu} m_{\mu}(x)$$

with respect to the dominance ordering of partitions, and

(2) $P_{\lambda}(x)$ satisfies the q-difference equation

$$\mathcal{D}_x P_{\lambda}(x) = P_{\lambda}(x) d_{\lambda}; \quad d_{\lambda} = \sum_{i=1}^{m} \langle \alpha t^{m-i} q^{\lambda_i}; \alpha t^{m-i} \rangle, \quad \alpha = (abcdq^{-1})^{\frac{1}{2}},$$

where
$$\langle z; a \rangle = \langle za \rangle \langle z/a \rangle = z^{-1} (1 - za) (1 - z/a) = z + z^{-1} - a - a^{-1}$$
.

The Koornwinder polynomials $P_{\lambda}(x)$ form a \mathbb{C} -basis of the ring $\mathbb{C}[x_1^{\pm 1}, \dots, x_m^{\pm 1}]^{W_m}$ of W_m -invariant Laurent polynomials.

Van Diejen's commuting family of q-difference operators:

For $r = 0, 1, 2, \dots, m$, define $\mathcal{D}_x^{(r)}$ by

$$\mathcal{D}_{x}^{(r)} = \sum_{(I;\epsilon); |I| \le r} A_{I,\epsilon}^{(r)}(x) T_{q,x}^{(I;\epsilon)}, \qquad T_{q,x}^{(I;\epsilon)} = \prod_{i \in I} T_{q,x_i}^{\epsilon_i},$$

where the sum is taken over all pairs $(I; \epsilon)$ of $I \subseteq M = \{1, ..., m\}$ and $\epsilon : I \to \{\pm 1\}$ with $|I| \le r$. The coefficients are defined by

$$A_{I,\epsilon}^{(r)}(x) = (-1)^{r-|I|} U(x_I^{\epsilon}; x_{M\setminus I}) \sum_{(I',\epsilon'); I'\subseteq M\setminus I, |I'|=r-|I|} V(x_{I'}^{\epsilon'}; x_{M\setminus I\cup I'}),$$

$$U(x_I; x_J) = \prod_{i\in I} \frac{\langle ax_i\rangle\langle bx_i\rangle\langle cx_i\rangle\langle dx_i\rangle}{\langle x_i^2\rangle\langle qx_i^2\rangle} \prod_{i,j\in I; i< j} \frac{\langle tx_ix_j\rangle\langle qtx_ix_j\rangle}{\langle x_ix_j\rangle\langle qx_ix_j\rangle} \prod_{i\in I; j\in J} \frac{\langle tx_i/x_j\rangle\langle tx_ix_j\rangle}{\langle x_i/x_j\rangle\langle (x_ix_j)\rangle},$$

$$V(x_I; x_J) = \prod_{i\in I} \frac{\langle ax_i\rangle\langle bx_i\rangle\langle cx_i\rangle\langle dx_i\rangle}{\langle x_i^2\rangle\langle qx_i^2\rangle} \prod_{i,j\in I; i< j} \frac{\langle tx_ix_j\rangle\langle qx_ix_j/t\rangle}{\langle x_ix_j\rangle\langle qx_ix_j/t\rangle} \prod_{i\in I; j\in J} \frac{\langle tx_i/x_j\rangle\langle tx_ix_j\rangle}{\langle x_i/x_j\rangle\langle (x_ix_j)\rangle}.$$

These q-difference operators $\mathcal{D}_x^{(r)}$ commute with each other: $\mathcal{D}_x^{(r)}\mathcal{D}_x^{(s)} = \mathcal{D}_x^{(s)}\mathcal{D}_x^{(r)}$ $(r, s \in \{1, \dots, m\})$. The Koornwinder polynomials $P_{\lambda}(x)$ are the joint eigenfunctions of this commuting family of q-difference operators.

In terms of the generation function,

$$\mathcal{D}_x(u) = \sum_{r=0}^m (-1)^{m-r} \langle u; \alpha \rangle_{t,r} \, \mathcal{D}_x^{(r)}, \qquad \langle u; \alpha \rangle_{t,r} = \langle u; \alpha \rangle \langle u; t\alpha \rangle \cdots \langle u; t^{r-1}\alpha \rangle.$$

for any partition $\lambda = (\lambda_1, \dots, \lambda_m)$ we have

$$\mathcal{D}_x(u) P_{\lambda}(x) = P_{\lambda}(x) \prod_{i=1}^m \langle u; \alpha t^{m-i} q^{\lambda_i} \rangle.$$

In the context of affine Hecke algebras, it is known that the q-operators of $\mathcal{D}_x^{(r)}$ arise from the center of the affine Hecke algebra of type C_n through q-Dunkl operators.

Spectral duality:

Renormalize the Koornwinder polynomials by the value at the base point at^{ρ} :

$$\widetilde{P}_{\lambda}(x; a, b, c, d|q, t) = \frac{P_{\lambda}(x; a, b, c, d|q, t)}{P_{\lambda}(at^{\rho}; a, b, c, d|q, t)}; \quad at^{\rho} = (at^{m-1}, at^{m-2}, \dots, a).$$

Then for any pair of partitions λ , μ ,

$$\widetilde{P}_{\lambda}(at^{\rho}q^{\mu}; a, b, c, d|q, t) = \widetilde{P}_{\mu}(\alpha t^{\rho}q^{\lambda}; \alpha, \beta, \gamma, \delta|q, t).$$

Okounkov's binomial formula:

The normalized Koornwinder polynomials are expressed as

$$\widetilde{P}_{\lambda}(x; a, b, c, d|q, t) = \sum_{\mu \subseteq \lambda} c_{\mu}(a, b, c, d|q, t) R_{\mu}(\alpha t^{\rho} q^{\lambda}; \alpha|q, t) R_{\mu}(x; a|q, t)$$

in terms of Okounkov's interpolation polynomials $R_{\mu}(x; a|q, t)$; $R_{\mu}(x; a|q, t)$ are characterized as W_m -invariant Laurent polynomials of degree $|\lambda|$ satisfying the interpolation property that

$$R_{\mu}(at^{\rho}q^{\lambda}; a|q, t) = 0$$
 unless $\mu \subseteq \lambda$, $R_{\mu}(at^{\rho}q^{\mu}; a|q, t) \neq 0$.

Koornwinder polynomials with t = q:

 $P_{\lambda}(x; a, b, c, d|q, q)$ can be regraded as Macdonald's ninth variation of Schur functions associated with Askey-Wilson polynomials:

$$P_{\lambda}(x; a, b, c, d|q, q) = \text{const.} \frac{\det (p_{m-j+\lambda_j}(x_i; a, b, c, d|q))_{i,j=1}^m}{\det (p_{m-j}(x_i; a, b, c, d|q))_{i,j=1}^m}.$$

Basic questions in view of the extension to elliptic functions:

Q1: How elliptic extension of Askey-Wilson and Koornwinder polynomials should be constructed?

Q2: How they should be related with BC type difference operators of Ruijsenaars-van Diejen?

Elliptic extension of Askey-Wilson and Koornwinder polynomials has been developed successfully in the framework of

- BC type elliptic interpolation functions ... Coskun-Gustafson (2006), Rains (2006)
- Elliptic biorthogonal functions defined through the binomial formula ... Rains (2006).

It seems, however, that the relationship to difference operators of Ruijsenaars - van Diejen has not been completely clarified.

In this talk, I concentrate on the special special case (t = q) where the multivariable elliptic functions can be defined by determinants (of Schur type). Presumably, this class of multivariable elliptic Askey-Wilson functions is related to the hypergeometric solutions of the elliptic Painlevé equation of affine E_8 Weyl group symmetry.

2 Very well-poised elliptic hypergeometric series

Hermite's theorem

Let s(z) be a nonzero entire function in $z \in \mathbb{C}$, and suppose that s(z) satisfies the *Riemann relation*

$$s(z+a)s(z-a)s(a+b)s(a-b) + s(z+b)s(z-b)s(b+c)s(b-c) + s(z+c)s(z-c)s(c+a)s(c-a) = 0$$

for any $z, a, b, c \in \mathbb{C}$. Then

- (1) s(z) is an odd function and the set $\Omega = \{\omega \in \mathbb{C} \mid s(\omega) = 0\}$ of zeros of s(z) is a closed discrete subgroup of the additive group \mathbb{C} (hence, of rank ≤ 2).
- (2) s(z) is quasi-periodic with respect to Ω . Furthermore
- (3) s(z) is expressed as follows according to the rank Ω :

Rational case: $s(z) = e^{az^2 + b} z$, $\Omega = 0$ Trigonometric case: $s(z) = e^{az^2 + b} \sin(\pi z/\omega)$, $\Omega = \mathbb{Z}\omega$

Elliptic case: $s(z) = e^{az^2 + b} \sigma(z; \Omega), \qquad \Omega = \mathbb{Z} \omega_1 \oplus \mathbb{Z} \omega_2$

In the elliptic case, Ω is generated by two complex numbers ω_1 , ω_2 which are linearly independent over \mathbb{R} , and $\sigma(z;\Omega)$ stands for the Weierstrass sigma function associated with the period lattice Ω .

We fix a nonzero entire function s(z) satisfying the Riemann relation, and denote it simply by [z] = s(z) (e-number notation). The Riemann relation can be expressed in various forms:

$$[x \pm u][y \pm v] - [x \pm v][y \pm u] = [x \pm y][u \pm v],$$
$$\frac{[x \pm u]}{[x \pm v]} - \frac{[y \pm u]}{[y \pm v]} = \frac{[x \pm y][u \pm v]}{[x \pm v][y \pm v]},$$

where $[x \pm y] = [x + y][x - y]$.

Very well-poised elliptic hypergeometric series

Fixing a generic complex number δ , we introduce the notation of δ -shifted factorials and very well-poised hypergeometric series associated with [z].

$$[z]_k = [z]_{\delta,k} = [z][z+\delta] \cdots [z+(k-1)\delta] \quad (k=0,1,2,\ldots)$$

$$r+5V_{r+4}(a_0; a_1, a_2, \ldots, a_r) = \sum_{k=0}^{\infty} \frac{[a_0+2k\delta]}{[a_0]} \frac{[a_0]_k [a_1]_k [a_2]_k \cdots [a_r]_k}{[\delta]_k [b_1]_k [b_2]_k \cdots [b_r]_k}$$

$$a_i + b_i = \delta + a_0 \quad (i=1,\ldots,r).$$

When we use the notation of the V series, we always assume the termination condition

$$\exists i \in \{0, 1, \dots, r\} : a_i \equiv -n\delta \mod \Omega, \quad n \in \mathbb{N} = \{0, 1, 2, \dots\}.$$

so that the V-series becomes a finite sum.

• Frenkel-Turaev sum (1997)

Under the balancing condition and the termination condition

$$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = 2a_{0} + \delta; a_{5} = -n\delta (n \in \mathbb{N}),$$

$$a_{1}V_{9}(a_{0}; a_{1}, a_{2}, a_{3}, a_{4}, -n\delta)$$

$$= \frac{[\delta + a_{0}]_{n}[\delta + a_{0} - a_{1} - a_{2}]_{n}[\delta + a_{0} - a_{1} - a_{3}]_{n}[\delta + a_{0} - a_{2} - a_{3}]_{n}}{[\delta + a_{0} - a_{1}]_{n}[\delta + a_{0} - a_{2}]_{n}[\delta + a_{0} - a_{3}]_{n}[\delta + a_{0} - a_{1} - a_{2} - a_{3}]_{n}}.$$

• Elliptic Bailey transformation

Under the balancing condition and the termination condition

$$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} = 3a_{0} + 2\delta; a_{7} = -n\delta (n \in \mathbb{N}),$$

$$a_{12}V_{11}(a_{0}; a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, -n\delta)$$

$$= \frac{[\delta + a_{0}]_{n}[\delta + a_{0} - a_{4} - a_{5}]_{n}[\delta + a_{0} - a_{4} - a_{6}]_{n}[\delta + a_{0} - a_{5} - a_{6}]_{n}}{[\delta + a_{0} - a_{4}]_{n}[\delta + a_{0} - a_{5}]_{n}[\delta + a_{0} - a_{6}]_{n}[\delta + a_{0} - a_{4} - a_{5} - a_{6}]_{n}}$$

$$\cdot {}_{12}V_{11}(\widetilde{a}_{0}; \widetilde{a}_{1}, \widetilde{a}_{2}, \widetilde{a}_{3}, a_{4}, a_{5}, a_{6}, -n\delta).$$

$$\widetilde{a}_{0} = \delta + 2a_{0} - a_{1} - a_{2} - a_{3},$$

$$\widetilde{a}_{1} = \delta + a_{0} - a_{2} - a_{3}, \quad \widetilde{a}_{2} = \delta + a_{0} - a_{1} - a_{3}, \quad \widetilde{a}_{3} = \delta + a_{0} - a_{1} - a_{2}.$$

3 Elliptic Askey-Wilson functions

An elliptic extension of Askey-Wilson polynomials

We introduce a sequence of elliptic hypergeometric series $\Phi_l(z; \boldsymbol{a}; b|\delta)$ (l = 0, 1, 2, ...) with parameters $\boldsymbol{a} = (a_0, a_1, a_2, a_3)$ and b. Setting $\alpha_0 = \frac{1}{2}(a_0 + a_1 + a_2 + a_3 - \delta)$, for each l = 0, 1, 2, ... we define

$$\Phi_{l}(z; \boldsymbol{a}, b|\delta) = \Phi_{l}(z; a_{0}, a_{1}, a_{2}, a_{3}, b|\delta)
= {}_{12}V_{11}(a_{0} + b - \delta; a_{0} + z, a_{0} - z, 2\alpha_{0} + l\delta, -l\delta, b - a_{1}, b - a_{2}, b - a_{3})
= \sum_{k=0}^{l} \frac{[a_{0} \pm z]_{k}}{[b \pm z]_{k}} \frac{[a_{0} + b + (2k - 1)\delta]}{[a_{0} + b - \delta]} \frac{[a_{0} + b - \delta]_{k}[2\alpha_{0} + l\delta]_{k}[-l\delta]_{k}}{[\delta]_{k}[a_{0} + b - 2\alpha_{0} - l\delta]_{k}[a_{0} + b + l\delta]_{k}} \prod_{i=1}^{3} \frac{[b - a_{i}]_{k}}{[a_{0} + a_{i}]_{k}}.$$

In the trigonometric case, this corresponds to

$$\begin{split} &\Phi_{l}(z; a_{0}, a_{1}, a_{2}, a_{3}, b|q) \\ &= {}_{10}W_{9}(a_{0}bq^{-1}; a_{0}z, a_{0}/z, a_{0}a_{1}a_{2}a_{3}q^{l-1}, q^{-l}, b/a_{1}, b/a_{2}, b/a_{3}; q, q) \\ &= \sum_{k=0}^{l} \frac{1 - a_{0}bq^{2k-1}}{1 - a_{0}bq^{-1}} \frac{(a_{0}bq^{-1})_{k}}{(q)_{k}} \frac{(a_{0}z)_{k}(a_{0}/z)_{k}}{(bz)_{k}(b/z)_{k}} \frac{(a_{0}a_{1}a_{2}a_{3}q^{l-1})_{k}(q^{-l})_{k}}{(bq^{1-l}/a_{1}a_{2}a_{3})_{k}(a_{0}bq^{l})_{k}} \frac{(b/a_{1})_{k}(b/a_{2})_{k}(b/a_{3})_{k}}{(a_{0}a_{1})_{k}(a_{0}a_{2})_{k}(a_{0}a_{3})_{k}} q^{k} \end{split}$$

in the multiplicative variables, where $(a)_k = (a;q)_k$.

In the limit $b \to 0$, this series recovers the Askey-Wilson polynomial

$$p_{l}(z; a_{0}, a_{1}, a_{2}, a_{3}, a_{4}|q) = {}_{4}\phi_{3} \begin{bmatrix} a_{0}z, a_{0}/z, a_{0}a_{1}a_{2}a_{3}q^{l-1}, q^{-l} \\ a_{0}a_{1}, a_{0}a_{2}, a_{0}a_{3} \end{bmatrix}; q, q$$

$$= \sum_{k=0}^{l} \frac{(a_{0}z)_{k}(a_{0}/z)_{k}(a_{0}a_{1}a_{2}a_{3}q^{l-1})_{k}(q^{-l})_{k}}{(q)_{k}(a_{0}a_{1})_{k}(a_{0}a_{2})_{k}(a_{0}a_{3})_{k}} q^{k}$$

Difference equation

Consider the difference operator

$$L(z, T_z; \boldsymbol{a}, b, u) = A(z; \boldsymbol{a}, b, u) \left(T_z^{\delta} - 1\right) + A(-z; \boldsymbol{a}, b, u) \left(T_z^{-\delta} - 1\right) + \Lambda_0(\boldsymbol{a}, b; u)$$

$$A(z; \boldsymbol{a}, b, u) = \frac{[z - b][z - b + \delta][z + b - \alpha_0 \pm u] \prod_{i=0}^{3} [z + a_i]}{[2z][2z + \delta]}$$

$$\Lambda_0(\boldsymbol{a}, b, u) = [\alpha_0 \pm u] \prod_{i=0}^{3} [b - a_i], \quad \alpha_0 = \frac{1}{2} (a_0 + a_1 + a_2 + a_3 - \delta),$$

where $T_z^{\delta} f(z) = f(z + \delta)$. Then the elliptic hypergeometric series

$$\Phi_l(z; \boldsymbol{a}, b) = {}_{12}V_{11}(a_0 + b - \delta; a_0 + z, a_0 - z, 2\alpha_0 + l\delta, -l\delta, b - a_1, b - a_2, b - a_3)$$

satisfies the following difference equation ($almost\ eigenfunction$ with parameter shift in b):

$$L(z, T_z; \boldsymbol{a}, b, u)\Phi_l(z; \boldsymbol{a}, b) = \Phi_l(z; \boldsymbol{a}, b + \delta)\Lambda_l(\boldsymbol{a}, b; u) \qquad (l = 0, 1, 2, \ldots)$$

$$\Lambda_{l}(\boldsymbol{a}, b; u) = \frac{[\alpha_{0} + l\delta \pm u]}{[\alpha_{0} + l\delta \pm \beta]} [\alpha_{0} \pm \beta] \prod_{i=0}^{3} [b - a_{i}], \quad \beta = b + \frac{1}{2} (a_{0} - a_{1} - a_{2} - a_{3} + \delta).$$

• The difference operator $L(z, T_z; \boldsymbol{a}, b, u)$ constitutes a 6-parameter subfamily of Ruijsenaars-van Diejen operators of type BC_1 . In the trigonometric case, these difference equations recover the q-difference equations for Askey-Wilson polynomials in the limit " $b \to 0$ ".

Spectral duality

Regarding a_0 as a distinguished parameter, for the parameters $(\boldsymbol{a}, b) = (a_0, a_1, a_2, a_3, b)$ we define the dual parameters $(\boldsymbol{\alpha}, \beta) = (\alpha_0, \alpha_1, \alpha_2, \alpha_3, \beta)$ by

$$\alpha_{0} = \frac{1}{2}(a_{0} + a_{1} + a_{2} + a_{3} - \delta),$$

$$\alpha_{1} = \frac{1}{2}(a_{0} + a_{1} - a_{2} - a_{3} + \delta),$$

$$\alpha_{2} = \frac{1}{2}(a_{0} - a_{1} + a_{2} - a_{3} + \delta),$$

$$\alpha_{3} = \frac{1}{2}(a_{0} - a_{1} - a_{2} + a_{3} + \delta),$$

$$\beta = b + \frac{1}{2}(a_{0} - a_{1} - a_{2} - a_{3} + \delta).$$

Note that $a_0 + a_i = \alpha_0 + \alpha_i$ (i = 1, 2, 3) and $a_0 + b = \alpha_0 + \beta$. Then the *elliptic Askey-Wilson* functions $\Phi_l(z; \boldsymbol{a}, b)$ (l = 0, 1, 2, ...) satisfy the spectral duality:

$$\Phi_l(a_0 + k\delta; \boldsymbol{a}, b) = \Phi_k(\alpha_0 + l\delta; \boldsymbol{\alpha}, \beta) \qquad (k, l \in \mathbb{N}).$$

Through this spectral duality, the difference equation for $\Phi_l(z; \boldsymbol{a}, b)$ mentioned above are translated into three term recurrence relation for $\Phi_l(z; \boldsymbol{a}, b)$.

ullet Symmetry with respect to $a=(a_0,a_1,a_2,a_3)$

The elliptic functions

$$\frac{[2\alpha_0 - a_0 - b + \delta]}{[a_0 + b]_l} \prod_{i=1}^{3} [a_0 + a_i]_l \Phi_l(z; \boldsymbol{a}, b) \quad (l = 0, 1, 2, ...)$$

are symmetric with respect to $\mathbf{a} = (a_0, a_1, a_2, a_3)$. This fact is equivalent to the elliptic Bailey transformation formula for ${}_{12}V_{11}$.

4 Elliptic Schur functions with two parameters

• Schur functions associated with a sequence of functions

Let $f_k(z)$ (k = 0, 1, 2, ...) be a sequence of functions in one variable z. Considering $f_k(z)$ as being "of degree k", for each partition $\lambda = (\lambda_1, ..., \lambda_m)$ with $l(\lambda) \leq m$, we define symmetric function $S_{\lambda}^{(m)}(x; \mathbf{f})$ in m variables $x = (x_1, ..., x_m)$ by the Weyl formula:

$$S_{\lambda}^{(m)}(x; \boldsymbol{f}) = \frac{\det \left(f_{m-j+\lambda_j}(x_i) \right)_{i,j=1}^m}{\det \left(f_{m-j}(x_i) \right)_{i,j=1}^m}$$

assuming that the Weyl denominator is nonzero. This function $S_{\lambda}^{(m)}(x) = S_{\lambda}^{(m)}(x; \mathbf{f})$ is called the Schur function associated with the sequence of functions $\mathbf{f} = (f_k)_{k \geq 0}$ (Macdonald's ninth variation). It is known that this class of Schur functions carry many nice properties including

- Weyl formula (definition)
- Jacobi-Trudi formula: $S_{\lambda}^{(m)}(x) = \det \left(h_{\lambda_i i + j}^{(m-j+1)}(x) \right)_{i,j=1}^m \quad S_{\lambda}^{(m)}(x) = \det \left(e_{\lambda'_i i + j}^{(m+j-1)}(x) \right)_{i,j=1}^m$
- Giambelli formula: $S_{\lambda}^{(m)}(x) = \det \left(h_{p_i,q_j}^{(m)}(x)\right)_{i,j=1}^r$
- Dual Cauchy formula: $\Psi^{(m,n)}(x,y) = \sum_{\lambda \subseteq (n^m)} (-1)^{|\lambda|} S_{\lambda}^{(m)}(x) S_{\lambda^*}^{(n)}(y)$
- Tableau representation: $S_{\lambda}^{(m)}(x) = \sum_{T \in SSTab_m(\lambda)} w_T^{(m)}(x)$ (with weights appropriately defined)

ullet Elliptic Schur functions with parameters (a,b)

As the sequence of reference functions, we take

$$f_k(z;a,b) = \frac{[a\pm z]_k}{[b\pm z]_k} = \frac{[a+z]_k[a-z]_k}{[b+z]_k[b-z]_k} \qquad (k=0,1,2,\ldots)$$

and denote by

$$S_{\lambda}^{(m)}(x; a, b | \delta) = \frac{\det (f_{m-j+\lambda_j}(x_i))_{i,j=1}^m}{\det (f_{m-j}(x_i))_{i,j=1}^m} = \frac{\det \left(\frac{[a \pm x_i]_{m-j+\lambda_j}}{[b \pm x_i]_{m-j+\lambda_j}}\right)_{i,j=1}^m}{\det \left(\frac{[a \pm x_i]_{m-j}}{[b \pm x_i]_{m-j}}\right)_{i,j=1}^m}$$

the associated Schur functions in m variables $x = (x_1, \ldots, x_m)$. The denominator in this case factorizes thanks to Warnaar's elliptic version of the $Krattenthaler\ determinant\ formula$:

$$\det\left(\frac{[a\pm x_i]_{m-j}}{[b\pm x_i]_{m-j}}\right)_{i,j=1}^m = \frac{\prod_{1\leq i< j\leq m} [x_i\pm x_j] \prod_{j=1}^{m-1} [a-b]_j [a+b+(j-1)\delta]_j}{\prod_{i=1}^m [b\pm x_i]_{m-1}}$$

This clss of Schur functions is a special case of elliptic interpolation functions due to Coskun-Gustafson and Rains.

Recursion on the number of variables

$$S_{\lambda}^{(m)}(x_1, \dots, x_m; a, b) = \sum_{\mu \subseteq \lambda} S_{\mu}^{(m-1)}(x_1, \dots, x_{m-1}; a, b + \delta) \, \psi_{\lambda/\mu}^{(m)}(a, b) \, f_{\lambda/\mu}^{(m)}(x_m; a, b)$$

The summation is taken over all horizontal strips λ/μ with $l(\mu) \leq m-1$.

$$f_{\lambda/\mu}^{(m)}(z;a,b) = \prod_{i\geq 1} \frac{[a+(m-i)\delta \pm z]_{\lambda_i}}{[a+(m-i)\delta \pm z]_{\mu_i}} \frac{[b+(m-i-1)\delta \pm z]_{\mu_i}}{[b+(m-i)\delta \pm z]_{\lambda_i}}$$
$$\psi_{\lambda/\mu}^{(m)}(a,b) = \prod_{i\geq 1} \frac{[a+b+2(m-i-1+\mu_i)\delta]}{[a+b+2(m-i-1+\lambda_i)\delta]}$$

Tableau representation

$$S_{\lambda}^{(m)}(x;a,b) = \sum_{\phi = \lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \dots \subseteq \lambda^{(m)} = \lambda} \prod_{1 \le i \le j \le m} \frac{\left[a + b + (m + j - 2i - 1 + 2\lambda_i^{(j)})\delta\right]}{\left[a + b + (m + j - 2i - 1)\delta\right]}$$

$$\cdot \prod_{1 \le i \le j \le m} \frac{\left[a + (j - i + \lambda_i^{(j-1)})\delta \pm x_j\right]_{\lambda_i^{(j)} - \lambda_i^{(j+1)}} \left[b + (m - i - 1)\delta \pm x_j\right]}{\left[b + (m - i - 1 + \lambda_i^{(j-1)})\delta \pm x_j\right]_{\lambda_i^{(j)} - \lambda_i^{(j+1)} + 1}}$$

Single rows and single columns

$$h_l^{(m)}(x;a,b) = \sum_{\nu_1 + \dots + \nu_m = l} \prod_{j=1}^m \frac{[a+b+(m-j-3+2\nu_{\leq j})\delta]}{[a+b+(m-j-3)\delta]} \cdot \prod_{j=1}^m \frac{[a+(j-1+\nu_{\leq j})\delta \pm x_j]_{\nu_j}[b+(m-2)\delta \pm x_j]}{[b+(m-2+\nu_{\leq j})\delta \pm x_j]_{\nu_j + 1}}$$

$$e_r^{(m)}(x; a, b) = \sum_{1 \le k_1 < \dots < k_r \le m} \prod_{i=1}^r \frac{[a+b+(2m-2i-1)\delta]_2}{[a+b+(m+k_i-2i-1)\delta]_2} \frac{[a+(k_i-i)\delta \pm x_{k_i}]}{[b+(m-1)\delta \pm x_{k_i}]} \cdot \prod_{i=1}^r \prod_{k_i < j < k_{i+1}} \frac{[b+(m-i-1)\delta \pm x_j]}{[b+(m-1)\delta \pm x_j]}$$

Dual Cauchy formula

For two sets of variables $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$,

$$\sum_{\mu\subseteq (n^m)} (-1)^{|\mu|} \, S_{\mu}^{(m)}(x;a,b) \, S_{\mu^*}^{(n)}(y;a,b) = \Psi^{(m,n)}(x,y;a,b),$$

where $\mu^* = (m - \mu'_n, \dots, m - \mu'_1) \subseteq (m^n)$ and

$$\Psi^{(m,n)}(x,y;a,b) = \frac{C^{(m,n)}(a,b) \prod_{i=1}^{m} \prod_{j=1}^{n} [y_j \pm x_i]}{\prod_{i=1}^{m} [b + (m-1)\delta \pm x_i]_n \prod_{j=1}^{n} [b + (n-1)\delta \pm y_j]_m}.$$

• Principal Specialization: Hook length formula

The value at $c + \rho \delta = (c + (m-1)\delta, c + (m-2)\delta, \dots, c)$ is evaluated explicitly as

$$S_{\lambda}^{(m)}(c+\rho\,\delta;a,b) = \prod_{1\leq i< j\leq m} \frac{[(j-i+\lambda_i-\lambda_j)\delta]}{[(j-i)\delta]} \frac{[a+b+(2m-i-j-1+\lambda_i+\lambda_j)\delta]}{[a+b+(2m-i-j-1)\delta]} \cdot \prod_{i=1}^{m} \frac{[a+c+(m-i)\delta]_{\lambda_i}[a-c+(1-i)\delta]_{\lambda_i}}{[b-c+(m-i)\delta]_{\lambda_i}[b+c+(2m-i-1)\delta]_{\lambda_i}}$$

⇒ Summation formulas that generalize Frenkel-Turaev sum

The parameter c can be taken arbitrarily, in contrast to the general case of elliptic interpolation functions.

5 Schur functions associated with elliptic Askey-Wilson functions

We now take our elliptic Askey-Wilson functions

$$\Phi_{l}(z; \boldsymbol{a}, b) = {}_{12}V_{11}(a_{0} + b - \delta; a_{0} + z, a_{0} - z, 2\alpha_{0} + k\delta, -l\delta, b - a_{1}, b - a_{2}, b - a_{3})$$

$$= \sum_{k=0}^{l} \frac{[a_{0} \pm z]_{k}}{[b \pm z]_{k}} \frac{[a_{0} + b + (2k - 1)\delta]}{[a_{0} + b - \delta]} \frac{[a_{0} + b - \delta]_{k}[2\alpha_{0} + l\delta]_{k}[-l\delta]_{k}}{[\delta]_{k}[a_{0} + b - 2\alpha_{0} - l\delta]_{k}[a_{0} + b + l\delta]_{k}} \prod_{i=1}^{3} \frac{[b - a_{i}]_{k}}{[a_{0} + a_{i}]_{k}}.$$

with parameters $(\boldsymbol{a}, b) = (a_0, a_1, a_2, a_3, b)$ for the reference functions $f_l(z)$ (l = 0, 1, 2, ...), and consider the associated Schur functions (multivariable elliptic Askey-Wilson functions)

$$\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b) = \frac{\det \left(\Phi_{m-j+\lambda_j}(x_i; \boldsymbol{a}, b)\right)_{i,j=1}^m}{\det \left(\Phi_{m-j}(x_i; \boldsymbol{a}, b)\right)_{i,j=1}^m}$$

in m variables $x = (x_1, \ldots, x_m)$; the denominator factorizes similarly to the case of $S_{\lambda}^{(m)}(x; a, b)$.

Difference equation

The relevant difference operator, involving an extra parameter u, is expressed as follows:

$$L^{(m)}(x, T_x; \boldsymbol{a}, b, u) = \sum_{\epsilon: \{1, \dots, m\} \to \{\pm 1, 0\}} \prod_{i=1}^m A^{\epsilon_i}(x_i; \boldsymbol{a}, b, u) \prod_{1 \le i < j \le m} \frac{[(x_i + \epsilon_i \delta) \pm (x_j + \epsilon_j) \delta]}{[x_i \pm x_j]} \prod_{i=1}^m T_{x_i}^{\epsilon_i \delta}$$

where

$$A^{+}(z; \boldsymbol{a}, b, u) = \frac{[z - b - (m - 1)\delta][z - b - (m - 2)\delta][z + b - \alpha_{0} \pm u] \prod_{i=0}^{3} [z + a_{i}]}{[2z][2z + \delta]}$$

$$A^{-}(z; \boldsymbol{a}, b, u) = A^{+}(-z; \boldsymbol{a}, b, u)$$

$$A^{0}(z; \boldsymbol{a}, b, u) = \frac{1}{2} \sum_{r=0}^{3} e(-(\frac{1}{2}(\omega_{r} - \delta) + b)\eta_{r})[\frac{1}{2}(\omega_{r} - \delta) + b - \alpha_{0} \pm u]$$

$$\cdot \prod_{i=0}^{3} [\frac{1}{2}(\omega_{r} - \delta) + a_{i}] \cdot \frac{[b + (m - 1)\delta \pm z]}{[\frac{1}{2}(\omega_{r} - \delta) \pm z]}.$$

• Difference equation (continued)

$$L^{(m)}(x, T_x; \boldsymbol{a}, b, u) = \sum_{\epsilon: \{1, \dots, m\} \to \{\pm 1, 0\}} \prod_{i=1}^m A^{\epsilon_i}(x_i; \boldsymbol{a}, b, u) \prod_{1 \le i < j \le m} \frac{[(x_i + \epsilon_i \delta) \pm (x_j + \epsilon_j) \delta]}{[x_i \pm x_j]} \prod_{i=1}^m T_{x_i}^{\epsilon_i \delta}$$

For any partition λ with $l(\lambda) \leq m$, the Schur function $\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$ associated with the elliptic Askey-Wilson functions satisfies the difference equation

$$L^{(m)}(x, T_x; \boldsymbol{a}, b, u) \Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$$

$$= \Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b + \delta) \left[\alpha_0 \pm \beta\right]_m \prod_{i=0}^{3} [b - a]_m \prod_{j=1}^m \frac{\left[\alpha_0 + (m - j + \lambda_j)\delta \pm u\right]}{\left[\alpha_0 + (m - j + \lambda_j)\delta \pm \beta\right]}.$$

Our $\Phi^{(m)}(x; \boldsymbol{a}, b)$ is an almost joint eigenfunction for the family of difference operators $L^{(m)}(x, T_x; \boldsymbol{a}, b, u)$. In the trigonometeric case, this recovers the q-difference equation for the whole family of van Diejen's operators with t = q.

Principal specialization

The value of $\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$ at $a_0 + \rho \delta = (a_0 + (m-1)\delta, a_0 + (m-1)\delta, \dots, a_0)$ is determined explicitly as

$$\Phi_{\lambda}^{(m)}(a_0 + \rho \, \delta; \boldsymbol{a}, b) = \prod_{1 \le i < j \le m} \frac{[2\alpha_0 + (2m - 2i + \lambda_i + \lambda_j)\delta]}{[2\alpha_0 + (2m - 2i)\delta]} \frac{[(j - i + \lambda_i - \lambda_j)\delta]}{[(j - i)\delta]} \cdot \prod_{i=1}^{m} \frac{[\alpha_0 + \beta + (m - i)\delta]_{\lambda_i}}{[\alpha_0 + \beta + (2m - i - 1)\delta]_{\lambda_i}} \frac{[\alpha_0 - \beta + (2 - i)\delta]_{\lambda_i}}{[\alpha_0 - \beta + (m - i + 1)\delta]_{\lambda_i}}.$$

Spectral duality

We renormalize $\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$ by setting

$$\widetilde{\Phi}_{\lambda}^{(m)}(x; \boldsymbol{a}, b) = \frac{\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)}{\Phi_{\lambda}^{(m)}(a_0 + \rho \, \delta; \boldsymbol{a}, b)}; \qquad \widetilde{\Phi}_{\lambda}^{(m)}(a_0 + \rho \delta; \boldsymbol{a}, b) = 1.$$

Then $\widetilde{\Phi}_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$ satisfies the spectral duality

$$\widetilde{\Phi}_{\lambda}^{(m)}(a_0 + (\rho + \mu)\delta; \boldsymbol{a}, b) = \widetilde{\Phi}_{\mu}^{(m)}(\alpha_0 + (\rho + \lambda)\delta; \boldsymbol{\alpha}, \beta)$$
(5.1)

for any partition λ , μ with $l(\lambda) \leq m$, $l(\mu) \leq m$.

• Binomial formula

 $\Phi_{\lambda}^{(m)}(x; \boldsymbol{a}, b)$ is expanded as follows in terms of the elliptic Schur functions $S_{\mu}^{(m)}(x; a_0, b)$:

$$\widetilde{\Phi}_{\lambda}^{(m)}(x;\boldsymbol{a},b) = \sum_{\mu \subseteq \lambda} d_{\mu}^{(m)}(\boldsymbol{a},b) S_{\mu}^{(m)}(\alpha_0 + (\rho + \lambda)\delta; \alpha_0, \beta) S_{\mu}^{(m)}(x; a_0, b),$$

$$d_{\mu}^{(m)}(\boldsymbol{a},b) = \prod_{j=1}^{m} \frac{[a+b+(2m-2j-1+2\mu_{j})\delta]}{[a+b+(2m-2j-1)\delta]} \frac{[a+b+(m-j-1)\delta]_{\mu_{j}}}{[(m-j+1)\delta]_{\mu_{j}}} \cdot \prod_{j=1}^{m} \prod_{i=1}^{3} \frac{[b-a_{i}+(m-j)\delta]_{\mu_{j}}}{[a_{0}+a_{i}+(m-j)\delta]_{\mu_{j}}}.$$

For rectangular partitions $\lambda = (n^m)$ (n = 0, 1, 2, ...), the coefficients $S_{\mu}^{(m)}(\alpha_0 + n\delta + \rho\delta; \alpha_0, \beta)$ are explicitly evaluated in factorized forms (principal specialization of elliptic Schur functions). Hence the multivariable elliptic Askey-Wilson function $\Phi_{(n^m)}^{(m)}(x; \boldsymbol{a}, b)$ (n = 0, 1, 2, ...) is expressed as a linear combination of elliptic Schur functions with factorized coefficients.

Rectangular cases: Hypergeometric functions

$$\begin{split} &\widetilde{\Phi}_{(n^m)}^{(m)}(x;\boldsymbol{a},b) = \sum_{\mu \subseteq (n^m)} c_{\mu}^{(m,n)}(\boldsymbol{a},b) \, S_{\mu}^{(m)}(x;\boldsymbol{a},b) \qquad (n=0,1,2,\ldots) \\ &c_{\mu}^{(m,n)}(\boldsymbol{a},b) \\ &= \prod_{1 \leq i < j \leq m} \frac{[a_0 + b + (2m-i-j-1+\mu_i + \mu_j)\delta]}{[a_0 + b + (2m-i-j-1)\delta]} \frac{[(j-i+\mu_i - \mu_j)\delta]}{[(j-i)\delta]} \\ &\cdot \prod_{i=1}^m \frac{[a_0 + b + (2m-2i-1+2\mu_i)\delta]}{[a_0 + b + (2m-2i-1)\delta]} \frac{[a_0 + b + (m-i-1)\delta]_{\mu_i}}{[(m-i+1)\delta]_{\mu_i}} \\ &\cdot \prod_{i=1}^m \frac{[a_0 + a_1 + a_2 + a_3 + (m-i-1+n)\delta]_{\mu_i}}{[b-a_1 - a_2 - a_3 + (m-i+1-n)\delta]_{\mu_i}} \frac{[(1-i-n)\delta]_{\mu_i}}{[a_0 + b + (2m-i-1+n)\delta]_{\mu_i}} \\ &\cdot \prod_{i=1}^m \frac{[b-a_1 + (m-i)\delta]_{\mu_i}}{[a_0 + a_1 + (m-i)\delta]_{\mu_i}} \frac{[b-a_2 + (m-i)\delta]_{\mu_i}}{[a_0 + a_2 + (m-i)\delta]_{\mu_i}} \frac{[b-a_3 + (m-i)\delta]_{\mu_i}}{[a_0 + a_3 + (m-i)\delta]_{\mu_i}}. \end{split}$$

This expression can be regarded as a multiple extension of very well-poised elliptic hypergeometric series representing the elliptic Askey-Wilson function:

$$\Phi_n(z; \boldsymbol{a}, b) = {}_{12}V_{11}(a_0 + b - \delta; a_0 + z, a_0 - z, 2\alpha_0 + n\delta, -n\delta, b - a_1, b - a_2, b - a_3).$$