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alized Delannoy matrices. These connections are the focus of our
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In addition, we obtain a combinatorial interpretation for the gen-
eralized Fibonacci numbers.
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1. Introduction

The Pascal matrix [2–4] appears often in combinatorics, probability and linear algebra. The infinite
lower triangular Pascal matrix P is defined by generic term pn,k = (n

k

)
, where the binomial coefficient(n

k

)
counts the number of lattice paths from (0,0) to (n − k,k) with steps (1,0) and (0,1), which

satisfy the recurrence relation
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(
n + 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
.

It is easy to check that the inverse of P is P−1 = (
(−1)n−k

(n
k

))
n,k�0.

The generic term fn,k = ( k
n−k

)
of the Fibonacci matrix F = ( fn,k)n,k�0 counts the number of lattice

paths from (0,0) to (n − k,k) with steps (0,1) and (1,1), and the entries of the Fibonacci matrix F
satisfy the recurrence relation

fn+1,k+1 = fn,k + fn−1,k.

The first few rows of F and F−1 are:

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 1 1 0 0 0 · · ·
0 0 2 1 0 0 · · ·
0 0 1 3 1 0 · · ·
0 0 0 3 4 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 −1 1 0 0 · · ·
0 2 −2 1 0 · · ·
0 −5 5 −3 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The row sums of F are the Fibonacci numbers defined by ordinary generating function
∑∞

n=0 Fnxn =
1

1−x−x2 . In this inverse F−1, if we ignore the signs, we find that the row sums are the Catalan num-

bers Cn , which are defined by ordinary generating function
∑∞

n=0 Cnxn = 1−√
1−4x

2x .
The Delannoy number d(n,k) may be defined as the number of lattice paths from (0,0) to (n,k)

with steps (1,0), (0,1), and (1,1). If we introduce the infinite lower triangular Delannoy matrix
D = (dn,k)n,k�0 by dn,k = d(n − k,k). Then its entries satisfy the recurrence relation

dn+1,k+1 = dn,k+1 + dn,k + dn−1,k,

and dn,k counts the number of lattice paths from (0,0) to (n −k,k) with steps (1,0), (0,1) and (1,1).
The first few entries of D and D−1 are as follows:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 5 5 1 0 0 · · ·
1 7 13 7 1 0 · · ·
1 9 25 25 9 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·
2 −3 1 0 0 0 · · ·

−6 10 −5 1 0 0 · · ·
22 −38 22 −7 1 0 · · ·

−90 158 −98 38 −9 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

An immediate calculation shows that the row sums of the Delannoy matrix D are the Pell sequence
1, 2, 5, 12, . . . , while the row sums of unsigned entries of D−1 are the large Schröder numbers 1, 2,
6, 22, . . . , see [7,19].

The analogue between the Pascal matrix, Fibonacci matrix, and Delannoy matrix motivate us to
study a more generalized situation. In this paper, by using Riordan arrays, we introduce a generalized
Delannoy matrices by weighted Delannoy numbers. It turns out that Delannoy matrix, Pascal ma-
trix, and Fibonacci matrix are all special cases of generalized Delannoy matrices, meanwhile Schröder
matrix and Catalan matrix also arise in involving inverses of weighted Delannoy matrices. These con-
nections are the focus of our paper. The half of generalized Delannoy matrix is also considered. In
addition, we obtain a combinatorial interpretation for the generalized Fibonacci numbers.

2. Riordan arrays

Riordan arrays were first introduced in 1991 by Shapiro et al. [16], and many works and appli-

cations on this subject have been done, for example [5,6,8,9,17]. An infinite lower triangular matrix
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D is called a Riordan array if its column k (k = 0,1,2, . . .) has generating function g(x) f (x)k , where
g(x) = ∑∞

n=0 gnxn and f (x) = ∑∞
n=0 fnxn are formal power series with g0 = 1, f0 = 0 and f1 �= 0. That

is, the general term of array D is dn,k = [xn]g(x) f (x)k , where [xn]h(x) denotes the coefficient of xn in
power series h(x).

Suppose we multiply the array D = (g(x), f (x)) by a column vector (b0,b1,b2, . . .)
T and

get a column vector (a0,a1,a2, . . .)
T . Let b(x) be the ordinary generating functions for the se-

quence (b0,b1,b2, . . .)
T . Then it follows that the ordinary generating functions for the sequence

(a0,a1,a2, . . .)
T is g(x)b( f (x)). If we identify a sequence with its ordinary generating function, the

composition rule can be presented as
(

g(x), f (x)
)
b(x) = g(x)b

(
f (x)

)
. (1)

This is called the fundamental theorem for Riordan arrays and this leads to the multiplication rule for
the Riordan arrays (see Shapiro et al. [16]):

(
g(x), f (x)

)(
h(x), l(x)

) = (
g(x)h

(
f (x)

)
, l

(
f (x)

))
. (2)

The inverse of (g(x), f (x)) is
(

g(x), f (x)
)−1 = (

1/g
(

f̄ (x)
)
, f̄ (x)

)
, (3)

where f̄ (x) is the compositional inverse of f (x).
The bivariate generating function D(x, y) of the Riordan array D = (g(x), f (x)) is given by

D(x, y) = (
g(x), f (x)

) 1

1 − yx
= g(x)

1 − yf (x)
. (4)

Lemma 2.1. (See [8].) Let D = (dn,k) be an infinite lower triangular matrix. Then D is a Riordan array if and
only if d0,0 = 1 and there exists two sequences A = (ai)i�0 and Z = (zi)i�0 with a0 �= 0 such that

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · , n,k = 0,1, . . . ,

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · , n = 0,1, . . . .

Such sequences are called the A-sequence and the Z-sequence of the Riordan array D, respectively.

Lemma 2.2. (See [8].) Let D = (g(x), f (x)) be a Riordan array with inverse D−1 = (d(x),h(x)). Then the A-
and Z-sequences of D are

A(x) = x

h(x)
; Z(x) = 1

h(x)

(
1 − d(x)

)
. (5)

Example 2.1.

(a) It is well known that the Pascal matrix P = ((n
k

))
can be expressed as the Riordan array

( 1
1−x , x

1−x ), and the generating functions of its A- and Z-sequences are A(x) = 1 + x, Z(x) = 1.

More generally, for the generalized Pascal array P[r] = (
rn−k

(n
k

))
, we have P[r] = ( 1

1−rx , x
1−rx ),

P[r]−1 = ( 1
1+rx , x

1+rx ).

(b) The Fibonacci matrix F = (( k
n−k

))
can be expressed as the Riordan matrix F = (1, x + x2), and its

inverse is F−1 = (1, xC(−x)).

The set of all Riordan arrays associated with the usual row-by-column product shown in (2)
forms a group denoted by R , where I = (1, x) acts as the identity for this product, that is,
(1, x) ∗ (d(x),h(x)) = (d(x),h(x)) ∗ (1, x) = (d(x),h(x)). A subgroup, denoted by B, of R is the set
of Bell-type arrays or renewal arrays, that is the Riordan arrays D = (d(x),h(x)) for which h(x) = xd(x),

which was considered in the literature [15].
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He [9] uses the sequence characterization of Bell-type Riordan array to define (c, r)-(generalized
or parametric) Catalan numbers with parameters c and r, which have the generating function

dc,r(x) = 1 − (c − r)x − √
1 − 2(c + r)x + (c − r)2x2

2rx
. (6)

(6) was shown in (10) of [9]. The corresponding Bell-type Riordan arrays (dc,r(x), xdc,r(x)) are called
the (c, r)-(generalized or parametric) Catalan triangles. The Taylor expansion and some properties of
the generalized Catalan numbers and generalized Catalan triangles are presented. In addition, [9] gives
some combinatorial interpretations for the Bell-type Riordan arrays including those of the generalized
Catalan triangles. [9] also discusses the inverse of the generalized Catalan triangles, from which the
expressions of the parametric Catalan numbers and triangles in terms of classical Catalan numbers
are given. All of those results will be useful in Sections 3 and 4 of this paper.

3. Generalized Delannoy matrix

We consider those lattice paths in the Cartesian plane starting from (0,0) that use the steps E , D ,
and N , where E = (1,0), an east-step; D = (1,1), a diagonal-step; and N = (0,1), a north-step, with
assigned weights e, d, and w , respectively, where e, d and w are positive integers. Many properties
and applications of Delannoy numbers have been discussed [1,10,12,13,20,21]. In combinatorics, we
regard weight as the number of colors and normalize by setting w = 1. Let P be a path. We define
the weight w(P ) to be the product of the weight of the steps. Let A(n,k) be the set of all weighted
lattice paths ending at the point (n − k,k) and let B(n,k) be the set of lattice paths in A(n,k) which
have no east-steps on the x-axis. The generalized Delannoy numbers an,k are the sum of all w(P )

with P in A(n,k) and bn,k are the sum of all w(P ) with P in B(n,k).
The array A is called the generalized Delannoy matrix of the first kind, and the array B is called

the generalized Delannoy matrix of the second kind. It is straightforward to show that the array
A= (an,k)n,k�0 satisfies for n � 0 and k � 0 the recursion equation

an+1,k+1 = ean,k+1 + an,k + dan−1,k (7)

with the conditions a0,0 = 1 and an,k = 0 if n < 0 and an,k = 0 if n < k. Using recursion equation (7)
we get the generating function A(x, y) of the array (an,k) is

A(x, y) =
∞∑

n=0

∞∑
k=0

an,kxn yk = 1

1 − ex − xy − dx2 y
. (8)

Similarly, the array B = (bn,k)n,k�0 satisfies for n � 0 and k � 0 the recursion equation

bn+1,k+1 = ebn,k+1 + bn,k + dbn−1,k (9)

with the conditions b0,0 = 1, bn,0 = 0 if n � 1 and bn,k = 0 if n < k. Hence we have

B(x, y) =
∞∑

n=0

∞∑
k=0

bn,kxn yk = 1 − ex

1 − ex − xy − dx2 y
. (10)

Some entries of the arrays A and B are:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
e 1 0 0 0 · · ·
e2 2e + d 1 0 0 · · ·
e3 3e2 + 2ed 3e + 2d 1 0 · · ·
e4 4e3 + 3e2d 6e2 + 6ed + d2 4e + 3d 1 · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

,

...
...

...
...

...
. . .
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B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 e + d 1 0 0 · · ·
0 e2 + ed 2e + 2d 1 0 · · ·
0 e3 + e2d 3e2 + 4ed + d2 3e + 3d 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3.1. The generalized Delannoy matrices of the first kind and of the second kind can be represented
by Riordan arrays as

A =
(

1

1 − ex
,

x + dx2

1 − ex

)
, B =

(
1,

x + dx2

1 − ex

)
.

Proof. From (4), the bivariate generating function of the Riordan array ( 1
1−ex , x+dx2

1−ex ) is ( 1
1−ex , x+dx2

1−ex )×
1

1−yx = 1
1−ex · 1

1−y x+dx2
1−ex

= 1
1−ex−xy−dx2 y

. Hence, the result follows by (8). In a similar way we can prove

the result about B. �
Corollary 3.2. The general terms of the arrays A and B are given by

ai, j =
i− j∑
k=0

(
j

k

)(
i − k

j

)
ei− j−kdk, (11)

bi, j =
i− j∑
k=0

(
j

k

)(
i − k − 1

j − 1

)
ei− j−kdk. (12)

It is easy to see that after deleting the first column and the first row of B, we obtain a Bell-type
Riordan array ((1+dx)/(1−ex), (x+dx2)/(1−ex)). Hence, its inverse ((1+dx)/(1−ex), (x+dx2)/(1−
ex))−1 = ( f (x; e,d), xf (x; e,d)) is also a Bell-type Riordan array. From (30) and (10) of [9], we have

f (x; e,d) = 1 + ex − √
e2x2 + 2(e + 2d)x + 1

−2dx
= d−(e+d),−d(x),

where dc,r(x) is shown in (6), i.e., (10) of [9].
Let An = ∑n

k=0 an,k . Then An is the sum of the weights of all lattice paths from origin (0,0) to the
line x + y = n using steps (1,0), (1,1) and (0,1) with weights e, d, and 1, respectively. Setting y = 1
in (8), we get the generating function for the row sums of A is

∞∑
n=0

Anxn = 1

1 − (1 + e)x − dx2
. (13)

Therefore, the sequence {An} satisfy the following recurrence relation:

An = (e + 1)An−1 + dAn−2, n � 2,

with A0 = 1 and A1 = e + 1. The sequence {An} is called generalized Fibonacci numbers, and by (13)
its generic element is

An =
�n/2�∑
k=0

(
n − k

k

)
(e + 1)n−2kdk.

Let Bn = ∑n
k=0 bn,k . Then Bn is the sum of the weights of all lattice paths from origin (0,0) to the

line x + y = n using steps (1,0), (1,1) and (0,1) with weights e, d, and 1, respectively, and without

step (1,0) on the x-axis. The generating function for the row sums of B is
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∞∑
n=0

Bnxn = 1 − ex

1 − (1 + e)x − dx2
. (14)

Therefore, the sequence {Bn} satisfy the following recurrence relation:

Bn = (e + 1)Bn−1 + dBn−2, n � 2,

with B0 = 1 and B1 = 1. Furthermore, B0 = A0, and Bn = An − e An−1 = An−1 + dAn−2 for n � 1.
In the case e = 1 and d = 0, we have A = ( 1

1−x , x
1−x ), which is the Pascal matrix P . When e =

d = 1, A = ( 1
1−x , x+x2

1−x ) is the Delannoy matrix D whose row sums are Pell numbers. When e = 0,

and d = 1, A = (1, x + x2) is the Fibonacci matrix F . So we can consider the generalized Delannoy
matrices A as an extension of the Pascal matrix, Delannoy matrix and Fibonacci matrix.

4. Generalized Schröder matrix

In this section, we consider those lattice paths from (0,0) with steps E = (1,0), D = (1,1) and
N = (0,1) which are endowed with weighs d, e and w = 1, respectively. Let R(n,k) be the set of
all weighted lattice paths ending at the point (n − k,n) and that its last step is not east-step and
that never falling below the line y = x. Let S(n,k) be the set of lattice paths in R(n,k) which have
no diagonal-steps on the line y = x. Let rn,k be the sum of all w(P ) with P in R(n,k) and let sn,k
be the sum of all w(P ) with P in S(n,k). Then rn(e,d) = rn,0 + drn,1 + · · · + dnrn,n is the sum of
weights of all weighted paths ending on (n,n) that never falling below the line y = x, and sn(e,d) =
sn,0 + dsn,1 + · · · + dnsn,n is the sum of weights of paths with no step (1,1) on the line y = x and
ending on (n,n) and that never falling below the line y = x. We call rn(e,d) the n-th large weighted
Schröder number and sn(e,d) the n-th small weighted Schröder number. The array R is called the
generalized Schröder matrix of the first kind, and the array S is called the generalized Schröder
matrix of the second kind. Some entries of the arrays R= (rn,k)n,k�0 and S = (sn,k)n,k�0 are:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
e 1 0 0 0 · · ·

e2 + ed 2e + d 1 0 0 · · ·
e3 + 3e2d + 2ed2 3e2 + 5ed + 2d2 3e + 2d 1 0 · · ·

e4 + 6e3d + 10e2d2 + 5ed3 4e3 + 14e2d + 15ed2 + 5d3 6e2 + 11ed + 5d2 4e + 3d 1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 e + d 1 0 0 · · ·
0 e2 + 3ed + 2d2 2e + 2d 1 0 · · ·
0 e3 + 6e2d + 10ed2 + 5d3 3e2 + 8ed + 5d2 3e + 3d 1 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

By considering the positions preceding to the last step of a lattice path in R(n,k), we have r0,0 = 1,
r0,k = 0 for k > 0 and

rn+1,k+1 = rn,k + (e + d)rn,k+1 + (e + d)drn,k+2 + · · · + (e + d)dn−k−1rn,n, n,k � 0, (15)

rn+1,0 = ern,0 + edrn,1 + · · · + ednrn,n, n � 0. (16)

Similarly, the array S = (sn,k)n,k�0 satisfies the recurrence

sn+1,k+1 = sn,k + (e + d)sn,k+1 + (e + d)dsn,k+2 + · · · + (e + d)dn−k−1sn,n, n,k � 0, (17)

with the conditions s0,0 = 1, sn,0 = 0 if n � 1 and s0,k = 0 if k � 1.
If d = 0 and e �= 0, we find that R = ( 1

1+ex , x
1+ex )−1 = ( 1

1−ex , x
1−ex ), and S = (1, x

1+ex )−1 =
(1, x

1−ex ), which are the generalized Pascal matrices.
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Theorem 4.1. If d �= 0, then the array R is a Riordan array expressed by

R =
(

1

1 + ex
,

x − dx2

1 + ex

)−1

= (
1 + eh(x),h(x)

)
,

where h(x) = 1−ex−
√

e2x2−(2e+4d)x+1
2d .

Proof. By the formulae (15) and (16) and Lemmas 2.1 and 2.2, we immediately know that the array
R is a Rioran array, which expression can be found from (3). �

In (9) of [9], by transforming c to e + d and r to d, one may obtain the following corollary.

Corollary 4.2. (See [9].) If d �= 0, then the array S can be expressed as

S =
(

1,
x − dx2

1 + ex

)−1

=
(

1,
1 − ex − √

e2x2 − (2e + 4d)x + 1

2d

)
.

From (28) of [9], noting dn−1,k−1 = sn,k and transforming c to e + d and r to d, we have

sn,k = k

n

n∑
i=0

(
n

i

)(
2n − k − i − 1

n − k − i

)
eidn−i−k.

Hence, we have the following relationship between sn,k and rn,k .

Corollary 4.3. For the generalized Schröder matrix of the first kind R = (rn,k) and the generalized Schröder
matrix of the second kind S = (sn,k), there holds

rn,k = sn,k + esn,k+1.

Theorem 4.4. The generating function for the large weighted Schröder numbers is given by

R(x; e,d) = 1 − ex − √
e2x2 − (2e + 4d)x + 1

2dx
.

Proof. By definition, rn(e,d) = rn,0 + drn,1 + · · · + dnrn,n . Hence, R(x; e,d) = ∑∞
n=0 rn(e,d)xn = (1 +

eh(x),h(x)) 1
1−dx = 1+eh(x)

1−dh(x) = h(x)
x = 1−ex−

√
e2x2−(2e+4d)x+1

2dx . Here we have used the fact h(x) = x ·
1+eh(x)
1−dh(x) . �

By using the formula of the inverse Riordan arrays and Theorem 3.1, we may obtain the following
result.

Theorem 4.5. The generating function for the small weighted Schröder numbers is given by

S(x; e,d) = 1 + ex − √
e2x2 − (2e + 4d)x + 1

2(e + d)x
, and

(
1, S(x; e,d)

)−1 =
(

1,
x − (e + d)x2

1 − ex

)
.

Proof. The proof is straightforward. �
From Theorem 3.1 and Theorem 4.1, the Delannoy matrix A and Schröder matrix R are inverse
each other in the sense of A−1 = ((−1)n−krn,k), and R−1 = ((−1)n−kan,k). Similarly, the Delannoy



3612 S.-l. Yang et al. / Linear Algebra and its Applications 439 (2013) 3605–3614
matrix B and Schröder matrix S are inverse each other in the same sense. We state this interesting
result in the following theorem.

Theorem 4.6. Let M denote the Riordan array (1,−x), then

A−1 = MRM, R−1 = MAM, B−1 = MSM, S−1 = MBM.

Example 4.1. If e = d = 1, then R(x;1,1) = 1−x−
√

1−6x+x2

2x is the generating function for the large

Schröder numbers, and S(x;1,1) = 1+x−
√

1−6x+x2

4x is the generating function for the small Schröder
numbers. A few first entries of R and S are shown as follows:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
2 3 1 0 0 0 · · ·
6 10 5 1 0 0 · · ·

22 38 22 7 1 0 · · ·
90 158 98 38 9 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 2 1 0 0 0 · · ·
0 6 4 1 0 0 · · ·
0 22 16 6 1 0 · · ·
0 90 68 30 8 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

These are Schröder triangles discussed in [11,14].

Example 4.2. If e = 0, d �= 0, then R(x;0,d) = S(x;0,d) = 1−√
1−4dx

2dx = C(dx), where C(x) is the gener-
ating function for the numbers. A few first entries of R= S are shown as follows:

R = S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
0 d 1 0 0 0 0 · · ·
0 2d2 2d 1 0 0 0 · · ·
0 5d3 5d2 3d 1 0 0 · · ·
0 14d4 14d3 9d2 4d 1 0 · · ·
0 42d5 42d4 28d3 14d2 5d 1 · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is the Catalan triangle discussed in [18].

Example 4.3. If e = 1 and d = 2, then R(x;1,2) = 1−x−
√

1−10x+x2

4x , and S(x;1,2) = 1+x−
√

1−10x+x2

6x .
A few first entries of R and S are shown as follows:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
3 4 1 0 0 0 · · ·

15 21 7 1 0 0 · · ·
93 132 48 10 1 0 · · ·

645 921 348 84 13 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 15 6 1 0 0 · · ·
0 93 39 9 1 0 · · ·
0 645 276 72 12 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 4 1 0 0 0 · · ·
1 7 7 1 0 0 · · ·
1 10 22 10 1 0 · · ·
1 13 46 46 13 1 · · ·
.. .. .. .. .. .. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 3 6 1 0 0 · · ·
0 3 15 9 1 0 · · ·
0 3 24 36 12 1 · · ·
.. .. .. .. .. .. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

. . . . . . . . . . . . . .
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Example 4.4. If e = 2 and d = 1, then R(x;2,1) = 1−2x−
√

1−8x+4x2

2x , and S(x;2,1) = 1+2x−
√

1−8x+4x2

6x .
A few first entries of R and S are shown as follows:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
6 5 1 0 0 0 · · ·

24 24 8 1 0 0 · · ·
114 123 51 11 1 0 · · ·
600 672 312 87 14 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 12 6 1 0 0 · · ·
0 57 33 9 1 0 · · ·
0 300 186 63 12 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
2 1 0 0 0 0 · · ·
4 5 1 0 0 0 · · ·
8 16 8 1 0 0 · · ·

16 44 37 11 1 0 · · ·
32 112 134 67 14 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
0 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 6 6 1 0 0 · · ·
0 12 21 9 1 0 · · ·
0 24 60 45 12 1 · · ·
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5. Half of the Delannoy matrix

Denote by H(n,k) the set of all weighted lattice paths ending at the point (n − k,n) and using
steps E = (1,0), D = (1,1), and N = (0,1) with weights d, e, and 1, respectively. Let hn,k be the sum
of all w(P ) with P in H(n,k). Recall that A(n,k) is the set of all weighted lattice paths ending at the
point (n −k,k) and the generalized Delannoy numbers an,k are the sum of all w(P ) with P in A(n,k).
Hence, hn,k = a2n−k,n , and the matrix H = (hn,k)n,k�0 can be presented below:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0,0 0 0 0 0 0 · · ·
h1,0 h1,1 0 0 0 0 · · ·
h2,0 h2,1 h2,2 0 0 0 · · ·
h3,0 h3,1 h3,2 h3,3 0 0 · · ·
h4,0 h4,1 h4,2 h4,3 h4,4 0 · · ·
h5,0 h5,1 h5,2 h5,3 h5,4 h5,5 · · ·

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0 0 0 0 0 0 · · ·
a2,1 a1,1 0 0 0 0 · · ·
a4,2 a3,2 a2,2 0 0 0 · · ·
a6,3 a5,3 a4,3 a3,3 0 0 · · ·
a8,4 a7,4 a6,4 a5,4 a4,4 0 · · ·
a10,5 a9,5 a8,5 a7,5 a6,5 a5,5 · · ·

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If e = 0, then A = (1, x + dx2). Therefore, an,k = [xn](x + dx2)k = ( k
n−k

)
dn−k , and hn,k = a2n−k,n =( n

n−k

)
dn−k . Consequently H = ( 1

1−dx , x
1−dx ). In general, we have the following results.

Theorem 5.1. The inverse of the triangle H is the Riordan array

H−1 =
(

1 − 2dx − dex2

1 + ex
,

x − dx2

1 + ex

)
.

Proof. The proof is a straight computation by using (3). �



3614 S.-l. Yang et al. / Linear Algebra and its Applications 439 (2013) 3605–3614
Corollary 5.2. If e �= 0, then the triangle H is given by the Riordan array

H =
(

1√
d2x2 − (2d + 4e)x + 1

,
1 − dx − √

d2x2 − (2d + 4e)x + 1

2e

)
.

Example 5.1. If d = 0 and e = 1, then H = ( 1√
1−4x

, 1−√
1−4x
2 ), H−1 = (1 − 2x, x − x2), and A =

( 1
1−x , x

1−x ).

Example 5.2. If d = 1 and e = 1, then H = ( 1√
1−6x+x2

,
1−x−

√
1−6x+x2

2 ), H−1 = ( 1−2x−x2

1+x , x−x2

1+x ), and

A= ( 1
1−x , x+x2

1−x ).

Example 5.3. If d = 1 and e = 2, then H = ( 1√
1−10x+x2

,
1−x−

√
1−10x+x2

4 ), H−1 = ( 1−4x−2x2

1+x , x−2x2

1+x ), and

A= ( 1
1−2x , x+x2

1−2x ).

Example 5.4. If d = 2 and e = 1, then H = ( 1√
1−8x+4x2

,
1−2x−

√
1−8x+4x2

2 ), H−1 = ( 1−2x−2x2

1+2x , x−x2

1+2x ), and

A= ( 1
1−x , x+2x2

1−x ).

Remark 5.1. As pointed by one of referee, an alternative approach consists in constructing the arrays
of the form ( 1+at

1−et ,
t(1+dt)

1−et ). Then consider the cases a = 0, a = d, a = −e and identify the row sums and
the recurrence relations satisfied by the entries of the matrices. Proceeding in this way Lemmas 2.1
and 2.2 are not needed.
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