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Bijections and the Riordan group
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Abstract

One of the cornerstone ideas in mathematics is to take a problem and to look at it in a bigger
space. In this paper we examine combinatorial sequences in the context of the Riordan group.
Various subgroups of the Riordan group each give us a di.erent view of the original sequence.
In many cases this leads to both a combinatorial interpretation and to ECO rewriting rules. In
this paper we will concentrate on just four of the subgroups of the Riordan group to demonstrate
some of the possibilities of this approach.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

To de3ne the Riordan group we need two generating functions, g(z)=1 + g1z +
g2z2 + · · · and f(z)=f1z + f2z2 + · · · with f1 �= 0. Now let M=(mn; k)n; k¿0 be the
in3nite lower triangular matrix with nonzero entries on the main diagonal such that
mn; k =[zn](g(z)(f(z))k). If these conditions apply we say that M is an element of the
Riordan group and we use the notation M=(g(z); f(z))=(g; f).

Suppose we multiply M=(g; f) by a column vector (a0; a1; : : :)T and the result is
the column vector (b0; b1; : : :)T. If the generating function for the sequence (a0; a1; : : :)
is A(z) and similarly, (b0; b1; : : :) has B(z) as its generating function then we obtain

B(z) = g(z)A(f(z)): (∗)

If we consider the second matrix one column at a time this leads to the group
multiplication rule for the Riordan group which is

(g(z); f(z))(h(z); l(z)) = (g(z)h(f(z)); l(f(z))):
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This shows us that the identity is I=(1; z), the usual matrix identity, and that

(g(z); f(z))−1 =
(

1

g( Bf(z))
; Bf(z)

)
;

where Bf(z) is the compositional inverse of f(z). Two examples of Riordan matrices
besides the identity matrix are the Pascal matrix P=(1=(1 − z); z=(1 − z)) and the
Fibonacci matrix

F :=




1
0 1
0 1 1
0 0 2 1 · · ·
0 0 1 3 1
0 0 0 3 4

· · ·




= (1; z(1 + z)):

Many more examples will appear in this paper but for more examples of the Riordan
group and its uses in proving and inverting binomial identities see [10,12].

Given an array of numbers a very natural thing to do is to 3gure out the row sums.
For instance, the sum of the nth row of Pascal’s triangle is 2n, one of the key facts
in mathematics. For any Riordan group matrix we have the following observation. To
3nd the row sum we can multiply by the column vector (1; 1; 1; : : :)T. This sequence
has the generating function 1=(1 − z) and by (*) the generating function for the row
sums is g(z)=(1 − f(z)).

What we plan to do is to reverse the process. We start with a sequence that we
want as row sums, call it the target sequence, and one of the subgroups. From there
we 3rst solve for g and f, and try to work this back to the bijective level.

For instance, one problem we discuss is 3nding a combinatorial meaning for the
coeIcients in the matrix below:



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 4 0 1 0 0 0 · · ·
6 0 7 0 1 0 0
0 31 0 10 0 1 0
53 0 65 0 13 0 1

· · ·



:

Note that the matrix is in the checkerboard subgroup and that the row sums are
indeed the Catalan numbers.

In our examples we will make use of the following generating functions:
• C(z)=C=1+zC2 =(1−√

1 − 4z)=2z=1+z+2z2+5z3+· · · =
∑∞

n=0 [1=(n+1)]( 2n
n )zn

is the generating function for the Catalan numbers.
• r(z)=r=1 + z(r + r2)=1 + 2z + 6z2 + 22z3 + 90z4 + · · · is the generating function

for the big SchrJoder numbers.
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• m(z)=1 + zm + z2m2 =1 + z + 2z2 + 4z3 + 9z4 + · · · is the generating function for
the Motzkin numbers.

• F(z)=C=(1+zC)=1+z2+2z3+6z4+18z5+· · · is the generating function for the Fine
numbers. See [6] for a survey of the Fine numbers. The functions C; r, and m are
discussed in many places including Stanley’s Combinatorial Enumeration [13, Vol.
2, Chap. 6]. The Catalan numbers count many things. The two that we will mention
are Dyck paths and ordered trees. A Dyck path of length 2n is a path from (0,0) to
(2n; 0) using as steps (1,1) and (1;−1) with the added restriction that the path never
goes below the x-axis. If we add the possible step (1,0) we get the Motzkin numbers
while the addition of (2,0) as a possible step yields the big SchrJoder numbers. The
Catalan numbers count the number of permutations achievable with a stack and the
SchrJoder numbers count the number of permutations achievable with an input (or
output) restricted double ended queue (see [7]).

2. Subgroups

Here is a list of some important subgroups of the Riordan group.
1. The Appell subgroup={(g(z); z)}.

• The c-Appell subgroup={(g(z); cz)|c �= 0}. A c-Appell matrix times a d-Appell
matrix is a cd-Appell matrix.

2. The associated subgroup={(1; f(z))}.
3. The Bell subgroup={(g(z); zg(z))}={(f(z)=z; f(z))}.

• The c-Bell subgroup={(g(z); czg(z))|c �= 0}={(f(z)=z; cf(z))|c �= 0} A c-Bell
matrix times a d-Bell matrix is a cd-Bell matrix.

4. The checkerboard subgroup

= {(g(z); f(z)): g an even function; f an odd function}:

5. The hitting time subgroup={(zf′(z))=f(z); f(z))}.
6. The stochastic subgroup which is the stabilizer of the column vector (1; 1; 1; : : :)T.

Alternately those matrices with row sums all equal to 1.
Note: The stabilizer subgroup of (1; 0; 0; 0; : : :)T is the associated subgroup.

Of these the only normal subgroup is the Appell subgroup. Since (g(z); f(z))=
(g(z); z)(1; f(z)) we see that the Riordan group is the semidirect product of the Appell
and associated subgroups. Similarly (g(z); f(z))=(zg(z)=f(z); z)(f(z)=z; f(z)) shows
the Riordan group as the semidirect product of the Appell subgroup and the Bell
subgroup.

There are two more concepts that we will use: the Stieltjes transform matrix and
ECO succession rules.

Let L be a matrix and then let BL be the matrix obtained from L by removing the top
row of L and then moving all the remaining rows of L up one row. Then the Stieltjes
matrix, SL, of L is the solution of the matrix equation LSL= BL. If L is nonsingular then
a unique solution exists, SL=L−1 BL. Since for us L will always be a lower triangular
matrix with nonzero entries on the main diagonal this will always be the case. As an
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example the Pascal matrix P has as its Stieltjes transform matrix

SP =




1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1 · · ·
0 0 0 0 1

· · ·



:

A generating tree can be described by means of an ECO-system [3] of the form

{
(r);
(k) → (c1)(c2) · · · (ck) ;

where r; k; gi ∈ N This means 3rst that the root (or axiom) has r sons and then that
for all k, any node labeled k will have k descendants and they will have the labels
c1; c2; : : : ; ck . we then count the number of nodes at each level in the tree where the
root is at level 0. One example is

{
(2);
(k) → (2)(3) · · · (k)(k + 1)

level 0 has (2), level 1 contains (2) and (3), level 3 contains (2), (3), (2), (3) and (4)
which we shorten to (2)2(3)2(4). Level 4 consists of (2)5(3)5(4)3(5) and so on. There
is a close connection with automata and regular languages that we will not pursue here
but see [2,5] for more on this connection.

We will deal mostly with the 3rst three subgroups listed and will connect them to
certain bijections. We pick a target sequence that we want to learn more about and
then pick a subgroup. We then see which element in the subgroup yields the target
sequence as its row sums.

2.1. The Appell subgroup

As an example let the target sequence be the Catalan numbers 1; 1; 2; 5; 14; 42; : : :
and we look at the Appell subgroup decomposition:

A =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
3 1 0 1 0 0 0
9 3 1 0 1 0 0 · · ·
28 9 3 1 0 1 0
88 28 9 3 1 0 1

· · ·




:
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While computing easily produces the 3rst few rows we need the Riordan group to
compute the generating functions. In these computations we interchange freely between
a sequence and its generating function. We 3nd that

(g(z); z)




1

1

1

1

...




= (g(z); z)
1

1 − z
=

g(z)
1 − z

= C(z);

So that

g(z) =C(z) − zC(z) = 1 + zC2 − zC

= 1 + zC(C − 1) = 1 + zC(zC2):

Thus

A = (C − zC; z) = (1 + z2C3; z): (2.1)

We can immediately 3nd a combinatorial interpretation for the coeIcients. In the ith
column, i=0; 1; 2; : : : the entries count the number of Dyck paths starting with exactly
i hills. A hill is a consecutive up and down step, starting and ending on the x-axis.
When i=0 we have g as the generating function and we are counting Dyck paths that
do not start with a hill. If we prefer an interpretation in terms of ordered trees then
the ith column counts trees such that exactly the 3rst i subtrees at the root, say from
the left, consist of a single edge.

We can replace the Catalan numbers by any sequence. We will call any such
sequence a target sequence and we denote its generating function as T (z). Repeating
the manipulations we’ve just done leads to

g(z) = T (z) − zT (z):

If our target sequence is the sequence of big SchrJoder numbers starting 1; 2; 6;
22; 90; 394; : : : then g(z)=r − zr=1 + zr2 =1 + z + 4z2 + 16z3 + 68z4 + 304z5 + · · ·.
This follows immediately from the de3ning equation for the large SchrJoder generat-
ing function, r=1 + zr + zr2. The standard setting for the SchrJoder number is that
of paths from (0; 0) to (2n; 0), never going below the x-axis, with possible steps,
{U =(1; 1); D=(1;−1); L= (2; 0)}. Then g(z) is the generating function for those paths
that do not start with an initial L step. (Or those paths which do not
start UD.)
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Here is a table of some other Appell decompositions

T -sequence T(z) g=T− zT Comments
1; 1; 2; 5; 14; : : : C= 1−√

1−4z
2z C − zC=1 + z2C3 Catalan

1; 2; 6; 20; 70; : : : B= 1√
1−4z

B− zB= 1−z√
1−4z

Central binomial

1; 1; 3; 11; 45; : : : r+1
2 1 + z(r2−1)

2 Little SchrJoder
1; 2; 6; 22; 90; : : : r= 1−z−√

1−6z+z2

2z 1 + zr2 Big SchrJoder
1; 3; 11; 45; 197; : : : r−1

2z
r2+1

2 Bigger SchrJoder
1; 2; 5; 14; 42; : : : C2 C − zC=1 + zC3 Big Catalan
1; 1; 2; 4; 9; 21; : : : m 1 + zm2 Motzkin

For all these cases the ith column counts those paths starting with exactly i hills
or level steps or whatever else starts and ends on the x-axis and is marked by z. We
can 3nd a generating tree for a given target sequence, T , by 3rst 3nding the element,
L=(g; z) in the Appell subgroup with the target sequence T . Then 3nd the Stieltjes
matrix, SL. For instance for the big SchrJoder numbers we have

L · SL =




1 0 0 0 0
1 1 0 0 0
4 1 1 0 0 · · ·
16 4 1 1 0
68 16 4 1 1

· · ·







1 1 0 0 0
3 0 1 0 0
9 0 0 1 0 · · ·
31 0 0 0 1
121 0 0 0 0

· · ·




=




1 1 0 0 0
4 1 1 0 0
16 4 1 1 0 · · ·
68 16 4 1 1
304 68 16 4 1 1

· · ·




= BL:

Next, we look at the row sums of SL and call them r1; r2; r3; : : :. We can then set up
an ECO-system generating tree as follows:

�:
{

(r1); root or axiom;
(rk) → (r1)rk−1(rk+1):

For the big SchrJoder example we have been following the ri-sequence starts 2; 4; 10; 32;
: : : and we have the following starting values:

Level
0 (2)
1 (2)(4)
2 (2)3+1(4)(10)
3 (2)4+3+9(4)4(10)1(32)1



L.W. Shapiro / Theoretical Computer Science 307 (2003) 403–413 409

The exponents at level k are the entries in the kth row of L. To 3nd the ri we need
a generating function for the ri − 1. If we call this generating function R and again
make use of (*) we get the equation (g; z)R=gR=(g− 1)=z or R=(g− 1)=zg. In the
example we have been following g=r − zr=1 + zr2 and

R =
g− 1
zg

=
zr2

z(r − zr)
=

r
1 − z

and indeed the sequence 1; 3; 9; 29; : : : is the sequence of partial sums of the sequence
of big SchrJoder numbers 1; 2; 6; 22; 90; 394; : : : :

2.2. The associated subgroup

The associated subgroup consists of the elements of the form (1; f(z)). If the target
sequence has the generating function T (z) then we have

(1; f(z))
(

1
1 − z

)
= 1 · 1

1 − f(z)
= T (z):

Thus T (z)=1 + f(z)T (z) or T (z)=1=(1 − f(z)) and we have, in the case of random
walks, a combinatorial interpretation; f(z) is the generating function for the 3rst return
to the x-axis or for elevated paths. More generally, T (z)=1=(1−f(z)) is the ordinary
generating function equivalent of the exponential formula where f(z) is the generating
function for the connected part.

T -sequence T(z) f Comments
1; 1; 2; 5; 14; : : : C= 1−√

1−4z
2z zC Catalan

1; 2; 6; 20; 70; : : : B= 1√
1−4z

2zC Central binomial
1; 1; 3; 11; 45; : : : r+1

2 zr Little SchrJoder
1; 2; 6; 22; 90; : : : r= 1−z−√

1−6z+z2

2z z(1 + r) Big SchrJoder
1; 3; 11; 45; 197; : : : r−1

2z z(2 + r) Bigger SchrJoder
1; 1; 2; 4; 9; 21; : : : m= 1−z−√

1−2z−3z2

2z z(1 + mz) Motzkin
1; 1; 2; 3; 5; 8; : : : F= 1

1−z−z2 z(1 + z) Fibonacci

Each entry in this table can be expanded as a Riordan group matrix and often there
are interesting things that can be said. For instance, the Motzkin example gives us the
matrix

M = (m(n; k))n;k¿0 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 2 1 0 0 0
0 2 3 3 1 0 0 · · ·
0 4 6 6 4 1 0
0 9 13 13 10 5 1

· · ·



:
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The entry m(n; k) counts the number of single source directed animals consisting of n
points of which k are on the x-axis. There is a an interesting recursion

m(n+ 1; k) = m(n; k − 1) +
∑
j¿0

m(n− 1; k − 1 + j):

This recursion can be called the Aigner hook formula (see [1]).

2.3. The Bell subgroup

There is an obvious isomorphism between the associated subgroup and the Bell
subgroup. Take an matrix in the associated subgroup, remove the leftmost column
and the top row, and you have an element in the Bell subgroup. Despite this, the
combinatorics involved is di.erent. Again letting T (z)=T be the generating function
for the target sequence we have

(g; zg)
(

1
1 − z

)
= T;

g
1 − zg

= T;

g= T (1 − zg);

g(1 + zT ) = T;

g=
T

1 + zT
:

Here are some examples.

T -sequence T (z) g Comments
1; 1; 2; 5; 14; : : : C= 1−√

1−4z
2z F= 1

z · 1−√
1−4z

3−√
1−4z

Catalan, Fine

1; 2; 6; 20; 70; : : : B= 1√
1−4z

√
1−4z−z

1−4z−z2 Central binomial
1; 1; 3; 11; 45; : : : r+1

2 1 + zr Little SchrJoder
1; 2; 6; 22; 90; : : : r= 1−z−√

1−6z+z2

2z
1+r

2 Big SchrJoder
1; 3; 11; 45; 197; : : : r−1

2z z(2 + r) Bigger SchrJoder
1; 2; 4; 8; : : : ; 2n; : : : 1

1−2z
1

1−z Pascal’s triangle
1; 1; 2; 4; 9; : : : m "= 1+zm

1+z Motzkin, gamma

In all these examples the ith column counts the number of paths with exactly i hills
or exactly i level steps.
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Let us examine the example involving the Catalan and Fine number sequences:



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 2 0 1 0 0 0 · · ·
6 4 3 0 1 0 0
18 13 6 4 0 1 0
57 40 21 8 5 0 1

· · ·




= (F; zF):

We get the total number of hills by multiplying by the column vector (0; 1; 2; 3; 4; · · ·)T

which has as its generating function z=(1 − z)2. Our Riordan group calculation is

(F; zF)z=(1 − z)2 = F
zF

(1 − zF)2 = z
(

F
1 − zF

)2

= zC2 = C − 1:

Thus the total number of hills is
Cn=[1=(n+ 1)]( 2n

n ) for n¿ 1. Another way to say this is that the average number
of hills over all Dyck paths of length 2n is 1 if each Dyck path is equally likely to
be chosen. There is an interesting connection between this matrix (F; zF) and ECO
succession rules that are discussed in [4]. Both examples from [4] are in the Bell
subgroup.

Let us also look at an example involving the c-Bell subgroup. The 3-Bell matrix
that has the very big SchrJoder numbers as its target is

V =




1 0 0 0 0 0
0 3 0 0 0 0
2 0 9 0 0 0
6 12 0 27 0 0 · · ·
26 36 54 0 81 0
114 168 162 216 0 243

· · ·



:

The generating function for the left most column is g=(1 − r)=z(1 − 3r).
By way of contrast we can take the 1-Bell decomposition of the same target sequence

and we get.

W =




1 0 0 0 0 0
2 1 0 0 0 0
6 4 1 0 0 0
22 16 6 1 0 0 · · ·
90 68 30 8 1 0
394 304 146 48 10 1

· · ·




= (r; zr):
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Solving for X in the matrix equation WX =V yields

X =




1 0 0 0 0 0
−2 3 0 0 0 0
4 −12 9 0 0 0
−8 36 −54 27 0 0 · · ·
16 −96 216 −216 81 0
−32 240 −720 1080 −810 243

· · ·




=
(

1
1 + 2z

;
3z

1 + 2z

)
:

The matrix X is interesting since it is the unique matrix which is in the stochastic
subgroup and is also a 3-Bell matrix.

We can interpret the target sequence as the number of Dyck paths such that each
peak at height 1 can be colored in any of 3 colors while all higher peaks are bicolored.
The function g counts such paths with no peaks at height one.

3. The checkerboard example

For the checkerboard example mentioned in the introduction, we write T as a sum
of its even and odd parts so that T =E+O. We have that g(z) is an even function and
that f(z) is an odd function. Thus (g; f)1=(1 − z)=g=(1 −f)=E + O. Equating even
and odd parts yields g=(E−fO) + (O−fE) and f=O=E while g=(E2 −O2)=E. For
the Catalan numbers we have T =C and after some manipulation we 3nd

E =
1
2

(
1 −√

1 − 4z
2z

+
1 −√

1 + 4z
−2z

)
;O=

1
2

(
1 −√

1 − 4z
2z

− 1 −√
1 + 4z

−2z

)
;

f =
2 − (

√
1 − 4z+

√
1 + 4z)√

1 + 4z−√
1 − 4z

; and g =
1
z

(1 −√
(1 + 4z))(1 −√

(1 − 4z))√
(1 − 4z) −√

(1 + 4z)
:

The coeIcients of g(z) are the number of ordered trees such that every subtree at
the root has an even number of edges. In fact the kth column with generating function
g(z)(f(z))k k=0; 1; 2; : : : counts the number of ordered trees with exactly k of the
subtrees at the root with an odd number of edges. It also can be shown that

(g; f)−1 =
(

1
1 + z2 ;

z(1 − z2)
(1 + z2)2

)

and this leads to a new ECO rewriting rule for the Catalan numbers.

�




(1) root or axiom
(1) → (2)
(2) → (1)(4)
(4) → (2)3(6)

(4k + 2) → (1)2(4)4(8)4 · · · (4k − 4)4(4k)3(4k + 4)
(4k) → (2)4(6)4 · · · (4k − 6)4(4k − 2)3(4k + 2):
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Here is an intriguing coincidence. Consider the following game. At turn one you
throw 4 balls numbered 1 through 4 into a basket. The gnome living in the basket
throws 2 of the 4 out on the lawn. At turn two you throw ball 5,6,7, and 8 into the
basket and the gnome throws 2 of the 6 balls now available to him out on the lawn.
At each turn you throw in 4 balls and then the gnome throws out 2. The question
is after n turns how many di.erent arrangements of balls on the lawn are possible.
It is easy to see that after one turn there are 6 possibilities and with a bit of work
you 3nd that after two turns there are 53 possibilities. Indeed after three turns there
are 554 possibilities. These are the nonzero terms in g. This can be proven since the
generating functions agree as shown in [9]. There are many other nice results in [8,9]
can also be consulted for the case where 2 balls are thrown in at each turn and the
gnome throws out 1. It remains a tantalizing question to 3nd a bijection between the
balls on the lawn in the (4,2) case and the number of trees with all subtrees having
an even number of edges.
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