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1. Introduction

1.1. Hankel determinants of Catalan, Motzkin, and Schrdoder numbers
Let {ay}¢>0 be a sequence. For a nonnegative integer k, let A,(qk) denote the Hankel matrix of order n
of the sequence {ay},>¢ of the form

AV = (@rtitj-2)f - (1)

= Partially supported by National Science Council, Taiwan under Grant NSC 98-2115-M-390-002-MY3 (S.-P. Eu), NSC 99-2115-M-
110-001-MY3 (T.-L. Wong).
* Corresponding author.
E-mail addresses: speu@nuk.edu.tw (S.-P. Eu), tiwong@math.nsysu.edu.tw (T.-L. Wong), yenpl.tw@gmail.com (P.-L. Yen).

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.1aa.2012.05.024


http://dx.doi.org/10.1016/j.laa.2012.05.024
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2012.05.024

2286 S.-P. Eu et al. / Linear Algebra and its Applications 437 (2012) 2285-2299

When {a;}¢>0 is one of the three classical combinatorial sequences (Catalan, Motzkin and Schréder

numbers) arising from lattice path enumeration, the problem to evaluate the determinant det(A,(lk))

has been extensively studied. Readers may be referred to [3,16,18,20] for more examples, especially
the comprehensive references listed in [20].
1 (2

We give a quick introduction. The Catalan number ¢, = m( Z) counts the number of Dyck

paths of length ¢, which are the lattice paths in the plane Z x 7Z from (0, 0) to (2¢, 0) using up
steps U = (1, 1) and down steps D = (1, —1) that never pass below the x-axis. It is folklore that
dety < j<n(Citj—2) = 1,deti<; j<n(citj—1) = 1and det;<; j<n(ci+j) = n+ 1. Desainte-Catherine and
Viennot [12] proved that detq < j<n(Cit+j+k—2) = [l1<i<j<k—1 H'i]j_'jzn. Gessel and Viennot [15] gave
an evaluation of deto<; j<n—1(Cy+j) fOor nonnegative integers o, a1, . . ., ;1. An extension of this
study is recently given by Krattenthaler [20].

The Motzkin numbers {m¢},>0 = {1, 1, 2, 4,9, 21, 51, .. .} count the number of Motzkin paths
of length ¢, which are the lattice paths from (0, 0) to (¢, 0) using up steps, down steps and unit level
steps (1, 0) that never pass below the x-axis. It is known that dety<; j<;(m;1j—») = 1 for all positive
integer n and det;<; j<n(M;yj—1) equals 1ifn = 0, 1 (mod 6), equals 0 if n = 2, 5 (mod 6), and equals
—1ifn = 3, 4 (mod 6). See for instance [2,24].

The large Schroder numbers {r¢}¢>0 = {1, 2, 6, 22, 90, 394, 1806, . . .} count the number of large
Schroder paths of length ¢, which are the lattice paths from (0, 0) to (2, 0) using up steps, down
steps and level steps L = (2, 0) that never pass below the x-axis. Furthermore, the small Schroder
numbers {s¢}y>0 = {1, 1,3, 11,45, 197,903, ...} count the number of small Schréder paths of
length ¢, which are large Schrdder paths of length ¢ without level steps on the x-axis. By apply-

ing the Lindstrém-Gessel-Viennot lemma, Eu and Fu [13] proved that deti<; j<n(ritj—2) = 2(2),

dety<jj<n(ritj—1) = Z(HJZH), dety<jj<n(Sitj—2) = 2(;), and det<j j<n(Siyj—1) = 2(3). At the same
time, Brualdi and Kirkland also obtained the results in the case of large Schroder numbers via linear
algebra [6].
Note that once det(A,go)) and det(A,(f)) are determined, the evaluation of det(A,gk)) can be obtained
for all k > 2 by the following relation:
det(AY) ) det(A%H?) = det(A) det(A%+?) — det(al+)?, (2)

n—1

forn > 1, which is known as the condensation identity. This statement is due to Desnanot, and the first
rigorous proof is given by Jacobi; see [5, Ch. 4,17, Sec. 3,21, pp. 140-142].

1.2. Hankel determinants of sums of two consecutive terms
A variation is to consider the Hankel determinant of the sequence {ay + ag+1}¢>0, i.e., to evaluate

det (atiti—2 + Aktiti—1)-
1<i,j<n( k+i+j k+i+j )

For Catalan numbers, Cvetkovi¢, Rajkovic¢ and Ivkovic [11] proved algebraically that

det (Citj—2 + Ciyj—1) =fomp1 and det (Ciyj—1 + Citj) = font2, (3)
1<i,j<n 1<i,j<n

where f, is the nth Fibonacci number. This elegant result stimulated several follow-up papers; see for
instance [4,8-10,20,22].

The case for Motzkin numbers was also done by several authors [7,10]. One can generalize to a
weighted version. For a real number t, a t-Motzkin path is a Motzkin path in which the up step, down
step, and unit level step have weights 1, 1 and t, respectively, and the weight of a path is the product

of the weights of all its steps. Let mfzt) be the total weight of all t-Motzkin paths of length ¢, then the
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Hankel determinants det;<; j<p (m,({:)_iﬂ_z) and d6t15i,jgn(m,(<:)_,~+j_1) were computed in [18,23], for
example. By using lattice path arguments, Cameron and Yip [7] also obtained recurrence formulae for
the determinant
() (©
det (M o+ My ) (4)

1<i,j<n

in the case wherek = Qork = 1.
In this paper, by a weighted large (or small) Schréder path we mean a large (or small) Schréder path

in which the steps U, D, L have weights 1, 1 and t, respectively. Let rét) (respectively, sg)) denote the
total weight of all weighted large (respectively, small) Schroder paths of length £. Note that rét) = sg)
and rét) =1+ t)s?), for £ > 1. Recently, Sulanke and Xin [23] proved that
Oy = ) O = 3
1§S‘:§n(rl+]_2) - (1 + t) 2 and 1gi3t§n(rl+j_1) - (‘l + t) 27, (5)

Hence it is natural to consider the Hankel determinants of the sequence of sum of weighted large or
small Schréder numbers. Rajkovi¢, Petkovi¢, and Barry [22] gave the following explicit formula:

L(g) n
det () ,+ny ) =—r—r ((\/LZ +4+ L) ( R+4+L+ 2)

1<ij<n 2112 4 4

+(M—L)(L+2—\/Im>n),

where L = 1 + t. Their proof was done algebraically in terms of orthogonal polynomials.

(6)

1.3. Main results

In this paper, we will evaluate Hankel determinant of the sequence of linear combinations of two
consecutive weighted large (or small) Schréder numbers. For n > 1, define

O, =1+ t)f(;) 15432" (ar,-(j_)j_z + ﬂri(j_)j_1) )
@0 = (1075 der (orfl 4 prif).
om0 g o)
ry=+6"® 1§3t§n (asi(i)jq + /351'(21') :
For initial conditions, let ®y = ®¢ = Wy = I'g = 1. Here are our main results.

Theorem 1.1. We have the following generating functions:

. n_ 1— 8z
(1) ng;‘)@n(t)z =1= @+ B2+0)z+ B2 T2
y iq} (O — 1
w n>0 noe= 1— (a4 BR+0)z+ p2(1 +1)z%
1-B01+10)z

(iii) E‘Dn(f)z 1@+ B2+t A0+
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(V) 3 Ta(0)2" = !
S T a B+ 2+ PO+ 02

As for the explicit formulae, we have the following.

Theorem 1.2. Forn > 1 and two constants «, B, let

n 2m-n k 2m — K
=> > > "’( _n)( " ")(g)aﬁﬁ"—‘%wt)m—".

m=0 k=0 ¢{=0

Then the following identities hold.
. ® O\ _ 2
(i) det (arw 2+ B ) = A+ 00 ¢ — ).
(t) . n+1
(if) 1232,1( H‘J 1+ pry) = 1+ 00,
(i) det ( 1+J 5+ ,35}52]_1) =1+ 0@ — A+ 0fu).

1<i,j<
(iv) det 1(21 1+ 1351‘(2}‘) =1 +00f,

1<ij

Note that if letting t =0, = B = 1in (i) and (ii) of Theorem 1.2, we obtain the results in Eq.
(3). If letting « = 1, 8 = 0in (i) and (ii) of Theorem 1.2, we obtain the results in Eq. (5). If letting
o = f# = 1in (i) of Theorem 1.2, we obtain the result in Eq. (6).

We will derive recurrence relations for ‘normalized’ expressions of the above determinants (see
Proposition 6.2). We prove those relations combinatorially by applying the Lindstréom-Gessel-Viennot
lemma on suitable lattice path model. Readers are referred to [1,14,19] for more information.

Here we would like to make some points about the proofs. The proofs are unusual in the sense that,
from a conceptual viewpoint, (i), (ii) and (iii) of Theorem 1.2 are proved simultaneously, while (iv) of
Theorem 1.2 is merely a direct consequence of (ii). The reason is that, in order to obtain the results on
weighted large Schréder numbers, one needs the corresponding results on weighted small Schroder
numbers (of smaller size) and vice versa. These ‘intertwined’ facts are reflected in two lemmas (Key
Lemmas I and II) in Section 3 and two lemmas (Lemmas 4.1 and 4.2) in Section 4.

The rest of this paper is organized as follows. We introduce the lattice path model in Section 2. We
prove the key lemmas in Section 3. After more intermediate results in Sections 4 and 5, we complete
the proof of Theorem 1.2 in Section 6.

2. Lattice path model

Let G denote the directed graph with vertex set {(x,y) € Z? : y > 0} and edge set {(i,j) —
(i+2,)HU{(,j) = (+1,j+1)}U{(d,j) — (i4+1,j—1)}, where thelevel edges {(i, j) — (i+2,]))}
are of weight t and the other edges are of weight 1. Then a weighted large (or small) Schréder path is a
directed path on G which starts from and ends at the x-axis. Now, we introduce our lattice path model.

2.1. Lattice path model

We consider the following two classes of path families.

(i) Let H(C) (respectively, Q(k)) be the set of n-tuples (g, 71, ..., Th—1) of weighted large (re-
spectively, small) Schroder paths satisfying the following two conditions (see Fig. 1).
® The path 77 runs from (—k — 2j, 0) to (k +2j,0),for0 <j <n-—1.
® Any two paths 7r; and 77; do not touch each other.
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(b)

Fig. 1. A triple (7o, 1, m2) € l'IgU and a triple (g, 71, m2) € l'[;o).

(0)

Fig. 2. A triple (g, 711, m3) € 1'[;1; and a triple (7, 771, 712) € I3 ;.

(ii) For0 < i < n,let H,gk? (respectively, Q,gkl))be the set of n-tuples (g, 71, ..., mh—1) of weighted
large (respectively, small) Schroder paths satisfying the following three conditions (see Fig. 2).
® The path 77 runs from (—k — 2j, 0) to (k + 2j, 0),for0 <j <i—1.
® The path 7rj runs from (—k — 2j, 0) to (k + 2j 4+ 2,0),fori <j <n-—1.
® Any two paths 7r; and 7; do not touch each other.

For an n-tuple u = (mg, 71, ..., mp—1) of paths, the weight of u is defined to be the product of
the weights of mg, 71, ..., mh—1. For a set X of n-tuples, the wight of X, denoted by |X]|, is the total
weight of all the n-tuples in X.

2.2. Lindstrom-Gessel-Viennot lemma

A family (p1, p2, ...pn) of lattice paths is called non-intersecting if no two paths in this family
have a point in common. The Lindstrém-Gessel-Viennot lemma associates determinants with non-
intersecting path families in an acyclic directed graph with weighted edges. The following simplified
version serves our need.

Lemma 2.1 (Lindstrom-Gessel-Viennot). Consider the graph G. Let X1, Xa, ..., Xpand Y1, Y2, ..., Yy

be lattice points on the x-axis. Then the total weight of all families (py, p2, ..., pn) of non-intersecting
lattice paths, p; running from X; to Y;, is given by the determinant

det (ai;),

1<i,j<n
where a; j is the total weight of the lattice paths from X; to Y;.

For the weighted large and small Schroder numbers {rét)}gzo and {s?) }e>0, we define their Hankel
matrices

k (®) k (t)
H,S )= (rk+i+j72):'1,j=l and G,(f) = (Sk+i+j72):"fj=1' (7)

From the Lindstrom-Gessel-Viennot lemma, we immediately obtain the weight of the sets n,ﬁ")
(k)
and 2.



2290 S.-P. Eu et al. / Linear Algebra and its Applications 437 (2012) 2285-2299

Lemma 2.2. For integers n, k > 0, we have
IN®| = det(HP) and |Q¥| = det(G).

Foreach0 < i < n,we write A,(qkl) for the n x n matrix obtained from A,(fj% by deleting the (n+ 1)th
row and the (i + 1)th column, i.e.,

g Qg1 v Qkti—1 k+id1 00 Gikdn
; Ae+1 Q42 -« Ae+-i ag+i+2 *++ Ak4+n+1
Al = 8)
ni — . . . . . . . .
Ak+n—1 Ak4+n ** Qktitn—2 Qk+itn *°° Ak4+2n—1

nxn

The matricesH, (k) ;and G(k) are obtained from H' nt1and G, “ accordingly. Similarly, from the Lindstrom-

Gessel—Vlennot lemma, we obtain the weight of the sets l'[,(.,k? and sz,(l"l)

Lemma 2.3. For integers n, k > 0, we have
(i) TS| = det(H\9) = det(HY ) = [V,
(i) |24p] = det(Gyth) = det(Gi ) = @i
(iii) (11| = det(H)) = det(H®) = |mP|.
(iv) |Q(k) det(G(k)) = det(G,gk)) = |Q,<1k)|.
(v) |l'[(k){ = det(H(k)) for1 <i<n-—1.

(vi) |Q(k)| = det(G(k)) fort <i<n-—1.

3. Two key lemmas

Our proof of the main results is based on two key lemmas. The following lemma relates certain
families of weighted large Schroder paths with the determinants of certain weighted small Schroder

numbers. Let l'I(U *c l'l(]) be the set of n-tuples of weighted large Schréder paths in which none of
their paths touches the pomt (2i 4+ 1, 0). See Fig. 3(a) for an example.

Lemma 3.1 Key Lemma I. For1 < i < n, we have
M = (1 + 0" det(GYY).

Proof. We partition the set l'[( )* into two subsets X and Y, each of which can be directly counted. Let

X (respectively, Y) be the set ofn tuples (g, 71, ..., Typ—1) With 1y = L (respectively, 7o = UD).
(i) There is a bijection between X and l'[,(12_)1’i_1, which sends (g, 71,...,7Th—1) € X to
(w1, w3, ..., wn_1) € H;(i)l,iq- where m; = Uw;D, for 1 < j < n — 1. See Fig. 3 for an

example.
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Fig. 3. A triple (7o, 71, 72) € X C l'Ig %* mapped to (w1, wy) € 1'1(2)

(b)

Fig. 4. A triple (7o, 71, m3) € Y C I'[m* mapped to (wp, w1, wy) € 1'1(0)

Hence the weight of (g, 1, ..., mh—1) € X equals t times the weight of (w1, w2, ..., wn—1) €

H,ﬂz)]l 1- Therefore,
t‘rgt) o 10 '(Q A
(t) G] OR(O) G]
M= dn, e[ OfF 7 T ©
0 r(t) 1551)-1 rr(ltﬁ):l'fz rlg.:)*l‘ rgf 1/ iun

(0)

(ii) There is a weight-preserving bijection between Y and 7 which sends (g, ..., Th—1) € Y

to (wg, ..., wp—1) € l_[)(101) where 77; = Uw;D, for 0 < j < n — 1. See Fig. 4 for an example. Hence
rét) T1(t) o 1( 01 rl(j-)1 oy
Y] =[] = det rl(,t) ré,t) ri(.t) 1(.22 r& : (10)
r(lt)l r() r(ztlz 2 ﬁ(fif é;) 1/ yxn
Now, by the fact that r(t) 1, s(()t) (t) =1+ t)s(t) for m > 1 and direct computation with

Egs.(9) and (10), we have
M = IX|+ Y] = (140" det(G)

as desired. [

The following lemma relates determinants of certain weighted small Schréder numbers to deter-
minants (of smaller size) of certain other weighted Schréder numbers.

Lemma 3.2 Key Lemma Il. For1 < i < n, we have

det(G\") = det(H" ;_)) + (1 + 0" det(G\, ).

n—1,i
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Fig. 5. A quadruple (g, 1, 2, m3) € X C Qf; mapped to (w1, w3y, w3) € Hgli

(b)

Fig. 6. A quadruple (7o, 71, 772, 713) € Y C I, ; mapped to (wp, w1, @p) € M35 .

(0) (1)

Proof. By applying the Key Lemma to det(G,(qo_)l’i) and by (v),(vi) of Lemma 2.3, we see that it suffices
to prove
(0) (€] (D
|Qn,i| = |Hn—1,i—1| + |Hn—l,i|'

Fixani (1 < i < n). Consider an n-tuple (g, 771, ..., Tpn—1) € 91(101) Note that the endpoints of
mi—1 and 7r; are (2i — 2, 0) and (2i + 2, 0), respectively. We partition foﬁ into two subsets X and
Y. The set X (respectively, Y) consists of the n-tuples (g, 71, ..., Ty—1) such that r; does not touch
(respectively, 7r; touches) the point (2i, 0).

(i) There is a weight-preserving bijection between X and H,SQLFl ,whichsends (g, 71, ..., Th—1)
€ Xto(wy,...,wp—1) € Hr(ll—)l,i—l' where 77; = Uw;D for 1 < j < n — 1. See Fig. 5 for an example.
Hence, we have

(€]
IXI = M2 ;.

(ii) For each n-tuple (g, 71, ..., 7mp—1) € Y, the path 7; can be factorized as 7; = Uw;DUD
for some large Schroder path w; above the line y = 1. Thus there is a weight-preserving bijection
between Y and HSEI which sends (g, 71, ..., 7Th—1) € Yto (w1,...,wn_1) € l'[,(BT, where

;i = Uw;DUD and r; = Uw;D for 1 <j < n —1,j # i. See Fig. 6 for an example. Hence, we have

v =%,

n—1,i

and the proof is completed. O

4. Evaluation of det(H,(:,?) and det(H,(,?,?)

(0) )

In this section, we use the key lemmas to derive recurrence formulae for det(H,(:i) ) and det(H,, ;

combinatorially, which involve weighted small Schréder numbers.
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Lemma 4.1. For1 < i < n, we have

det(H\)) = (1 + 0" det(HY | ;) + (1 + 0" det(H'; ) + (1 + 02" det(G, ).

n—1,i n—1,i
Proof. Since det(H(])) =1+0)" det(G ), it suffices to prove

1 1 1 - 0
i = 23+ A+ DI+ 0™, .
The approach is the same as in the proof of Lemma 3.2. Fix ani (1 < i < n). Consider an n-tuple

(mo, 1, ..., Tn—1) € Q( ) Noth that the endpoints of 77;_1 and 7r; are (2i — 1, 0) and (2i + 3, 0),
respectlvely We dlStll’lgUlSh the n-tuples by three cases depending on the path ;.

(i) m; does not touch the point (2i, 1), i.e., the first down step of 7r; descending from the liney = 2
to the line y = 1 occurs from (2i + 1, 2) to (2i + 2, 1).
(ii) mr; touches the point (2i, 1) but does not touch the point (2i + 1, 2).
(iii) 7r; touches both of the points (2i, 1) and (2i + 1, 2).
We partition Q,(?l,) into three subsets X, Y and Z. Let X be the subset consisting of the n-tuples
(mo, 71, . . ., Tyn—1) such that the path mr; has property (i), let Y be the subset corresponding to (ii),
and let Z be the subset corresponding to (iii).

(1

® There is a weight-preserving bijection between X and 2 which sends (g, 71, ..., Tn—1)
€ Xto(wy,...,wp—1) € H,gl_)u_], where 1; = UUw;DD, for 1 < j < n — 1. (Note that
= UD.) Hence, we have
(1)
|X| ‘H —1,i— 1|
® For each n-tuple (g, 71, ..., Th—1) € Y, the path 7; can be factorized as 7; = UUw;DLD or as
T = UUa),DDUD for some large Schroder path w;. Thus there is a two-to-one correspondence
between Y and l'ln 1,i» Which sends (7o, 71, . .., Tn— 1)eYto(wy,...,wn_1) € 1'1,(1])1 ;» where

;i = UUw;DLD or 7; = UUw;DDUD, and 7r] = UUw;DD for 1 <] <n—1,j # i. Hence, we
have

Yl=a+om, .

® For each n-tuple (g, 71, ..., Ty—1) € Z, the path 7; can be factorized as 7; = UUw;DUDD.
Then the n-tuple corresponds to an (n — 1)-tuple (w1, ..., wy—1), where 7; = UUw;DUDD and
i = UUw;DD, for1 < j < n—1,j # i. Note that none of the paths wy, . .., w,—1 touches point

(2i+1,0),ie., (w1,...,wp—1) € H,S])T ;- By Lemma 3.1, we have

2zl = n5 = a+ 0" det (6, ) = 1+ 0" 1@, .
The proof is completed. [
Lemma 4.2. For1 < i < n, we have
det(H®) = det(H", ;) + tdet(H", ) + (1 4+ 0" det(G, ).

Proof. The approachisthe same asabove.Fixani(1 < i < n).Considerann-tuple (g, 71, ..., Tn—1)

S H,(,lol) Noth that the endpoints of ;1 and 7; are (2i — 2, 0) and (2i 4 2, 0), respectively. We
distinguish the n-tuples by three cases depending on the path 7;:



2294 S.-P. Eu et al. / Linear Algebra and its Applications 437 (2012) 2285-2299

(i) i does not touch the point (2i, 0), i.e., the first the down step of 77; descending from the line
y = 1to the line y = 0 occurs from (2i 4+ 1, 1) to (2i + 2, 0).
(ii) 7r; touches the point (2i, 0) but does not touch the point (2i + 1, 1).
(iii) 7r; touches both of the points (2i, 0) and (2i 4+ 1, 1).

Let X be the subset consisting of the n-tuples (g, 71, . .., my—1) such that the path 7r; has property
(i), let Y be the subset corresponding to (ii), and let Z be the subset corresponding to (iii).

® There is a weight-preserving bijection between X and 1'[,(117)1’1-71, which sends (g, 71, ..., Th—1)

e Xto(wi,...,wp—1) € H,(l]_)l’i_l,where 7; = Uw;D, for 1 <j < n — 1. Hence, we have

1 1
IX| = m:z—)l,i—ﬂ = det(H:ﬁ—)u—l)
(1)

® There is a bijection between Y and 1) S which sends (g, 771, ..., Th_1) €Y to (w1, ..., wn—1)

€ l'I,(f_)],i, where 77; = Uw;DL, for 1 < j < n — 1. Hence, we have

M )
Y| = t|l’In_1j| = tdet(H,”; ,).

n—1,i

(1)

® There is a bijection between Z and 1) S which sends (g, 71, ...,7Th—1) € Z to (w1, ...,

wp—1) € H,g]_)T’i,where where 77; = Uw;DUD, for 1 <j < n — 1. Hence, we have

izl = nV% | = 1+ 0" det(G?, ,).

n—1,i n—1,i

The proof is completed by combining the three identities. [J

5. Two recurrences

In this section, we derive a recurrence formula for det(Hr(l?i) ) and det(H,STi) ), respectively.
For simplicity, for 0 < i < n, let

Pri=(1+1t)"@ det(H”

n,i/»

Qui= (1 4+ 073D det(H"

n,i’»

Rai = (140~ 0 det(G),

with Py o = Qo0 = Ro,0 = 1and P;j = Q;j = R;j = 0if j > i. The following identities are the direct
translations of Lemmas 3.2, 4.1, and 4.2.

Lemma 5.1. For1 < i < n, we have

(i) Rni = Qu1.i-1 + Rn—1.-
(i) Qni = Qu-1,i-1 + (I +0Qu—1,i +Rn—1,i-
(iii) Py = Qn—1,i—1 + tQu—1,i + Rn—1,.

First, we deal with the casesi = 0andi = n.

Lemma 5.2. We have

(i) Quo=1+(14+t)Qu—10and Qn,, = 1.
(ii) Pn,O =1+ t)Pn—LO and Pn,n =1.
(iii) Rno =Rpn = 1.
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Proof. (i) We have Q, ; = Qu—1.n—1 = --- = Qp,0 = 1 by Lemma 5.1(ii). By Lemma 2.3, Qo = (1 +
t)_(ngrl) det(H,% =0+ t)_(ngrl) det(H,(lz)). We use the following condensation identity (obtained
from Eq. (2)) to compute det(Hr(,z)):

det(H))) det(H,) = det(H) det(H?) — det(H{")2.

e
By applying the known formulae for det(H,go)), det(Hf(,l)) and some simple calculation, we arrive at

Quo=Qu-10+ (1 +0"
This can be solved to obtain Q, 0 = > j_,(1 + t)¥. Therefore

Qno =1+ (1+)Qu-1,0-

(ii) We have P, ; = Qu—1,n—1 = 1 by (i) and Lemma 5.1(iii). By Lemma 2.3, we have det(H,(l%) =

det(HS") = det(H.")). Thus

Pao = (1+0" G detH®) = 1+ )@ detH) = (1 + 0" Qun = (1 + )"
Hence, we have

Ppo = (1+t)Py_1,0.

(iii) We have Ry = Qu—1,n—1 = 1 by (i) and Lemma 5.1(i). Besides,
Ruo = (1400 det(G%) = 1+~ det(¢") = (1 + 1) (") det(HD).
Here, we have used the fact s, = (1 + t)~!r,, form > 1. Thus

Ruo = (1407 detHP) = (1 + 07 (2) det(HD) = Qup =1
as desired. O

The last pieces we need are the recurrence formulae for P, j and Q, ;, for 1 <i <n.

Lemma 5.3. For1 < i < n, we have
n
Qui=(140Qu-1i+ > Q-1,i-1-
k=i
Proof. Repeatedly applying Lemma 5.1(i), we obtain

n—1

Rni= > Qui-1+Rij.
k=i

Since R; ; = Qj—1,j—1 = 1, we have
n
Rnji =D Qu-1,i1-
k=i

This is substituted into Lemma 5.1(ii) to complete the proof of the lemma. O
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Lemma5.4. For1 <i<n,

n
Poi= (14 0Py_1i+ > Pi—1,i-1.

k=i

Proof. We have
Py i = Qn—1,i—1 + tQn—1,i + Rn—1,i = Qn,i — Qn—1.i

by (ii) and (iii) of Lemma 5.1. Applying the result of Lemma 5.3, we obtain

n n—1
Ppi= ((1 +6)Qn—1,i + ZQk—l,i—l) - ((1 + Q2+ > Qk—],i—])
k=i k=i

=140 (Qu-1i— Q-2 + > (Q-1,i—1 — Q—2,i—1) + Qi—1,i—1
k=it1

n
=1+ 6Po_1,i + > Pr—1,i-1
k=i

as required. O

6. Proof of the main theorem

For a sequence {ay}¢>o, recall the Hankel matrix A,(Ik) = (ak+,-+j_2)2j:1 in Eq. (1) and the matrices

A,(.l’f? definedinEq.(8),for0 < i < n.First, we need the following simple fact about Hankel determinants

of the sequence {aay + Bas+1}e>0. We omit the proof.

Lemma 6.1. Forn > 1 and constants «, 3, we have
S i 200
1<C¥E]:t<n(aak+,-+j_2 + Bptitj—1) = zalﬂn_' det(A ;).
== i=0

To prove the main theorem, we derive recurrence relations for ®,, ®,, ¥, and I';,.

Proposition 6.2. We have the following recurrence relations:

n—1
(i) O =B(1+1)Op—1 + Z B"On—1-m.
m=0
n—1
(ii) ®p =B "+ A+ O Pp—1 + Z B" ®p1-m.
=0
" n—1
(iii) Wy = —t"+ BA+0D¥ 1+ D "V .
m=0
n—1

(iv) 'y = ,Bn + B+ +a Z ,ern—l—m-

m=0
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Proof. (i) Expanding ®, by Lemma 6.1, we have ®, = > ; oci,B”_"Pn,,-. Splitting the sum into two
parts and applying Lemmas 5.2 and 5.4, we have

n
O, = lgnpn,o + Zalﬂn_lpn,i

i=1

n n
=B"(1+ P10+ > a'B" ((1 + OPr—1,i + ZPI<1,1'1>

i=1 k=i

n—1 n n
=BA+0) D B TP+ D (Z Pk_1,,-_1)

i=0 i=1 k=i

k=1 i=1

n k
=B+ )01+ > ap™* (Z af‘lﬂ"—"Pk_l,i_1)

n—1
=1 +00y1 +a z B"On_1-m
m=0
as desired. ) )
(i) The proof is similar to above. Expanding ®, by Lemma 6.1, we have ®, = > ; a'8"'Qn ;.

Splitting the sum into two parts and applying Lemmas 5.2 and 5.3, we have

Py = B"Quo+ D '
i=1

i=1 k=i

=B" (14 (14 6Qu-1,0) + > a'p"" <(1 + Q-1+ Y. @H,H)

n k
=B"+BA+ D1+ D af" D BT Qi
k=1 i=1
n—1

= ﬁn +BA+0DPp 1+« Z lgmq)n—]—m

m=0

as desired.
(iii) We prove this relation by induction on n. The case n = 1 holds trivially. By Lemma 6.1 and the
definition of Ry, ;, we can expand W, into

n—1
v, = Olan,n + Z Ol’ﬂn_'Rn,i + ,Ban,O-
i=1

Now, by Lemma 5.1, we have R, ; = Qu—1,ij—1+Rn—1,;,for1 <i < n—1.Moreover,R; , = Qu—1,n—1 =
1and Ry o = Rp—1,0 = 1 by Lemma 5.2. Substituting these findings in the above identity, we arrive at

n—1

Wy =" Qo101+ 2. &' (Quot,im1 + Raz1i) + B"Ra—1,0

i=1

n—1 n—1

= z a]ﬂn_]_an—l,j + ﬁ Z a]ﬂn_l_]Rn_l’j
j=0 j=0

=ad;1 + B¥—1.
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Then by (ii) and the induction hypothesis, we get
Wy =adPp_q + BWn_1

n—2
= (ﬁn_l + ,3(1 +0)P; 5+« Z /3md>n2m>

m=0

n—2
+ B <_t:3n_1 +BA+DV, H+a Z ,qujn—z—m>

m=0

= —tB" +ap" "Wy + B(1 + ) (@Pn_ + BY¥n_2)

n—2
+o Z B (@ Pr—2-m + B¥Yn—2-m)
m=0
n—1
=—tf"+BA+ )V +a Z BV —1—m,
m=0

and the proof is completed.
(iv) By (ii) and the identity r, = (1 + t)s, forn > 1, we are done. [J

Now we are ready to prove the main theorem.

Proof of Theorem 1.1 and Theorem 1.2. From the proposition above it is easy to derive the following
recurrence relations:

(i) Op = (@ + B2+ 1)On_1 —ﬂ (14 6)Op_s, With®g = 1,01 = a + B(1 + t).
(i) ©p = (@ + BQ+1))Pp1 — 21+ )Py With®g =1, P =a + B2+ 1).
(i) Uy = (@ + B2+ 1)W1 — B2 4+ ) Wy_y, with Wy = 1, U3 = o + B.
(V) Tp = (@ 4+ BC+ )Ty — B2(1 4+ O)Th_y, WithTg = 1, T = o + B(2 + t).

The generating functions and the explicit formulae can then be derived routinely. [

7. Concluding notes

Different expansions may lead to other explicit formulae. For example, we can have

n—m-+k—1
n_

det (arl(fr)] 5+ ﬂrz(fr)j D=0+0p®@ Z Z( )( )akﬂn—k(l 4k,

1=ij=n m=0 k=0

or

n n—k
k+¢ n+k
det (@, + B =0+p® z z( )( « E)akﬂn_kte_

1<i, wr —k

A natural extension is to consider the Hankel determinants in which each entry is the linear com-
bination of more than two consecutive terms of t-large (or small) Schréder numbers. However, an
approach using lattice path models turns out to be messy and seems not so attractive. Another natural
generalization is to put different weights with respect to heights, or to consider g-analogues. We leave
these interesting problems to the readers.
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