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Abstract. Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of
the generating function of the complete homogeneous symmetric functions. The main result we prove in this
note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative
symmetric functions. The proof relies on the combinatorics of Lagrange inversion. We also preserdlague

of this result, which is related to tlieLagrange inversion formula of Andrews, Garsia, and Gessel, as well as the
operatorv of Bergeron and Garsia.
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1. Introduction

In this note, we use the terminology and notation in [18]. In partichladenotes the com-
plete homogeneous symmetric function indexed by the partitiandH (t) := > 7 , hat".
Let us consider the following involution on the ringof symmetric functions:

h; — w(hx) = h; = h;l hiz.”’

wherehy; are defined by the condition theiti*(t) = t +hjt2 + h3t3+ - . . is the compo-
sitional inverse of H (—t). This is essentially the involution considered by Lascoux ([16]
(6.3)) and Macdonald ([18] page 35); in fact, Macdonaltsliffers from the one defined
above by a factor of—1)". Note that the involution is related to composition of power
series in the same way as the standard involution is related to multiplication of power series.
On the other hand, the involutiah is closely related to the operat8ron A[q, t] defined
in [2], which is discussed in Section 4. Let us also note tifatorm a basis ofA. The
importance of this basis was highlighted by its relation to the top connection coefficients in
the center of the group algebra of the symmetric group (see [7, 18] p. 132, and [13]).

Let E(t) := Y o_pent". Itis well-known thatE(t)H(—t) =1. Recall the Lagrange
inversion formula (see e.g. [12] or [22]), which asserts (in one of its equivalent forms) that
the compositional inverses (t) of a formal power seriets= (t) with F(0) #£ 0 satisfies

n k _ L n —n—k
[t"1GM)" = n+k[t JFO™ (1.1)
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SettingF (t) = H(—t) = E(t)~%, G(t) = H*(t), andk = 1, we obtain

_ 1 n+1()
x 101
hn = Z( D n+ 1(n, mz (1), Mma(}), ) i

AN

1 n+1
Z n—+ 1 <mO(A) + 11 ml(}‘-)v mZ()\% .. > & ( )

AN

heremy () denotes the multiplicity of pak in A, andmo(x) =n — ., mk(%). Setting
Ft)=E@®) "% G(t)=H*(t), andk=—1, we obtain the following formula foe’ :=
¥ (&y), which is also derived in [18]:

® __ ¢ 1\n—1 1 n—-1
&=C1 Z n— 1<mo(k) —1, m(h), me(h), ) & (2.3)

AN

Note that Macdonald also obtains a formula fi§r:= v (p,). On the other hand, we can
express in the basis of Schur functions by using the Cauchy formula (cf. [14] and [21]),
and obtain a similar formula f&. Indeed, one form of the Cauchy formula may be written

1
H(=yit) ... H(=ymt)

ZSM(YL L) Ym)sxtw 9
A

wherel’ is the conjugate partition to. So takingy; = --- = ym =1, m=n+Xk, and then
applying (1.1) withk =1 andk = —1, yields

sy (1M1 _ sy (1"
h*=§: *:-1”12: : 1.4
" o Nt 1 > %= pred L 1 > 9

heres, (1) denotes the number obtained by specializing theKixstriables irs, to 1, and
the rest of the variables to 0.

The symmetric functionB} are related to various combinatorial objects. For instance,
formula (1.2) can be expressed combinatorially in terms of treeparkihg functiongsee
below, and also [15, 22, 21]); the latter are sequeriags. . ., ay) containing at leask
entries less than or equalkofor all 1 <k <n. The expansion dfi in terms of monomial
symmetric functions also has several combinatorial interpretations (see [21] and [19]). As
shown by Stanley in [21]h} is the so-calledlag symmetric functioof the noncrossing
partition lattice On the other hand, Haiman showed in [14] thitis the Frobenius
chracteristic of the representation of the symmetric group on the set of parking functions
tensored with the sign representation. Stanley realized the same representation in [21] as
a so-calledocal actionof the symmetric group on the maximal chains of the noncrossing
partition lattice.

In this note, we present combinatorial proofs of (1.3) and (1.4), some related facts (in-
cluding a reference to certain analogs of parking functions which we define), and prove
that the involutiony mapsanyskew Schur function to a Schur positive or a Schur negative
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symmetric function. Finally, we generalize the latter result by proving a special case of
the main conjecture in [3] concerning the opera&orThe author is grateful to A. Garsia

for introducing him to the operatov, and to one of the referees for suggesting many
improvements in Sections 1 and 2.

2. The Combinatorics of the Formulas forh* and e

We will consider sequenceay, . . ., a,+1) Of nonnegative integers satisfying the property
k n+l
Za >k, k=1,...,n and Za:n, (2.1)
i=1 i=1
as well as sequencéay, . . ., ap_1) of nonnegative integers satisfying the property
k n—1
da>kk=1...n-1 and > a=n (2.2)
i=1 i=1

Note that in the first case we necessarily hayg, =0. It is easy to see that the number
of sequences of the first type is the Catalan nunthet Fll(zn“), and that the number of
sequences of the second typeCis ;. Indeed, one can easily construct a bijection from
sequences of the first type to Dyck paths fr@n0) to (2n, 0) (every entrya;, 1 <i < n,
corresponds ta; steps(l, 1) followed by one stegl, —1)), as well as a bijection from
sequences of the first type withreplaced byn — 1 to sequences of the second type (just
add 1 to the first entry and remove the last 0).

The following Lemma, often called the “cycle lemma”, is due to Dvoretzky and Motzkin
([6], see also [5]), and was rediscovered many times. It can be used to prove various results,
such as Lagrange inversion (cf. [20]), the formula@gr the fact that the number of parking
functions of lengtm is (n + 1)"* etc.; we will use it in the combinatorial proofs of (1.3)
and (1.4).

Lemma 2.3

1. Among all 4+ 1 distinct sequences obtained by cyclically permuting a sequence of n
nonnegative integers summing up to n, there is a unique one of thg2atin

2. Among all n— 1 distinct sequences obtained by cyclically permuting a sequence bf n
nonnegative integers summing up to n, there is a unique one of thg2a2jn

It is useful to expresk’ combinatorially as follows:

=) e, (2.4)
a

where the summation ranges over all sequencesay, ..., a,.1) of the form (2.1), and
A(a) is the partition whose parts are the nonzero entries @his formula follows directly
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from (1.2) and Lemma 2.3 (1). Alternatively, we can find it in Raney’s combinatorial proof
of Lagrange inversion [20].

Before proceeding with the combinatorial proof of (1.3), which we have already derived
from (1.1) by settingk=—1, let us note that Raney’s combinatorial proof of (1.1) only
works fork > 0.

Combinatorial proof of (1.3):  Applying v to the identityH (t) = E(—t)~%, we obtain

o0 00 -1
> hpt" = <Z(—1)”e§t“> . (2.5)
n=0 n=0

Now definee by

e = Ze»\(a» (2.6)
a
where the summation ranges over all sequeacesay, ..., a,_1) of the form (2.2). We
claim that

00 00 -1
> it = (1 -3 eﬁtn> : (2.7)
n=0 n=1

Comparing (2.7) with (2.5) shows theif= (—1)"e? for n > 1, whence we have (1.3) by
Lemma 2.3 (1). Formula (2.7) is equivalent to

* #
hn = Zeuy)v
Y

where the summation is over all compositionof n. This formula has a simple com-
binatorial proof based on (2.4) and (2.6). Indeed, the right-hand side can be written as
a summation over concatenations of sequences of the form (2.2), where the order of the
concatenation is specified by, Now observe that every sequence of the form (2.1) with

the final zero dropped can be decomposed uniquely as a concatenation of sequences of the
form (2.2) with a final zero added. This gives the right bijection between the sequences
indexing the two summations whose equality we want to prove. O

Combinatorial proof of (1.4): We can also derive (1.4) from (2.4) in a combinatorial
way. Expressing the right-hand side of (2.4) in the basis of Schur functions, we have that
the coefficient o8, is the number of semistandard Young tableaux of shafu which the

type is a sequence of the form (2.1). Formula (1.4) now follows from Lemma 2.3 (1) and
the combinatorial definition of Schur functions. The analogous formula for the expansion
of & follows in a similar way using Lemma 2.3 (2). O

We conclude this section with some remarks concerning the representations of the sym-
metric group with Frobenius characteristi¢ and (—1)"~1e*. Note that the parking
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functions of lengtm are precisely the sequences of lengitontaininga; 1's, ..., a, n's,
where(ay, ..., ay1) satisfies property (2.1). We can define analogs of parking functions
as sequences of lengttcontaininga; 1's, ..., a,_1 n—1's, where(ay, . . ., a,_1) satisfies
property (2.2). By Lemma 2.3 (2), there are— 1)"~! such sequences. The symmetric
group acts on them, and the Frobenius characteristic of the corresponding representation
tensored with the sign representatiorfisl)"~ e: (the proof is similar to the one in [14]
for hy;).

Finally, we note that the Robinson-Schensted correspondence establishes a bijection
between parking functions of lengthand pairs(S, R) of tableaux of the same shape
A E n, with R standard and semistandard, such that the type®is a sequence of the
form (2.1). The same result is true for analogs of parking functions and sequences of the
form (2.2). The above remarks justify combinatorially the identities

n+1 n-1
Z ACHY) f* = n+ 1" Z 50 f*= -t (2.8)

AN n+1 AN n-1

involving the dimensions of the representations corresponding to the symmetric functions
in (1.4).

3. The Images of Skew Schur Functions under the Involution)

We prove the following result concerning the images of skew Schur functions under the
involution . Recall that the Jacobi-Trudi formula expresses the skew Schur fursgfjon

as the determinant of tHex) x I (1) matrix whose(i, j)-th entry ish;, i, +j; here we
adopt the convention that, =0 if m < 0.

Theorem 3.1 Given partitionsu € A, the symmetric functiot—1)'*/ (s ) is a
nonnegative integer combination of Schur functions, wh@gréi) is the number of nonzero
entries below the main diagonal in the Jacobi-Trudi matrixfgp.. In particular, i(1) is
the number of boxes below the diagonal in the Young diagramm of

Proof: Letn be the weight of. /. For the purposes of this proof, we use the French
notation for partitions, that 5= (11, . .., Ax) With A1 <A, < --- < Ak. With this notation,

we have that the skew Schur functisy),, is the determinant of thk x k matrix whose

@i, j)-thentryish;, i, —j (by the Jacobi-Trudiformula). The permutations with a nonzero
contribution to this determinant are precisely those satisfying

Aeiy +() = i +i, 1<i<k (3.2)
Consider & points on thec-axis in the plane, namekx (2(u; +i), 0) andB; (2(A; +i), 0),

for1 <i < k. For a given permutation satisfying (3.2), we will considek-tuples of
Dyck pathsP™ = (P], ..., B), whereP” is a Dyck path fromA; to B, (in particular,
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a path reduces to a single pointAf = B, ). Combining the Jacobi-Trudi formula with
(2.4) and the bijection from sequences satisfying (2.1) to Dyck paths, we obtain

oY (1)) = Y _e(m) Y hypn; (3.3)
b4 P

herew is the standard involution on symmetric functions, the first summation ranges over
permutations satisfying (3.2)(r) is the sign ofr, andi(P™) is the partition ofn whose
parts are the lengths of the northeast steps in the ifths. ., P;

We now define the numbeé(P™) of crossings between pairs of pathsHf. The easiest
way to do this is to introduce auxilliary poinf§ (2(u;i +1i) — 1, —1) andB/(2(x +i) + 1,
—1). We add to every patl?™ the edgesAi A; and Bﬂ.)Bﬂ(,), then, for every pair of
(augmented) paths we contract all the edges they have in common, and count all points of
intersection which are not endpoints and in which neither path changes direction. By switch-
ing the paths at each crossing, we obtain a new configuration of pdthsorresponding
to a permutationry. Clearly,s () = () (—1)' (™). On the other hand, since there are no
crossings of paths iR™, we have thato(i) < 7o(j) ifandonlyifi; +i < puj+ j, for ev-
eryi < j. This condition characterizeg and shows that it hdagx/u) inversions, whence
e(mo) = (—1)' /M (since we use the French notation for partitions, we need to consider the
number of nonzero entriedbovethe main diagonal in the Jacobi-Trudi matrix fotu). As
an aside, we note that the path switching argument above also showsthag in Bruhat
order. In fact, more is true, namely that the permutations satisfying (3.2) are precisely those
in the interval f, 7o), where0 is the identity permutation (see for instance [23]).

\
// //\ \/< " \
A2 e, A3 BI BZ\ 3\

AI’ AZ’ A3, BI’

We now change the order of summation in (3.3). Let us consider thg skall plane
directed graphs§ for which there is a permutation and ak-tuple of pathsP™ as above
whose union i$s (the edges of the paths are now assumed to be directed, and they correspond
to steps(1, 1) or (1, —1)); in fact, it is enough to consider onky = g in this definition.
According to the remarks above, we have

D' oS = Y. (1P hen,. (3.4)
Geg JrP"
UI i_

Now let G be a fixed graph irg, and letG be the graph obtained from it by adding
the auxilliary directed edges; A; and B; B/. Let us weight the edges @ by a weight
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functionw such that all auxilliary edges have weight 1 and the weight satisfies the property
of flow conservation at every vertex with nonnegatyveoordinate. Consider an arbitrary
maximal pattP in G consisting only of edges oriented northeast. E€P) := (ey, ..., &n)

be thesequencef edges inG with heads belonging t®; these edges are ordered by the
y-coordinate of their tails, and every edge is repeatée) times. Similarly, we consider
themultiset P) := {f1, ..., fi} of edges inG with tails belonging toP (see the figure
above). Lek(g) (respectively( f;)) denote the-coordinate of the head ef (respectively
tail of f;). In ordertofind all possibl®™ with |_J, P = G for which every edgeappearsin
exactlyw (e) paths, itis enough to consider for every pRthpecified above all permutations
(f{,..., fy) of the multiset~ (P) such thai(e) < x(f;) for1 <i < m; indeed, we form
paths starting witfe followed by a certain subpath & and f/, then we join these paths
in the obvious way. We note the following facts.

1. The above procedure is carried out independently for eRPeiso we need to take the
product of the contributions of aP to the second sum in the right-hand side of (3.4).

2. Assuming that=(P) is a set rather than a multiset, the contribution of a gi®eis
0 unless all integerg(g) are different; in the latter case, the contribution is the skew
Schur functions,,,, wherep; =x(g) —i andv; =x(fj) —i for 1 <i < m (by the
Jacobi-Trudi formula).

3. If at least one edge @ oriented southeast has weight greater than 1 (if this happens
for somew, it happens for allw), then we can find a patR with no repeated edges in
F(P) and repeated edges i P); hence the contribution of such to the right-hand
side of (3.4) is 0.

Hence, we can restrict the summation in the right-hand side of (3.4) to the set of graphs
Go for which a vertex of indegree 2 and outdegree 1 necessarily has the edge starting at
it oriented northeast, and is not among tes. Clearly, there is a unique way to weight
these graphs, and the weight of every edge oriented southeast is 1. By the above remarks,
(=1)' ™M o (¥ (s,/,)) can be written as a sum ov@g of products of skew Schur functions,
which is obviously a nonnegative integer combination of Schur functions. O

We conclude this section by pointing out the interesting open problem of finding nice
combinatorial interpretations for the coefficients of the expansiof(sf) in the basis of
Schur functions. In other words, we are asking for generalizations of the formulas (1.4).

4. The Operator V of Bergeron and Garsia

In this section we present a generalization of Theorem 3.1 in terms of the op®&rator
defined by F. Bergeron and A. Garsia (see [3, 2]). This operator act@it], and has

a modified version of the Macdonald polynomials as eigenfunctions. More precisely, for
every partitionu of n, we define

Hy =) K@, 1),

AN
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where
Kiu(d, 1) == t"" K, (q, 1/1),

K,.(q, t) are the Macdonald, t-Kostka coefficients defined in [17], amdu) := > (i —

Dwi. Macdonald conjectured in [17] thét;, . (g, t) are polynomials irg, t with positive
integer coefficients. Recently it was shown that they are polynomials with integer coeffi-
cients, but the positivity still remains to be proved. With this notation, the opevater
defined by

VH, =T,H,,
where
T/l = tn(/‘d)qn(ﬂ,).

The following is one of the main conjectures [9, 3] concerning the opeRatdris based
on thorough computer experiments.

Conjecture 4.1  For every partitionu of n, we have the expansion

Vs, =g, ZS“ C)»M(q’ 1),

pEn

whereg, is a sign, and G, (q, t) are polynomials in gt with nonnegative integer coeffi-
cients.

The fact thatC, , (g, t) are polynomials i, t with integer coefficients has been proved
recently by A. Garsia by extending the machinery in [10], and will appear in [3]. Some
of the coefficientLC, ,(q, t) were identified. For instance, one obtains the-Catalan
sequence studied in [10] by settihg= «« = (1"). Other identities concerning the images of
various symmetric functions und®&rare known. For example, according to Theorem 3.4
in [10], we have that

Ve, =DHnh(x; q, t); 4.2)

here DH,(x; g, t) is the conjectured bigraded Frobenius characteristic of diagonal har-
monics, which is given by formula (15) in [10], and is related to a bivariate version of
Lagrange inversion. Since DKk; 1, 1) =h? (see [14] or the discussion below), we have
thatVq_—1 = ¥ ow. This means that if Conjecture 4.1 is true, thgr= (—1)'*", by The-
orem 3.1. The next step towards Conjecture 4.1 is to settealy. This is an interesting
special case, because the operator; is known to be multiplicative by formula (92) in
[10], and hence one can combine the Jacobi-Trudi formula with (4.2) to corivputes; .

We also need to recall from [10] (cf. (41), (43), (55), and (90)) the fact that(®H, 1),
which will be denoted byh;(q), is given by theg-Lagrange inversion formula due to
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Andrews, Garsia, and Gessel [1, 8, 11]. More precisely, we have the foll@pamglogue
of formula (2.4):

i) = > gxha-Gle ), (4.3)
a

where the summation again ranges over all sequemee®y, ..., a,1) of the form (2.1);

the exponent ofy in the right-hand side of (4.3) is precisely half the area between the
Dyck path with alternating steps and the Dyck path corresponding to the sequender

the bijection discussed at the beginning of Section 2. This given, M. BousqgeleiM”

F. Bergeron, and D. Gouyou-Beauchamps [4] determined the coeffiCient (g, 1), and
thus found the sigm; too. On the other hand, it turns out that our proof of Theorem 3.1
translates easily into a proof of the special case of Conjecture 4.1 correspontliad to

Theorem 4.4 Given partitions u C A, the expansion of the symmetric function
(—1)'*m vV, _15,,, in the basis of Schur functions involves only polynomials in g with
nonnegative integer coefficients.

Proof: Define the multiplicative operatdr on A[q] by V h, := h%(q). By (4.2) and the
multiplicativity of Vi_1, we haveV;_; = V o w. Hence it suffices to prove the Theorem
for V instead ofV; _;.

The proof now proceeds in the same way as the proof of Theorem 3.1 until formula
(3.4). We now make the crucial observation that the sum of areas between the Dyck paths
in P™ and the corresponding Dyck paths with alternating steps is invariant under switching
paths at crossings. Hence the powegafttached to the terms in the right-hand side of the
g-analogue of (3.4) can be factored out of the second summation. The remaining part of
the proof is identical. O

Theorem 4.4 suggests that Conjecture 4.1 might actually hold fapplied to skew
Schur functions.

References

1. G.E. Andrews, “Identities in combinatorics Ill: é-analogue of the Lagrange inversion theorerRfoc.
Amer. Math. So3(1975), 240-245.

2. F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, and G. Tesler, “Lattice diagram polynomials and extended
Pieri rules,”Adv. Math 142(1999), 244—-334.
3. F. Bergeron and A. Garsia, “Identities and conjectures for a remarkable operator on symmetric polynomi-
als,” Seminaire Lotharingien de Combinatojr appeaiPubl. Inst. Rech. Math. Av., Univ. Louis Pasteur,
Strasbourg.
. M. Bousquet-Mlou, F. Bergeron, and D. Gouyou-Beauchamps, Personal communication, May 1998.
5. N. Dershowitz and S. Zaks, “The cycle lemma and some applicatidbstbpean J. Combinll (1990),
35-40.

6. A. Dvoretzky and Th. Motzkin, “A problem of arrangementBike Math. J14 (1947), 305-313.

7. H.K. Farahat and G. Higman, “The centres of symmetric group ringsgc. Royal Soc. (A250 (1959),
212-221.

N



78

11.
12.
13.

14.
15.

16.
17.
18.

19.

20.
21.
22.

23.

LENART

. A.M. Garsia, “Ag-analogue of the Lagrange inversion formulBlpuston J. Math7 (1981), 205-237.
. A. Garsia, Personal communication, May 1998.
10.

A. Garsia and M. Haiman, “A remarkaliet-Catalan sequence anelLagrange inversion,J. Alg. Combin.
5(1996), 191-244.

I. Gessel, “A noncommutative generalization apdnalogue of the Lagrange inversion formulditans.

Amer. Math. So257(1980), 455-482.

I.P. Goulden and D.M. Jackso&ombinatorial Enumeration Wiley Intersci. Ser. in Discrete Math. John
Wiley & Sons, 1983.

I.P. Goulden and D.M. Jackson, “Symmetric functions and Macdonald’s result for top connection coefficients
in the symmetric group,J. Algebral66(1994), 364-378.

M. Haiman, “Conjectures on the quotient ring by diagonal invariadtsflg. Combin3 (1994), 17-76.

M. Haiman and W. Schmitt, “Incidence algebra antipodes and Lagrange inversion in one and several variables,
J. Combin. Theory Ser. 30 (1989), 172-185.

A. Lascoux and M.-P. Scdtzenberger, “Formulaire raisoamle fonctions syetriques,” Publ. Univ. Paris 7,

1985.

I.G. Macdonald, “A new class of symmetric functions,” volume 372ahinaire Lotharingien de Combina-

toire, Publ. Inst. Rech. Math. App. 131-171. Univ. Louis Pasteur, Strasbourg, 1988.

I.G. Macdonald,Symmetric Functions and Hall Polynomial©xford Mathematical Monographs. Oxford
University Press, Oxford, 2nd edition, 1995.

I. Pak and A. Postnikov, “Enumeration of trees and one amazing representation of the symmetric group,”
in Eighth International Conference on Formal Power Series and Algebraic Combinatéri&tanton (Ed),
University of Minnesota, Minneapolis, 1996, pp. 385-389.

G.N. Raney, “Functional composition patterns and power series revergians. Amer. Math. S084(1960),
441-451.

R. Stanley, “Parking functions and noncrossing partitioBttronic J. Combind(2) (Wilf Festschrift) R20,

1997.

R.P. Stanley, Enumerative Combinatori¢csvolume I, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, 1999.

R. Winkel, “On the expansion of Schur and Schubert polynomials into standard elementary monomials,”
Adv. Math.136(1998), 224-250.

»



