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In this talk I discuss a family of elliptic functions that generalize Askey-Wilson polynomials, with
emphasis on their difference equations. Also, I investigate a class of multivariable elliptic functions
of Schur type built up from them by determinants. This class of functions can be regarded as
an elliptic extension of Koornwinder polynomials with ¢ = ¢, and carries various characteristic
properties. 1 will describe in particular difference equations for this class, and an explicit formula

for rectangular cases.
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1 Askey-Wilson polynomials and Koornwinder polynomials

e Askey-Wilson polynomials

g-Hypergeometric series:

abedg™ ', g™, az,a/z

Pn(z;a,b,c,d|q) = 4¢3 ; ¢, q
ab, ac, ad

zn: abcdq k(@7 Qr(az; Qr(a/z;q)k qk:

= (ab Q)r(ac; q)r(ad; q)
(a;q)r = (1 — )ﬂ—q@ (1 —¢""a) (k=0,1,2,...)

q-Difference equation: p,(z) = p,(z;a,b, ¢, d|q) satisfies

(1—az)(1 —=0bz)(1 —cz)(1 —dz)
(1 —22)(1 —gz?)
(a—2)(b—2)(c—2)(d-2)
" (1—2%)(q — 2?)
= —pn(2) (1 — abcdq"_l)(l —q ")

where T, . f(2) = f(q2).
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Spectral duality: Regarding the values at the reference points z = a¢® (kK =0,1,2,...),

abedq =, ! a2qb, g
pl(aqk;aab7 Cad|Q) — 4¢3 y 4,4
ab, ac, ad

2.0 1 k-1 —k

a’q,q v, q

= 403 1 ¢,q| = pilag o, 8,7, 6]q)
af, ay, ao

with the involutive transformation on parameters (a,b, c,d) < («a, 3,7,90):

a=/abcd/q, B =+/abq/cd, ~=+/acq/bd, §=+/adq/bc.

Namely,
pl(aqk; a? b7 C? d‘Q) — pk(aql; a? /87 /}/7 5‘q) (k7l - 07 17 27 ° ')'

Symmetry with respect to (a, b, ¢,d): The monic Askey-Wilson polynomials

(aba ac, CLd, Q)l
a'(abedg'=1; q);

pl(z7 a, b7 Cad|Q7t) = (Zl -+ Z_l) + ..

are symmetric with respect to the parameters (a, b, ¢, d).

Sears’ transformation formula for terminating 4¢s.
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e Koornwinder polynomials

Macdonald polynomials of type BC', multivariable Askey-Wilson polynomials

r = (x1,...,T,): canonical coordinates of T™ = (C*)™

a,b,c,d,q,t: generic complex parameters

W,, = W(BC,,) = {£1}" x &,,: Weyl group of type BC,, (hyperoctahedral group)
W, acts on (21, ...,x,,) through permutations of indices and inversions z; — ;.

Koorwinder’s g-difference operator D, is defined by

Dy =3 Ay (@) Ty — 1)+ A ()T — 1
A (x) = (1 —ax;)(1 —1b:r:z-)(1 —cx;)(1 — dx;) H (1 —tx;/z;)(1 — ta;x;)

(abedg)2(1 — 27)(1 — qxf)  1<j<m; ji t1 = i/2;)(1 — i)
Ai(x) =Aip(z™h)  (i=1,...,m).

1 1 1
To make the formula shorter, we use the multiplicative notation (z) = 22 — 2z 2 = —z 2(1 — 2) of
the sine function:

o) = LN ) pr )

@ilawd) g (@) (i)
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For each partition A = (Aq,..., A,,), there exists a unique W,,-invariant Laurent polynomial
P\(z) = Py(z;a,b,c,d|q, t) € Clat!, ... o= Wm
such that

(1) In terms of orbit sums m,(z) = ) x¥, Py(x) is expressed in the form

veWmp
Py(x) = ma(x) + Y prumu(@)
p<A

with respect to the dominance ordering of partitions, and

(2) P\(x) satisfies the ¢-difference equation

m

. | 1
D, Py(z) = Pa(z)dy;  dy =) (at™ "¢ at™ ), o= (abedg™")2,
i=1
where (z;a) = (za)(z/a) = 27'(1 —za)(1 —z/a) =2+ 2z —a—a .
The Koornwinder polynomials Py(x) form a C-basis of the ring C[z7!, ... 2t |Wm of W,,-

invariant Laurent polynomials.
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Van Diejen’'s commuting family of g-difference operators:

For r =0,1,2,...,m, define D by

DO = S AP@ TS, 1o Z T[T,

4,7’
(Le); [ <r i€l

where the sum is taken over all pairs (I;¢) of I C M ={1,...,m} and e: [ — {£1} with |I| <r.
The coefficients are defined by

AY(Z(:U) — (_1)T_‘I|U($§;$M\I> Z V($§I/;$M\IUI'),
(I',e"); I'CM\I,|I'|=r—|I|
(b da; tr; Mgt t tx;
U@I;%):Hmm i) {cxi) (dx) ] (tzizy)(qtziz;) ] (txi/x;)(txiz)

T s anas) AL o) ()

{
{ )
ax;)(bx;){(cx;)(dx; tw;x;)(qriz;/t tw;/x;)(twix;
V(a:f;x,])=H< ><< ) (cxi) (d) 1] (tziz;){qziz;/t) ] (tzi/x;) (tziz;)

Aty M ey M G e

SN

1,0€1;1<g el jed

el

These g-difference opeartors D) commute with each other: DYDY = DD (r,s € {1,...,m}).
The Koornwinder polynomials Py(z) are the joint eigenfunctions of this commuting family of ¢-

difference operators.
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In terms of the generation function,

Z u a>t r Dg)v <u7 Oé>t,r — <’U,, O‘> <u7 tOd> T <U, tr_loé>'

r=0

for any partition A = (A1, ..., \,,) we have

tmz)\

,’:]s

D.(u) Py

1=1

In the context of affine Hecke algebras, it is known that the g-operators of D) arise from the

center of the affine Hecke algebra of type (), through ¢-Dunkl operators.
Spectral duality:

Renormalize the Koornwinder polynomials by the value at the base point at’:

Py(z;a,b,c,d|q,t) .

P
A(SU a,b,c,d|q,t) = Py(atr;a,b,c,d|q,t)’

at’ = (at™ ', at™ 2, ... a).

Then for any pair of partitions A, p,

ﬁ)\(atpqﬂ; a, b7 C, d’Qa t) — ﬁ,u(atqu; Q, ﬂa s 5’Q7 t)
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Okounkov's binomial formula:

The normalized Koornwinder polynomials are expressed as

ﬁ,\(az; a,b,c,d|q,t) = Z cu(a,b,c,d|q,t) R,(at’q*; alq, t)R,(z;alq, t)

BN

in terms of Okounkov’s interpolation polynomials R, (z;alq,t); R,(x;a|q,t) are characterized as

W .-invariant Laurent polynomials of degree |\| satisfying the interpolation property that

R,(at’q*;alq,t) =0 unless u C A, R,(at’q";alq,t) # 0.

Koornwinder polynomials with t = ¢:

P\(z;a,b,c,d|q, q) can be regraded as Macdonald’s ninth variation of Schur functions associated
with Askey-Wilson polynomials:
det (pm—j—i-)\j (xu a, b? C, d’Q)):;Zl

det (pm_j(xi; a,b,c, d\q))m

P\(x;a,b,c,d|q, q) = const.
1,7=1
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e Basic questions in view of the extension to elliptic functions:

Q1: How elliptic extension of Askey-Wilson and Koornwinder polynomials should be constructed?

Q2: How they should be related with BC' type difference operators of Ruijsenaars-van Diejen?

Elliptic extension of Askey-Wilson and Koornwinder polynomials has been developed succesfully

in the framework of

e BC type elliptic interpolation functions ... Coskun-Gustafson (2006), Rains (2006)
e Elliptic biorthogonal functions defined through the binomial formula ... Rains (2006).

It seems, however, that the relationship to difference operators of Ruijsenaars - van Diejen has not

been completely clarified.

In this talk, I concentrate on the special special case (t = ¢) where the multivariable elliptic
functions can be defined by determinants (of Schur type). Presumably, this class of multivariable
elliptic Askey-Wilson functions is related to the hypergeometric solutions of the elliptic Painlevé

equation of affine Fs Weyl group symmetry.
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2 Very well-poised elliptic hypergeometric series

® Hermite's theorem

Let s(z) be a nonzero entire function in z € C, and suppose that s(z) satisfies the Riemann

relation

s(z+a)s(z—a)s(a+b)s(a —b) + s(z+b)s(z —b)s(b+ ¢)s(b—¢)
+s(z+c)s(z—c)s(c+a)s(c—a) =0

for any z,a,b,c € C. Then

(1) s(z)is an odd function and the set 2 = {w € C | s(w) = 0} of zeros of s(2) is a closed discrete
subgroup of the additive group C (hence, of rank < 2).

(2) s(z) is quasi-periodic with respect to 2. Furthermore

(3) s(z) is expressed as follows according to the rank €2

Rational case: s(z) = e 1t 2, Q=0
Trigonometric case: s(z) = et sin(mz/w), N =Zuw
Elliptic case: s(z) = e (2 Q), QN =7Zw ®ZLws

In the elliptic case, €2 is generated by two complex numbers w;, wo which are linearly independent

over R, and o(z;(2) stands for the Weierstrass sigma function associated with the period lattice Q.
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We fix a nonzero entire function s(z) satisfying the Riemann relation, and denote it simply by

2] = s(z) (e-number notation). The Riemann relation can be expressed in various forms:
[z £ ully £ o] — [z +olly £u] = [z £ yllut 0],
e yu [yl

[z +v] [yxov] [zxo]lyL£o]’

where [z + y| = [z + y][x — y].

e Very well-poised elliptic hypergeometric series

Fixing a generic complex number d, we introduce the notation of J-shifted factorials and very

well-poised hypergeometric series associated with [z].
e = [2lsg = [2]lz +0] - [z + (R =1)0] (k=0,1,2,..)

e a Ly >\ [ao + 2k6] [ao][ar]rlaz]k - - - [ar]k
r+5Vr+4( 0; 1,02, ..., 7“) ar [ao] [5]k[b1]k[b2]k"'[br]k

ai—i—bi:d—{—ao (Z:L,T)

When we use the notation of the V series, we always assume the termination condition
4ie{0,1,...;r}: a;=-nd modQ, neN={0,1,2...}.

so that the V-series becomes a finite sum.
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® Frenkel-Turaev sum (1997)

Under the balancing condition and the termination condition

CL1+CL2‘|‘CL3+CL4+CL5:2&0—|—5; a5:—n5 (’HEN),
10Vo(ao; ai, az, as, as, —nd)

[5 + ag]n[5 + Qg — a1 — O/Q}n[6 + aog — a1 — a,g]n[5 + apg — Qg9 — ag]n
[0 4+ ao — a1]a[0 + ag — ag]n[d + ao — asln[d + ao — a1 — ax — asl,

e Elliptic Bailey transformation

Under the balancing condition and the termination condition

ai + as + as + a4 + a5 + ag + ay = 3ag + 290; ar =-nd (n €N),
12‘/11(610; ai, az,ds, aq, as, Ag, _n5>

(6 + agl,[0 + ag — ag — as)n[d + ag — ag — aglp[0 + ag — a5 — agln
[0 + ag — aqln|d + ag — as].[0 + ag — agla[0 + ag — ay — a5 — agl,

: 12‘/11(a0; ai, az,ds, aq, as, dg, —77/5)

50:54—2&0—&1—0,2—&3,

51:54—&0—&2—&3, 62:54-@0—&1—&3, 63:54-&0—&1—@2.
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3 Elliptic Askey-Wilson functions

e An elliptic extension of Askey-Wilson polynomials

We introduce a sequence of elliptic hypergeometric series ®;(z;a;b|6) (I = 0,1,2,...) with pa-
rameters a = (ao, a1, az, ag) and b. Setting ag = %(ao +a;+as+az3—9), foreach [ =0,1,2,... we

define

@l(Z; a, b’6) — (I)l(Z, ap, i, A2, as, b‘é)

= 12%1(@04-[3—5; CLO—l—Z,CLO—Z,QOéO—i—l(S, —l5,b—a1,b—a2,b—a3)
l

lag £+ 2]k [ag + 0+ (2k — 1)8]  [ag + b — 0]x[2a0 + 10]x[—16]k ﬁ b — agx
|

o bﬂ:Z [CLO—I—b—(S] [5]k[ao+b—2a0—l5]k[a0+b+l5]ki:1 ao+ai]k'
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In the trigonometric case, this corresponds to

q)l(z; ap, a1, a2, 0as, b’Q)

= 10W9(a0bq_1.a027a0/zaaf0ala2a’3q , q B ,b/a1,b/az,b/as;q,q)

2k—1 (aobq_l)k (ao2)k(ao/2)k (a0a1a2a3ql_1)k( l) (b/a1)r(b/az)k(b/as)x k

B 1 — agbg k
Z L —agbg™t  (@)r  (b2)r(b/2)r (bg'~'/ara2a3)k(aobq")x (aoar)r(aoaz)r(aoas)x 1

in the multiplicative variables, where (a)x = (a; q)s.

In the limit b — 0, this series recovers the Askey-Wilson polynomial

-1 -
_ B a0z, o/ %, apa1a2a3q' ", q _
pl<z7a07a17a’27a37a4‘Q> _4¢3 y 4,4

apai, apGs, apas

= (a02)k(a0/2)k(a0arazasq (g e
B ZO (Q)k(aoal)k(aoaz)k(aOCLS)k !
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e Difference equation

Consider the difference operator
L(z,T,;a,bu) = A(z;a,b,u) (Tj — 1)+ A(—=2;a,b,u) (TZ_(S — 1) + Ao(a, byu)

[z = b)[z = b+ 0][z +b—ao £ u] [[_y[z + ai

A(z;a,b,u) = 22][22 + 6]

3

Ao(a,b,u) = [ag £ u]H[b —a;], ap=3(ap+ar+ax+az—9),
i=0

where T° f(2) = f(z + ). Then the elliptic hypergeometric series
CI)l<Z; a, b) = 12%1(@0 + b — 5, Qo + 2,0 — 2, 204() + l5, —lé, b — ay, b — a9, b — CL3)
satisfies the following difference equation (almost eigenfunction with parameter shift in b):

L(z,T,;a,b,u)®/(z;a,b) = ®/(z;a,b+ 9) Ai(a,b; u) (1=0,1,2,...)
3
[Oé():':ﬁ]H[b—CLZ’], ﬁ:b—l—%(ao—al—ag—ag—ké).

1=0

(g + 10 + u]
[Oéo —I—ZCS:l:ﬁ]

Al(a, b; U) =

e The difference operator L(z,T,;a,b,u) constitutes a 6-parameter subfamily of Ruijsenaars-van
Diejen operators of type BCY. In the trigonometric case, these difference equations recover the
g-difference equations for Askey-Wilson polynomials in the limit “6 — 0.
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e Spectral duality

Regarding ag as a distinguished parameter, for the parameters (a, b) = (ag, a1, as, ag, b) we define

the dual parameters (o, 3) = (ap, a1, as, a3, 3) by

(0 7)) —%(a0+a1+a2+a3 ),
1
aq 5(ap +a; — az —az +9), 1
B=b+ s(ag—a; —as —as +9).
8%)) :%(ao—al—l—ag—ag—l—&, 2(0 ! ? 3 )
Q3 —%(ao—al—a2+a3+5),

Note that ag + a; = ag+ «; (i = 1,2,3) and ag + b = a9 + 3. Then the elliptic Askey-Wilson
functions ®;(z;a,b) (I =0,1,2,...) satisfy the spectral duality:

®(ag + kd; a,b) = O(ag + 16; o, B) (k,l € N).

Through this spectral duality, the difference equation for ®;(z; a, b) mentioned above are translated

into three term recurrence relation for ®;(z; a, b).
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e Symmetry with respect to a = (ag, a1, as, as)

The elliptic functions

lag + a;); Pi(z;a,b) (1=0,1,2,...)

[2ao—a0—b—|—5]ﬁ

a0 + b i=1

are symmetric with respect to @ = (ag, ay,as,a3). This fact is equivalent to the elliptic Bailey

transformation formula for 15V7;.
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4 Elliptic Schur functions with two parameters

e Schur functions associated with a sequence of functions

Let fr(z) (k=0,1,2,...) be a sequence of functions in one variable z. Considering f,(z) as being
“of degree k”, for each partition A = (Aq,..., \,) with [(A) < m, we define symmetric function

ng) (x; f) in m variables x = (z1,...,z,,) by the Weyl formula:

det (fin—jn, (Iz))zzl
det (fim—j(2)), .

1,5=1

S (a; f) =

assuming that the Weyl denominator is nonzero. This function S{™ (z) = S\ (z: f) is called the
Schur function associated with the sequence of functions f = (fx)r>0 (Macdonald’s ninth variation).
It is known that this class of Schur functions carry many nice properties including

e Weyl formula (definition)
e Jacobi-Trudi formula: Sg\m)(x) = det (h(m_j+1)(x))m S/(\m) (z) = det ( (m+j_1)(x))m

Ai—it+] i,j=1 OX it i,j=1
e Giambelli formula: SV () = det (hggj (x)):jzl
e Dual Cauchy formula: W (z, y) = Z (—1)|>‘|S/(\m)(:l:)5§\7:) (y)
AC(n™)
e Tableau representation: S /(\m)(aj) = Z wgfm)(x) (with weights appropriately defined)

T'eSSTaby, (A)
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e Elliptic Schur functions with parameters (a, b)
As the sequence of reference functions, we take

_ etz Ja+z)kla = 2]k B
fr(z;a,b) = DL, bt b= (k=0,1,2,...)

and denote by

[a £ T]m—jix,

. det
det (fm—j+>\j (fljl)) B [b + mi]m—j‘F)\j ij=1

(a5, 9) = Juim1 _ 4
det (fm—j(xi)>i,j:1 d [CL + xi]m—j
et
[b + xz’]m—j
1,7=1
the associated Schur functions in m variables © = (z1,...,%,;). The denominator in this case

factorizes thanks to Warnaar’s elliptic version of the Krattenthaler determinant formula:

det | L4ETidn )  hcicjom s £ ) TS [o = bjla + b+ (5 — 1)3];
[b + xi]m_j H?; [b + xz’]m—l

B,J=1

This clss of Schur functions is a special case of elliptic interpolation functions due to Coskun-

Gustafson and Rains.
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® Recursion on the number of variables

ng)(azl, e T a,b) = Z Sﬁm_l)(asl, ey T_1; 0,0+ 6) @Dg\%(a b) fA(?L)(xm;a, b)

HCA
The summation is taken over all horizontal strips A/u with [(p) < m — 1.

la+ (m—i)8 £ 2]y, [b+ (m—i—1)8 £ 2],
ot (m—di)dxz],, [b+(m—1i)d£2]
[a+b+2(m—i—14 p)d]

L Jat b+ 2(m—i—1+\)d]

£ (za,b) =

¥ (a,b) =

e Tableau representation
—2i— 14227
S&m)(x;a,b): Z H l[a+b+ (m+j—2i + 20,770

[a+b+ (m+j—2i—1)d]

d=AO0) XD C...CA(Mm) =) 1<i<j<m
H [a + (] — 1+ )\Ej_l)w + xj]A(j)_A(.j“) [b + (m — 17— 1)(5 + :Ej]

AD NG+
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® Single rows and single columns

(m), _ —|—b—|— —] —3—|—2V<J)5]
i+ Fuvm=l 5=1

m[a+(]—1+u<])5iaz]] 1o+ (m —2)d £z,
H (b4 (m — 2+ v)d £ 5],41

j=1
(m) (.. _ la+b+(2m —2i—1)0]a [a+ (ki —1i)d & xy,]
ey (w;a,b) = 1<k:1<z<ki . H + b+ (m+ ki —2i—1)8]a [b+ (m — 1) £ ]

—i—l)éj:xj]
H H m — 1) £+ z;]

1=1k;<j<kit1
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e Dual Cauchy formula
For two sets of variables x = (%1, ..., 2,) and ¥y = (y1,...,Yn),
> (=DM S (w3 a,6) S (5 0, 0) = VO (w,50,0),
ps(n™)

where p* = (m —pul,...,m—pu}) C (m") and

Ctmm(a, b) [T Ty [y = 4]
[L21 b+ (m = 1)6 £ o [Tj[b+ (n = 1)0 £ y5]m

v (2, y;a,0) =

e Principal Specialization: Hook length formula
The value at c+ pd = (c+ (m — 1)d,c+ (m — 2)4, ..., c) is evaluated explicitly as

(m) , _ (G—i+N—=X)o][a+b+ (2m—i—j—1+X—+\)d]
& <C“5’“’b>‘l<g<m G — )] At bt @m—i—j— 1)

ﬁ a4 c+ (m —0)d]xla — e+ (1 —i)d]y,

-1 [b—ct (m—=10)d]\[b+c+ (2m —i—1)d]y,

—> Summation formulas that generalize Frenkel-Turaev sum

The parameter ¢ can be taken arbitrarily, in contrast to the general case of elliptic interpolation

functions.
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5 Schur functions associated with elliptic Askey-Wilson functions

We now take our elliptic Askey-Wilson functions

<I>(Z°a, b) = 12Vi1(ag +b—0; ag + z,a0 — 2,209 + kd, —19, b—al,b—ag,b—ag)

lag £ 2]k [ag + b+ (2k — 1)0]  [ag + b — ]x[2c0 + 16]x] H b — ailx

b+ 2] lag + b — 4] [0]klao + b — 209 — 16]x] a0+b—|—l5 i lag + a;)k

with parameters (a,b) = (ag, a1, as,as,b) for the reference functions f;(z) (I = 0,1,2,...), and
consider the associated Schur functions (multivariable elliptic Askey-Wilson functions)

det (Cbm _i (75 a, b))
det ((I)m—j(xi; a, b)) .

i,j=1

1,7=1

cb(;’” (z;a,b) =

in m variables x = (z1, ..., %, ); the denominator factorizes similarly to the case of S /(\m) (x;a,b).
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e Difference equation

The relevant difference operator, involving an extra parameter u, is expressed as follows:

L(m) (x’ T,:a,b, U) _ Z ﬁ A€ (:U“ a,b, u) H [(33@ + 615) x] + Ej H Tel

r; + x]
e{l,...,m}—{%1,0} i=1 1<i<j<m [ v J

where

[z =b—(m—1)8][z —b—(m —2)d][z+b— o+ u|[[_y[2 + ai]

A" (21 0,b,u) = 22][22 + 0]

A (z;a,b,u) = AT (—z;a,b,u)

3
Az a,b,u) = Ze (3(wr —0) + b)) [5(wyr — 0) + b — ap £ 4

[\DIH

T 5y oo, o (m =15 2]
g[z( POt ST
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e Difference equation (continued)

L(m) (ZC, T, a. b, U) _ Z ﬁ A€ (:L,Z7 a, b, U) H [(xz + 615) 33'] + 6] H TE’

r; + x]
e{l,...,m}—{+1,0} i=1 1<i<j<m [ ! J

For any partition A with I[(\) < m, the Schur function @g\m)(a:; a,b) associated with the elliptic

Askey-Wilson functions satisfies the difference equation

L (2, Ty a,b,u) @™ (z; a, b)

m—j+)\j)5iu]
m—j+ ;)0 £ 3]

3 m
CID(m)(a: a,b+9)ag £ ] Hb—amH
1=0 jzl

Our ®™)(z;a,b) is an almost joint eigenfunction for the family of difference operators
LU (z,Ty;a,b,u). In the trigonometeric case, this recovers the g-difference equation for the

whole family of van Diejen’s operators with ¢ = q.
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e Principal specialization

The value of @&m)(x;a,b) at ap + pd = (ap + (m — 1)d,a9 + (m — 1)d,...,ap) is determined
explicitly as

a0+ (2m — 26 + N+ A)O] [ — i+ A — A)]

(™ (g0 ca.b) =
V(a0 +pdiab) = ] 20 + (2m — 2i)d] [(j —4)d]

1<i<j<m

m

H [a0+ﬁ+(m—i)5]&. [Oéo—ﬂ+(2—i)5])\i
g+ 8+ (2m —i—1)d]), [ag — B+ (m — i+ 1)d]),

i=1
e Spectral duality
We renormalize @g\m)(x; a,b) by setting

o\ (z;a,b)
(I)&m)(ao + pd;a, b)’

o\ (z:a,b) = " (ag + pd; a,b) = 1.

Then Ef)&m) (x; a,b) satisfies the spectral duality
D" (ag + (p + 1)3; @,b) = BT (g + (p + N); o, ) (5.1)

for any partition A, p with [(A) < m, I(u) < m.
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e Binomial formula

CIDS\m) (x;a,b) is expanded as follows in terms of the elliptic Schur functions S&m) (x;a9,b):

O\ (w1a,b) =Y di™(a,b) ST (a0 + (p + N)5; a0, B) ST (w; ao, b),

HUCA
4 (a, b) = “rla+b+(2m =25 — 1+ 2u;)0] [a+b+ (m— 3 —1)d],,
we L la+ b+ (2m —25 —1)d] [(m —j +1)8],..
7=1 2%
ﬁﬁ b —a; + (m — j)d],
i Lao +ai+ (m = )d],

For rectangular partitions A = (n™) (n = 0,1,2,...), the coefficients S™ (ap + nd + pd; ag, 3)
are explicitly evaluated in factorized forms (principal specialization of elliptic Schur functions).
Hence the multivariable elliptic Askey-Wilson function CIDE m)(a:; a,b) (n=0,1,2,...) is expressed

as a linear combination of elliptic Schur functions with factorized coefficients.
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e Rectangular cases : Hypergeometric functions

o) (wa,b) = Y ™(a,b)SiM (z;a,b)  (n=0,1,2,...)

(n™) p p
pC(n™)
ch’")(a,b)
_ lag +b+ (2m —i—j — 14 pi + py)0] [(J — 2+ ps — p13)0]
et o+ b+ 2m—i—j—1)d (G — )]
o1 lao + b+ (2m — 20 — 1+ 2u;)8] [ag + b+ (m — i — 1)d],.,
-1 lao+ b+ (2m — 2i — 1)4] [(m — 1+ 1)d],,
m[a0+a1+a2+a3+( —z—1+n)5] [(1—2—71)5]

srlb—a—as—as+(m—i+1-n)dl, [ao+b+ (2m—1i—1+n)d,
.H[b—a1+(m—i)5]m b—ax + (m —i)dl,, [b—asz+ (m—1)d,
a0 + a1 + (m — 4)d],,, [ao + az + (m — 4)d],,, [ao + az + (m — 4)d],,,

i=1
This expression can be regarded as a multiple extension of very well-poised elliptic hypergeometric
series representing the elliptic Askey-Wilson function:

D, (z;a,b) = 12Vi1(ag + b — ;a0 + 2, a0 — 2, 2a9 + nd, —nd, b — a1, b — as, b — az).



