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A formal calculus on the Riordan near algebra

L. Poinsot, G.H.E. Duchamp

aLIPN - UMR 7030
CNRS - Université Paris 13
F-93430 Villetaneuse, France

Abstract

The Riordan group is the semi-direct product of a multigheagroup of invert-
ible series and a group, under substitution, of non unite. Hiordan near algebra,
as introduced in this paper, is the Cartesian product ofltiebaa of formal power
series and its principal ideal of non units, equipped withapct that extends the
multiplication of the Riordan group. The later is naturafijnbedded as a sub-
group of units into the former. In this paper, we prove thesexice of a formal
calculus on the Riordan algebra. This formal calculus ptagade similar to those
of holomorphic calculi in the Banach or Fréchet algebrasrgg but without the
constraint of a radius of convergence. Using this calcwigsgefineen passana
notion of generalized powers in the Riordan group.
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1. Introduction

As defined in [18] a Riordan matrix is an infinite matf“?)=(m;); o with
complex coéicients such that for everye N, the ordinary generating function of
its jth column is equal ta(x)o(x)!, or in other terms, for everje N, Z m,jx‘ =

i~0
u(x)o(x)!, wherey, o are two formal power series in the varialddsuch thaj
1+ xv ando = x + x?r with v, € C[[x]]. The set of all pairs of such series, ")
is naturally equipped with a semi-direct group structurdeda‘Riordan group”
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which can be univocally transported to the set of all RioroetricesM®?), The
group multiplication is given by, 01) = (uz, 02) = ((u1 © o2)uz, o1 X 07).

The Riordan group also plays a rather important role in porelgnatorics. For
instance it naturally appears in the umbral calculus Ltti®] and is related

in an obvious way to Sher sequences [9, 17] since the exponential generating
function of the ordinary generating function of each colwsatisfies the following

condition [8]: Z m,jxi}j’—: = u(x)e’™®. More recently the Riordan group also

i>0,j>0 '
appeared in theJ new domain of combinatorial quantum physiasely in the
problem of normal ordering of boson strings [6, 7, 8]. Let ag some words on
the subject. A boson string is an element of the so-calledl\Algygebra that is
the quotient algebr@i{a, a’}/(aa’ — a’a — 1) of the free algebra generated by two
(distinct) lettersa anda’ by the two-sided ideal generated by noncommutative
polynomials of the formaa’ — a'a — 1. Since the work of O. Ore [11], it is
well-known that (&7)'al); ; is a Hamel basis for the Weyl algebra. Then a boson
string is called to be in normal form if, and only if, it is wieh in this basis. In
papers [7, 8] the authors show that for an important clasosbb string<, the
codficientsm ; of their decomposition in normal for@ = Z m j(a")'al define a

|

Riordan matrix (m ;)i ;. Using some properties of the Riordan group, the authors
succeeded to compute, in an explicit way, the evolutionatpee'®, so important
in quantum physics. In the paper [8] was proved the follovatagement.

Let M be a Riordan matrix. Then for alle C, M* also is a Riordan matrix.

In this paper, we develop a formal calculus on pairs of sdjigso,) such
that (1+ ., x + 0, ) belongs to the Riordan group. More precisely it is showm tha
for every formal power serie§ = Z f,x" with codficients in some fieldK of

n>0
characteristic zeroz fa(us, o)™ defines an element of tHeiordan near alge-

n>0

bra (which is nothing else than the Cartesian produdkff]] with the maximal
ideal generated by, and equipped with some algebraic structure, see sect. 2),
and whereg,,o.)" is the usuahth power of ., o) with respect to the mul-
tiplicative law = of the Riordan near algebra which extends the product of the
Riordan group. In other terms, we extend and generalize etiemof formal

In [7, 8] such matrices are calledatrix of unipotent substitution with prefunction openato



substitution inK[[ x]] to the Riordan near algebra. This formal calculus plays a
similar role to the usual holomorphic calculi for Banach oédhet algebras. In
particular it makes possible to consider exponential,titiga or inverse as series
in monomials (., o,)" in a way identical to those d&[[x]]. Using this formal
calculus, we also proven passanthe existence of another kind of generalized
powers (1+ u., x + o, )** using binomial series, where {u,,x + o) belongs

to the Riordan group andl€ K, such that (& u,,x + 0,)*! also is in the Riordan
group and (& g, x + 0. ) @) = (L + py, x + 0,.)* < (L + py, x + 0,)*. This
notion of generalized powers, although similar in appeagars diferent from the
one introduced for the Riordan matrices in [8]. The matrissian in [8] concerns
the existence of generalized powers for elements of thedRiogroup but seen
as lower triangular infinite matrices, and therefore emleddd some algebra of
infinite matrices. In these notes, we establish the same disthtement but in
another kind of algebras, namely, in a near algebra.

2. The Riordan near algebraK[[x]] = 2% of formal power series under multi-
plication and substitution

2.1. Basics on formal power series

In this paragraph some basic and useful definitions andiontsdre provided.
Many textbooks such as [3, 4, 19, 20] can be used as referemcdse subject.
The meaning of symbol £” is an equality by definition. The letteik” denote
any field of characteristic zero afi{[ x]] is the K-algebra of formal power series
in one indeterminate. K[[x]] is endowed with the usuakjf-adic topology. In the
sequel we suppose that each of its subsets is equipped withdhiced topology.
The ()-adic topology is equivalently given by the valuatierthe definition of
which is recalled with some of its main properties. keb ¢ N. Let f = Z fax".

n>0

|+ if f=0,
u(f) = { inflne N : f, # 0} otherwise (1)

For all f, g € K[[x]],
1. v(f +g) > min{y(f), v(g)} with equality in case(f) # v(g);
2. v(fg) = v(f) + v(9)

with the usual conventionsco > nand+co + N = N+ oo = +oo for every
n e N, +c0 + 0 = +oo0. In the sequel we also use the following conventions



(+00)n = N(+o0) = +oo for everyn € N\ {0} orn = +c0 and G = n0 = O for
everyn € N orn = +oo, (+o0)" = +co for everyn € N \ {0}. Sometimes we use
the notation h > 0” that meansfi € N \ {0} or n = +o0” when n explicitly refers
to the valuation of some series.

With the previous topologyK[[x]] becomes a topological algebra (we putln
the discrete topology). In particular the multiplicatien(jointly) continuous.

The codficient f, of x" in the seriesf can also be denoted kyf, x") so thatf
should be written as the suE(f, xMx". In particular(f, 1) is the constant term

n>0

of the seriesf which is also denoted(0). For everyn € N and f € K[[x]] we
define as usually

fx..xf if n>1. )
———
n terms

1=Xx° if n=0,
fh.= {

(Here we adopt the symbolx® to emphasize the use of the multiplication in
K[[x]] but in what follows juxtaposition will be used.) FinallwhenR is a ring
(with unit), U(R) denotes its group of units: for instandg(K[[x]]) is the set of
series of order zera.e., the constant term is not nulU(K[[x]]) = {f € K[[x]] :
(f,1) = f(0) # 0}. We define the group ainipotent multiplicationgfollowing
the terminology of [6, 7, 8]UM := {1+ xf : f € K[[x]]} which is a subgroup of

U K[ x]].

2.2. Ringoid of formal power series under substitution

For a certain kind of formal power series, another product beadefined: the
formal substitution. Roughly speakingdfis a series without constant term, that
is o is an element of the ideak) := xK[[x]], and f = Z f.x" is any series, then

n>0
foo = Z f.o" is a well-defined element df[[x]] called thesubstitutionof

n>0
f ando. This operation is linear in its first variable but not in thexend one.

So under this substitution the ideal (does not behave as an algebra but as some
more general structure called a “ringoid”.

2.2.1. Ringoids, composition rings, tri-operational dbgas, and near algebras:
areview

In this short paragraph are recalled some basic definitinddacts about exotic
algebraic structures equipped with two or three operatamsclosely related to
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the notion of substitutigicomposition, which is quite central in this work and
therefore deserves a review.

A (right) near K-algebra[5] over a fieldK is aK-vector spacéN equipped
with an operatiorn such that

1. (N, o) is a (non necessarily commutative) semigroup;
2. (X+Yy)oz=(Xx02) +(yo2);
3. @X)oy=a(xoy)

for everyx,y,z € N anda € K. In a right near algebra, the null vector 0 of
N is a left zero foro, i.e, 0o x = 0, becauseN, +,0) is a group. Obviously
every (associative) algebra (without a unit) can be seenraghtanear algebra.
Let denote by : N x N — N the mappingu(x,y) := Xoy. The semigroup
multiplicationu defines a right semigroup representajof (N, u) on the vector
spaceN,

pu i N — End(N)

L N —- N (3)
y (x - u(x,y))

whereEnd(V) is theK-algebra of linear endomorphisms of the vector spdce
In other terms, for everk,y,z € N, (0.(X) o (V)@ = p.(u(y. X)(2), and
for everya,B € K, p,(X)(ay + B2) = ap,(X)(Y) + Br.(X)(2). The notion of

a two-sided ideal of a near algebkatakes its immediate meaning in this set-
ting: more precisely, a two-sided ideklof N is a subvector space & such
that for everyu(l x R) ¢ I > u(Rx 1). Moreover, whenl{, o) also has a
(two-sided) unit, i.e., (N, o, I) is a monoid, we also define the group of units
of N, U(N), as the group of invertible elements of the monditiq, I), that is,
UNN) :={xeN:dyeN, xoy=yox=1I}. If(N,o,I)is a monoid, therKI
does not lie necessarily in the cen®#N) := {x e N : Xoy =yo X, Yy € N},
because in general it is not true thatf o x = X o (aI).

As in algebras, an elemertof a near algebr&l is called aright zero divisorif
there is some non zesoe N such thaty o x = 0. Note that O is not necessarily a
right zero divisor. If O also is a right zero for then a non zera € N is called a
left zero divisorif there is some non zenpe N, such thaxoy = 0. Againif 0 is

a two-sided zero fos, we say thalN is adomainif there is no left or right zero
divisor.

Suppose thakK is a topological fieldj.e., a field equipped with a topology such
that (K, +, 0) is a topological group and( -, 1) is a topological monoid, and that



the near algebrdl is a topologicalk-vector space for some given topology. We
say thatN is atopological near algebraf for everyy € N the mappingx — Xoy
andx — y o x are continuous, that is,is separately continuous.

In the subsequent sections and subsections, we will canséde algebras in
which 0 also is a left zero for, and thereforel, o, 0) is a semigroup with a (two-
sided) zero. Moreover the near algebras encountered wdl lzdve a two-sided
neutral element # O for o, in such a way that\, o, I, 0) is a monoid with a zero.

The idea to consider generalized algebras endowed witle difierent op-
erations, namehaddition multiplicationand substitution can be traced back to
the work of Menger [13, 14, 15] and Mannos [12] who considehednotion of
tri-operational algebras. Ai-operational algebra Rs a nonempty set together
with three operations, . ando - respectively calle@ddition multiplicationand
substitution- and three mutually distinct distinguished elements 0, d Bithat
satisfy the following properties:

1. (R +,0,-,1)is a commutative ring with unit 1;

2. (R o,I)is a(non necessarily commutative) monoid with identity
3. (X+Yy)oz=(X02) +(yo2);

4. (X-y)oz=(Xo02)-(yo 2);

5.100=1

for everyx,y,z € R. A constantof R is an elemenk € R such thatx = x o 0.

In particular, 1 and 0 are both constants, the@Rtof all constants is a com-
mutative ring, called theing of constants of Rand, it can be easily checked
that R +,0,.,1) is aCR-algebra with unit 1 (in particularR;, +, 0) is a unitary
CRmodule). For instance, iA is a commutative ring with unit, theA[x] is

a tri-operational algebra under the usual operations With x. Conversely, if
Ris a tri-operational algebra, then the $ER)of all elements oR of the form
ag+ar-I+a-I+---+ap-I" forn e N, where, for every, ¢; € CRand
I':=1-I---Tifi#0,Iis atri-operational algebra for the operations inducgd b

i factors
RonCR and therefore &i-operational subring(in an obvious way) oR, called

thealgebra of polynomials of RNote thatll(R) is not necessarily isomorphic to
R[x] becausd may not be algebraically free over the riGgR

In [1], Adler generalized the concept of tri-operationgetira. Acompaosition
ring Risaring R +, 0, -) (possibly without a unit) equipped with an operation
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such that

1. (R o) is a (non necessarily commutative) semigroup;
2. (X+Yy)oz=(Xoy)+(Xo2);
3. (X-y)oz=(xo2)-(xoy).

A tri-operational algebra is nothing else than a compasttieg with a multiplica-
tive unit 1# 0 and with a (two-sided) unit for compositidp I # 0,I # 1, such
that 100 = 1. The last fact is possible only if there is at least one efdgraER that
is not a zero-divisor of the carrier rin@(+, 0, -, 1). A constaniof Ris an element
X € Rsuch thatx o y = x for everyy € R. The seffFound R of all constants oR
is called thefoundationof R, and it is a composition subring & In particular,
(Found R, +, 0, -) is a commutative sub-ring (possibly without a unit) Bf ¢, 0, -).

Finally, Iskander [10] introduced the following kind of sttures. Aringoid
(R, +, -, o) is nonvoid set with three operatiors- ando such that

1. (R +) is a commutative semigroup;

(R, -) is a commutative semigroup;

X+y)-z=(X-2 +(x-2;

(R o) is a (non necessarily commutative) semigroup;
X+y)oz=(X02)+(yo2;

X-yY)oz=(X02)-(yo2

for everyx,y,z € R The first three axioms mean th®, ¢, ) is a commuta-
tive semiring (without 0). Aringoid with units0O, 1 andI is a ringoid with three
mutually distinct elements 0, 1 aridhat are (two-sided) neutral elements for re-
spectively+, - ando, such that ® x = 0 and 1o x = 1 for everyx € R. Note that
(R, +,0,-,1) becomes a semiring (without the usual requirementxh@t= 0). A
composition ring is a ringoid with an element@ such thatR, +, 0) becomes a
(commutative) group. In this cas®,+, 0, -) isaring andk-0 = O for everyx € R

(in other terms, R, -, 0) is a semigroup with a zero).

A topological ringoidis a ringoidR together with a topology such tha&,(+, -) is

a topological semiring andis separately continuous.

o gk wnN

In what follows we will present a ringoidR +, 0, -, o, I) such thaR is a com-
position ring (0 is the identity of the groufR(+, 0)) with a two-sided identityl
for the operation of substitutionsuch thatR, o, I, 0) is a (non necessarily com-



mutative) monoid with a two-sidédzero 0,i.e., xo 0= 0o x = 0 for everyx € R.
Note that in this case, if the rindr(+, O, -) has no multiplicative unit (which will
be the case), then the foundation of the composition ringdsiced to (0) sincg
is a constant if, and only ifxo y = x for everyy € R, so, in particularxo 0 = x
but, because we assume that O is a right-zero for the conggsit= 0.

2.2.2. Ringoid of formal power series under substitution

Let M = (x) = xK[[x]] be the principal ideal generated ky It is the unique
maximal ideal ofK[[x]] and it also generates th&)fadic topology. Due to the
definition ofMt any of its elements has a positive valuation (since the eohgtrm
is equal to zero). The operation™of formal substitution of power series turtig
into a (honcommutative) monoid whose (two-sided) idensty. If o € 9t and
n € N, we may define

X if n=0,
c:=¢ go...o0 if n>1. (4)

n terms

The operation of right substitution by an elemente 9t on K[[x]] defines a
K-algebra endomorphism, that is,

K[x]] — KIxI]]

f — foo

(5)

is aK-algebra endomorphism &[[x]]. Such an endomorphism is an automor-
phism if, and only if,y(c") = 1 (or, equivalently, the cdicient(c, x) of x in o is
non zero). More generally we can prove that in many casesktyeeaendomor-
phism is one-to-one.

Lemma 1. Leto € M \ {0}. Then, right substitution by is one-to-one.

Proof. Suppose the contrary and et Z f.x" € K[[x]] \ {0} such thatf oo = O.

n>0
Letm := y(f) # o0 and?¢ := v(o) > 0. By assumption, we hava > 1 and

fmoy' = 0 which contradicts the fact thit is a field. O

°The fact that 0 is a left zero foris true in any composition ring sinc&(+, 0) is a group.



This lemma implies that for eveky, r € I, if c o7 = 0theno =0orr = 0.
Indeed ifr # O, then by the previous lemma, = 0. If & # O, thent = 0 and
we are doned o 0 = o(0) = 0 because(o) > 0) orr # 0, but the later case
contradicts the lemma.

The group of invertible elements of the mon@itis then precisely given by
{oc e M : (o,x) # 0}, that is, the set of series that “begin exactly by some
(nonzero) multiple ofx”. With the usual addition of formal power serie¥;
becomes a right near algebra (without zero divisor), withas the two-sided
identity for o, which is not an algebra. Indeed, for instangée (x — x) = 0
but x? o x + x2 o (-x) = 2x?> # 0 (sinceK is field of characteristic zero), or
alsox? o (2x) = 4x® # (2x°) o x = 2x%. The group of unitdJ (M) of the al-
gebradt is the group of invertible elements of the corresponding onbnand,
US = {x+x?f : f € K[[x]]}is a subgroup of) (M), called the group afinipotent
substitutionsNote also that O is a two-sided zero for the operation of tsuitien.
Because right composition is an algebra endomorphismnibeseasily checked
that O0t, +, 0, X, o, x) also is a ringoid, with 0 neutral fof, and a two-sided zero
for o.

Remark 1. This structure can be extended to the whig[g¢x]] as follows. Let
o ¢ K[[x]]. We extend addition and multiplication¥{[x]] U {w} by

o+f = f+o0 = o,
of = fw = o

(6)

forevery fe K[[x]] U{w}. Then(K][[x]] U{w}, +, 0, -, 1) is a commutative semiring
(with a zerow for both addition and multiplication). We also extentb K[[x]] by
wof = w for every fe K[[x]]U{w}, and, for every fe K[[x]] and ge K[[x]]U{w},

_J fog if geM,
f°9‘{w if g¢m. (7

In particular, f o w = w for every fe K[[x]], becausen ¢ M. Then,(K[[x]] U
{w}, 0, x) is @ monoid with a zerm, and(K[[x]] U {w}, +,0, -, 1, o, x) is a ringoid.

When we put orK the discrete topology and ai the subspace topology,
the later is immediately seen as a Hau$d@ince metrizable) topological vector
space on the former.



Lemma 2. The formal substitution is separately continuous. Morecizely, for
everyo, € I,
Dem - M ®)

o b ooy

is a continuous linear endomorphism and for everye I,

Dom - m
o = o100

(9)

is a continuous (nonlinear) mapping.
Proof. Left to the reader. ]

It follows thatt is both a topological near algebra and a topological ringoid

2.3. Near algebr&[[x]] = M

On the set-theoretic cartesian prodiigfx]] x 9t it is possible to define a
natural structure of right ne&t-algebra. This near algebra is denoteddjjx]] >
It and called thdriordan near algebraThe additive structure of the underlying
K-vector space is the usual one given by the direct sum. Thépication is
defined by the following rule for eacl{, o1), (u2, 02) € K[[x]] x M

(11, 01) = (U2, 072) 1= ((U1 0 22,010 02) . (10)

It is left to the reader to check that this formula defines acoommutative monoid
multiplication (and in particular an associative binany)avith (1, x) as its iden-
tity element. Likewise i), (0,0) is a right (and therefore a two-sided) zero
for <. As easily one can prove that the group of unitskgfx]] = Mt is the
semi-direct product of the group of units of each (near) lalge More precisely,
UK][[x]] = M) = UK][[x]]) = U) wherex is defined as in the formula (10).
Moreover the semi-direct groupM = US is a subgroup ot (K[[x]] > M). Itis
called theRiordan groupas originally introduced and studied in [18]. The near
algebraK][ x]] =M is far from being a domain because for instance every nonzero
element of the two-sided ideal (&)t is a right zero divisor and every nonzero
element of the right ide&([[x]] = (0) is a left zero divisor:, 0) < (0, o) = (0, 0).
The near algebréit may be identified with a two-sided ideal Ef[ x]] =< 9t by the
natural injection
M — K[[x]] =M
o — (0,0)

(11)

10



wherea([[x]] can only be identified separately as a submonoid and as\vesub
tor space ofK[[x]] =~ M by the respective one-to-one homomorphisms (the first
one is a morphism of monoids, and the second one is a linegoinggp

K[[x]] — K[[x]] =M

b e (W) (12)

and
K[[x]] — K[[x]] =M

H = (1, 0)
It obviously holds that each of these embeddings is alsarmmomis K[[x]] >

has the product topology) and both vector spacex (@) and K[[x]] x (0) are
closed in the Riordan near algebra.

(13)

We define the generalized product in a usual fashion. For paehN and
(u, o) € K[[x]] =M, we put

(u,0)>=...x(uo) if n>1. (24)

n terms

(2.0)™ 1=

{(1,;{) if n=0,

The following easy lemma will be useful in the sequel.

Lemma 3. For each(u, o) € K[[x]] = M* and ne N,

(1, x) if n=0,
(u, o)™ = [ n (o O_O(k—l))’a_on) if n>1. (15)

In particular if - = 0, then

(1, %) if n=0,

(. 0y = { (uu(O.0) if n>1. (16)

(Under the conventior® := 1 for everya € K in such a way thafu, 0y =
(uu(0)°,0) = (u, 0) even foru(0) = 0.)
If u =0, then

w_ [ @x) i n=0,
0,0) ‘{ O.0™ if n>1.

Proof. Omitted. O

(17)
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2.3.1. Topological considerations

In the remainder of the paper, we suppose that the underbatig[[ x]] x 9t of
the near algebr&[[x]] = 9t is equipped with the product topology in such a way
that the underlying vector space is a Hausid(®ince the topology is metrizable)
topological vector space (when is put Erthe discrete topology). Regarding the
multiplicative structure, the following result is proved.

Lemma 4. xis separately continuous. More precisely, for evgry o) € K[[x]] >
M, the mapping

Ruvon @ K[[x]] <M — K[[x]] =M

o) o (o) (o) (19)
is a continuous linear endomorphism, and for evigryo) € K[[x]] >~ I,
L(MI,O'I) . K[[X]] <IN — K[[X]] > It (19)

(u, o) = (w, 0) < (4, 0)
is a (nonlinear) continuous mapping.
Before we achieve the proof of this result, we need anothsr keenma.

Lemma 5. Let (u,0) € K[[x]] x M. Thenv(u o o) = v(u)v(o). In particular,
for every ne N, v(o°") = v(o)". (Under the conventions recalled in subsect. 2.1:
(+o0)n = N(+0) = +0if N e N\ {0} orn=+c0,0N=n0=0ifn e Norn = +oo,
(+00)" = +o0 for every ne N \ {0}.)

Proof. Let us begin to prove tha{u o o) = v(u)v(o).

1. Suppose that = 0. Thenu o o = 0. Sinceyv(0) = +o0, v(or) > 0 and
(+00)n = n(+00) = +0o for everyn > 0, the result follows;

2. Suppose that # 0. If o = 0, thenv o o = u(0). Now if u(0) = 0, that
is, v(u) > 0, theny(u(0)) = +co = v(u)(+o0) = v(u)v(0). If u(0) # O, that
is, v(u) = 0, thenv(u(0)) = 0 = v(u)0 = v(u)v(o). Finally let suppose that
o # 0. Becausg # 0, thereis ang € N such thaty = v(u) andu = Z,unx”

n>ng
with upn, # 0. By definitionu o o = Z,unan. Butv(c") = nv(o) for every

n=nNp

n € N. Sincev(o) > 0, for allm > n, v(c™) > v(c™") and in particular for
everyn > ng = v(u), v(c™) > v(c™) = ngv(o) = v(u)v(o) and for every
n < Ng, uno™" = 0.

12



Now let us prove the second statement of the lemmaoiet)t andn € N.

x if n=0,

1. Suppose that = 0. Therefore @ = { 0 if neN \ {0}

which implies

. 1 if n=0,
thaty(0) = { +oo if neN\ {0}
2. Suppose that # 0 (that is to says that(c) € N \ {0}). v(c°°) = v(x) =

1 = v(0)°. Suppose by induction tha{c°") = v(o)". Thenv(c°™D) =
v(c" o o) = v(c")v(0) (according to the first statement of the lemma)
= v(o)™1! by induction.

. The expected result follows;

Proof. (of lemma 4)

1. Let us begin withR, ) it is already known to be linear. Therefore we
only need to check continuity at zero. Lefu{(o))nar be a sequence of
elements ofK[[x]] = M converging to (00), which, by definition of the
product topology, is equivalent tg(u,) andv(c,) both converge teroo.
But (un, on) > (ur, ) = ((en © o )ptr, 07 © 7). NOW V((ktn © 0 )r) = v(n ©
o) + v(ur) = v(un)v(or) + v(u;), according to lemma 5. Becausgr,) > 0,
it follows thatv((un, o) = (ur, 07y)) converges tereo asn — +co. So the
first component oRy,, .y(un, 07n) COnverges to zero as— +oo. Moreover
v(o o o) = v(on)v(oy), and for the same reason as the first component,
the second component also converges to zero. By definititimegbroduct
topology of two metrizable topologies, the result is prgved

2. Let us explore the case &f, ). we begin to prove that the following
mapping is continuous.

6, ;M o K[[x]

o = oo

(20)

Let (0n)ner € MY which converges to- € M. We should prove that; o
on — w oo Which actually is immediate. Therefofg is continuous. Now
we need a general result recalled below.

Let X1, X5, Y1, Yo andZ be topological spaces ard: Y; x Y, — Z be a
continuous mappingyg x Y, with the product topology). Lef; : X; — Y,
fori = 1,2 be continuous mappings. Then the mapping

f1®h fz: Xix Xy, —» Z
(X1, %) = h(fy(x1), f2(x2))

13
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is also continuousX; x X, with the product topology).

It is possible to take advantage of this later general stan¢nm our case
because the first coordinate functionlgf . is equal tdd ®, ¢,, (whereld
stands for the identity mapping &f{[ x]] and x for the usual multiplication
of K[[x]] which is known to be continuous). Finally the second caooatk
function ofL, ) is

K[[x]] =M — M
(u,0) - ojo0 (22)
which is continuous by lemma 2 since for evegy«) it is equal tosﬁ?(o-).
By definition of the product topology, continuity of both edmate func-
tions implies the continuity of, ) itself.

O

In what follows we consider convergent series of elemeni§[pf]]. In some
cases, convergence actually implies summability, thab isaly that the sum of
the series does not depend on the order of summation. A fopowaér series
f e K[[x]] is said topologically nilpotentf, and only if, lim f" = 0. For such

N—+o0
series the following assertion holds.

Lemma 6. Let f € K[[x]] be a topologically nilpotent series. Then for every
sequence of scalafg)nar, the family(ay, f")nav is summable.

Proof. According to theorem 10.4 [21] siné{][ x]] is a complete Hausd@rcom-
mutative group, it is sficient to prove thatd, f"),y satisfies Cauchy’s condition,
namely for every neighborhodd of zero inK[[x]] there exists a finite subséy
of N such that for every finite subsktof N disjoint from Jy, Z anf" e V. So

nekK

let | be a finite subset df. LetV, := {g € K[[x]] : (g,x") = O for everyn ¢ 1}
be a neighborhood of zero. Becauses topologically nilpotent, for everyn e N
there existd, € N such that for every > n,,, v(f") > m. Therefore in particular
for everyk < mand everyn > nn, (@, f", x*) = 0. Thus for every finite subsét
of N disjoint from{0, .. ., Nmax}, {ax X, x') = 0 for everyk € K andi € I. Then

Zakfk€V|- O

keK

More generally the same lemma holds¥dfx]] =9 in place ofK[[x]], where
we call , o) topologically nilpotent if, and only if, linfu, o)™ = 0.

14



Lemma 7. Let (u,0) € K[[x]] = 9t be topologically nilpotent. Then for every
sequence of scalafa),, the family(an(u, ) "new IS SUMMable.

Proof. BecauseKX[[x]] = 9t is a complete Hausdfircommutative group for the
product topology, it is sfticient to prove that the summability holds component-
wise. Itis obvious to prove that is topologically nilpotent it that is to say that
lim o°" = 0. Therefore by a trivial variation of lemma 6 it implies ttfato"), is

n—oo

summable in)t (note that)t is easily seen to be closedliff[x]] and therefore is
complete). It remains to prove that the family), is summable irK[[ x]] where
o if n=0,

n . . .
U, = a l_[('“ o D) if n>1 - Becausey(, o) is topologically nilpotent,
k=1

it implies that limu, = 0. So for everym € N there exist$), € N such that for

n—oo

everyn > nm, (Up,x<) = 0 for allk < m. The conclusion follows by a slight
adaptation of the proof of lemma 6. O

In the previous proof we saw th#@it is a complete (as a vector space). We say
thato € M is topological nilpotenif, and only if, lim o°" = 0. Then, by a minor

modification of the proof of lemma 6, we easilynaoeoduce theofwihg.

Lemma 8. Let o € M be topologically nilpotent. Then for every sequence of
scalars(an)n, the family(ano°")new iIs Summable.

Note that by the identification oft with (0) x 9t, o is topologically nilpotent
in Mt if, and only if, (Q o) is topologically nilpotent ifK[[ x]] > k.

3. Formal calculus on the Riordan near algebra

3.1. Introduction

The goal of this section is to develop a formal calculus orRleedan near al-
gebra. The idea is to extend the notion of formal substitutibcthis new algebraic
framework: given a serief = Z f.x" and some particular element,( o) of

n>0
the Riordan near algebra, it will appear that the seEsfn(m,m)”” obtained

n>0

by substitution ok by (u,, o) is convergent in the Riordan near algebra just as
Z fao" defines a formal power series whenevere M. The two-sided ideal

n>0

K[[x]]" =~ M+ of the Riordan near algebra, given by pairs of series«,) of

15



orders respectively positive and strictly greater than, gheeys the same role as
the ideab)i for the usual substitution. This formal calculus allowsasgefine ex-
ponential, logarithm and inverse series in the Riordan akgabra by using their
usual formal power series versions where monomiaisare replaced by powers
of (u., o). Nevertheless, due to the lack of commutativity and lestrcbutivity
of the Riordan near algebra, the usual properties of thesesdail to be true in
the new setting. For instance the inverse SEEQM, o)™ is not the inverse of

n>0

(1, x) - (u,, o) in the Riordan near algebra. It will be the main objectiveedt. 4
to provide a convenient algebraic setting in which thesiesgiay their expected
roles.

3.2. Power series of elementsif x]] * > Mt*

Generally speaking a formal power series= Z f,x" is said tooperateon

n>0
an elemengt of a topological (associative) algebfa(with unit 1,) if and only if

the seriesZ f,a" (with a° := 1, anda™?! := ad") converges in the topology &

n>0

If each element of a given subset K[[x]] operates ora, we say thaS operates
on a Finally if S operates on each elementlot A, then we say tha® operates
on T. In this section we prove that there exists a two-sided idEE[[ x]] = Mt on
which every element df[[ x]] operate. This allows us to define a formal calculus
on the Riordan near algebra.

We definelit* := {o- € M : v(o) > 1}, or in other terms, an arbitrary element
o of M* takes the formr = ax? + x3f, wheref € K[[x]]. The sethi* is a two-
sided ideal of the near algeb#i. Indeed,v(oc + 7) > min{yv(c), v(r)} > 1 and
ao € M for everyo, T € M* and everyr € K. Now leto € M ando, € M+,
thenv(oo o) = v(o)v(o,) > 1 andv(o, o 0) = v(o;)v(o) > 1 (sincev(o,) > 1)
which ensure thabi* is a two-sided ideal ob.

In a similar way we defin&[[x]] " := 9t. We use another name fdt because
in the subsequent part of this paper its multiplicativectrce will be important,
at least more important than its compositional structiifgx]]* is a two-sided
ideal of K[[x]]. Indeed,v(1 + x) > min{y(1),v(u)} > 0 andau € K[[x]]* for
everyd,u € K[[x]]" anda € K. Now lety € K[[x]] and i, € K[[x]]". Then
v(uuy) = v(u) + v(u,) > 0 which ensures th&([[x]]* is an ideal of the commuta-
tive algebrak][[ x]].

16



Now let show thatK[[x]]* = M* is itself a two-sided ideal oK[[x]] > M.
Obviously regarding the vector space structure, there igimg to prove. Let
(u,0) € K[[x]] =M and u,,o,) € K[[x]]* = M*. We need to prove that
(u, o) = (uy,0y) and u,, o) = (u, o) both belong t&[[x]]* =< Mi*. On the one
hand, the former product is equal tae{ o, )., o o o). Since we already know
thato o o, € K[[x]]*, we only need to establish thaf(u o o, )u,) > 0. But
v(uoo)uy) = v(uooy)+viuy) = vwu(o,) + v(uy) > 0. On the other hand,
(uy,0)=(u, o) = (uy oco)u, o o) and as in the first case, the only fact to check
iSv((uy o o)u) > 0. Butv((uy o o)) = v(uy)v(o) + v(u) > 0 (because both(u,)
andy(o) are positive).

Independently from algebraic considerations, it is pdedib prove that each
element ofK[[ x]] operates orK[[x]]* = M*. The argument to prove this fact is
partially based on the following lemma.

Lemma 9. K[[x]] operates oi*. More precisely, for each £ Z fx" € K[[x]]
n>0
and eachr, € M+, Z fao" € M.

n>0

Proof. The goal to prove is the fact that for evefry= Z fax" € K[[x]] and every
n>0
o, € M, Z faoS" is a well-defined element dfi. According to lemma 5,

n>0
V(o™ = v(o)" > 2" for everyn € N. Therefore limv(cS") = +o0, SO
Nn—+oo

that the seriesz faoS" converges irK[[x]]. Moreover it is easy to check that
n>0
<Z fac", 1) =0 and(z far", x) = fo (becauser?® = x). The convergence in

n>0 n>0
Mt follows. O

Proposition 10. K[[x]] operates orK[[x]]* = Mt*. More precisely for every &
Z f.x" € K[[x]] and every(u,, o) € K[[x]]* = M*, Z fo(uy, 0s)™ € K[[x]] =

n>0 n>0

M.
Proof. The goal to be proved is thaZ fa(us, o)™ is a convergent series in

n>0

K[[x]] =M wheneverg,, o) € K[[x]]* = M*. A proof by case follows.
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1. y. = o, = 0: For everyn > 0, (0,0)™ = (0,0). Therefore)" f,(0,0)™

n>0

reduces tdfp(1, x) € K[[x]] = M;
2. u;, = 0ando, # 0: According to lemma 3, for eveny > 0, (0, 0,)™" =
(0,575"), so we only need to prove that the serEs faoS" is convergent in

n>0

M which is the case by lemma 9 singg € M,

3. u; # 0 ando, = 0: According to lemma 3, for eveny > 0, (u,,0)™"
(., (01, 0), so we only need to prove that the series

fo+ Z fnlu+,u+(o)n_1

n>1

converges ifK[[x]]. Sinceu, € K[[x]]*, u.(0) = 0 so thatfyu,u, (0)°
fiu, and fu, . (00" = 0 for everyn > 1. Therefore

fo+ ) rtepte(0)' = fo + fuus € K[[x]] .
n>1

4. u, # 0 ando, # 0: Using lemmas 3 and 9 it already holds that the sec-
ond component of the series is converger®ir(sinces, € M*). Let us
study the first component. For evany> 0, taking into account lemma 3,

n

foluy, o)™ = 1“,1(1_[(#+ o o), oM. We need to evaluate the val-

\%

uation of 1—[(ﬂ+ ° O'O(k 1)) V(ﬁ(ﬂ+ ° 0-+(k 1))) V(/J+)i V(0-+)k_l

v(,u+)Z 21 Sincev(u,) > 0, it follows that lim V(l_[(/.l+ o o ty) =

N—+o0
+00 wh|ch ensures the convergence of the first component Tdreréhe

serlesz fn(u,, o.)™" is componentwise convergent and so is convergent in
n>0

the product topology aK][[ x]] > .

O

Remark 2. In the later proof, we implicitly show that evefy, , o) € K[[x]] " =

IM* is topologically nilpotent and even nilpotent in the usuaise when-, equals
zero. Likewise, in the proof of lemma 9, we also show thatyewere Mi* is

topologically nilpotent ir)i.
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The above proposition guarantees the existen@’f{[im]] = Mt of, for instance,
exp(u,, o) - defined as the sum of the serE (p+,cr+)>‘ - or Z(p+,a+)””

n>0 n>0

whenever g,,0,) € K[[x]]" < 9*. We can note that the later series gener-
ally does not define ((k) — (u.,0.))*Y as we would expect since in general

(L, %) = (us,04)) > (Z(ﬂw U'+)xn) # [Z(ﬂ+’ 0_+)><n) (1, x) = (us,0,)) because

of noncommutativity of< and its lack of left distributivity. Nevertheless it will
soon be shown (see section 4) t@t(m, o)™ is the inverse of ((Ix) — (i, o))

n>0

for another kind of multiplication.

As another direct consequence of the above proposition, ave the fol-
lowing result. Let i,0) € K[[x]] =~ M and f = Z fax" € K[[x]]. Then

n>0

Z fa((u, o) — (u(0), {0, x)x))™" € K[[x]] = M. This result is indeed straightfor-
n>0

ward because« o) —(u(0), (o, x)x) € K[[x]]* <M+ wheneverg, o) € K[[x]] =M.

The operation oK[[x]] on K[[x]]* = " gives rise to the following mapping.
¥ K[[x]] x (K[[x]]" =M*) — K[[x]] =M
(f. (1. 0)) o) o)™ 23)

n>0

wheref = Z f.x". This operation has some interesting properties stateshbel

n>0

even if they are not important for the main subject of the pape
Lemma 11. Let(u,,0,) € K[[x]]T =~ Mi*. We define

ooy - KIx]] — K[[x]] =M
f - P(f, (us, 04))

Then,¢, »,) IS a vector space homomorphism that mage («., o). Moreover
if f e M, thengy, »y(f) € K[[x]]* =M+, and if (f,1) = 1, theng, , (f) €
UM = US.

Proof. Let f = Z f.x" andg = Zgnx” be two formal series. We have +

n>0 n>0

= > (fa+ g)x". Besides, o) (f) = > falwe, o)™ and gy, (@) =

n>0 n>0

(24)
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2 Gl o) and finallydg, oy (f+9) = ) (kg )™ = ) (e o)™+

n>0 n>0 n>0

Onites )™ = D Faliees )™ + D Gnls, o,)™ (the last equality is due to the

n>0

n>0
fact thatK[[x]] =< M is a topological group). Scalar multiplication lay € K
is continuous orK[[x]] >~ M and one hag, . (af) = Zafn(y+,a+)”” =

n>0
az fols, 0.)™" = ag, o (f). Finally the last statements are rather straight-
n>0
forward. O
In order to deeply study,,, -,y another easy lemma is needed.

Lemma 12. Let (u,,0,) € K[[x]]" =~ M*, g € K[[x]] and me N. Then

Do) (XD = B0 (9) 2 (s, 2)™"™ = P o) (9XT) (25)

Proof.

o)D) = By Ix™™)

n=0
= > a0 )0

n>0

= Y G0 (e ) (™)

n>0

= (@l Y = G ™) (26)

n>0

(according to the rule of right distributivity
= [Z gn(/J+, 0-+)>dn) e (,U+a 0-+)Xm

n>0

(by continuity and linearity ok in its first variable)
= ¢(Il+so—+)(g) > (ll+’ 0-+)><m .

O

Proposition 13. Let (1., 0:) € K[[x]]* < M*. Thengy,, »,) is the only linear
mappingy : K[[x]] — K[[x]] <Mt such that for every ma N and every g= K[[x]],

Y(9x™) = () = (s, o)™,
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Proof. Let f € K[[x]]. For everyme N, f = Z f.x" + x™g with g € K[[x]).
n=0

Let ¢ as in the statement of the proposition. One hék) = Z fa(us, o )™ +
n=0
w(Q) = (s, o)™ and similarly, the following equality also holds,, )(f) =

Z falitss 4 ) "+ B, ) (@)= (s, o) ™D, Then it follows thaty(f)—e(., ) (f) =

n=0

W(Q) — d..on(@) = (us, o) ™D for everym € N. But whenm — +oo,
(s, 0,)" ™D converges to (D). Indeed, suppose that = 0 ando, = O,
then the result obviously holds. Jf, = 0 ando, # 0, then (Qo,)* (™1 =
O, ™y and v(e™Y) = v(e,)™ > 2™ If 4, # 0 ando, = O, then
(s, 0y ™D = (4,1, (0)™,0). Sinceu,(0) = 0 (becauser, € K[[x]]*), for ev-
erym > 0, (u.u,(0)™,0) = (0,0). Finally let suppose that, # 0 ando, # 0.
Therefore

m+1
> o(k— o
(s, 04) (mHd) = (l |(/J+ ° 0'+( 1))’0'+(m+1)) .
k=1

m+1
We already know that line™?% = 0. We also havew(l_[(,u+ o oy =
k=1

m—oo

m+1 m+1

Zv(y+)v(a+)°(k‘l) > v(a)ZZ"‘l — o0 asm — oo. Besides we have seen
k=1 k=1
in lemma 4 that for everg € K[[x]] = M, the mapping

Lo K[[x]] =9 — K[[x]] =M
(1, 0) - ax (u, o)

is continuous and in particular at the point @). Since the topology put on
K[[x]] = Mt is metrizable (as the product of two metric topologies)ntfe ev-
ery sequenceb(), € (K[[x]] = M)" converging to (00), one ha.a_l)ioera(bn) =
La(0,0) = (0,0). When applied to the case:= (¥(9) — ¢(..-,)(9)) andb, =
(us, o)™ we deduce thav(f) = ¢, .. () for an arbitrary formal power
seriesf, soy = ¢, +.)- o

(27)

3.3. Generalized powers by binomial series

In this subsection is presented a result which seems toge@relevant defi-
nition for generalized powers of elements of the Riordarugrddowever we will
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be shown that it is not at all the case, and we will have to pse@mother solution
in the subsequent section. Recall that we have

UM = {1+xs:seK][[x]]} = {1+u,:u €K[[x]]"},

US = {x+x%s:seK[x]]} = {x+o0,:0,eM}. (28)

The elements oUUS are also known under the name “formattdomorphisms
(tangent to the identity)” (see for instance [2]). The selnéct productJM = US,
called “Riordan group” ([18]), is a subgroup of the group afta of K[[x]] > M.
It endows the subspace topology as usually.

We now recall the traditional definition for generalizeddyimal codficients:

n!

let 1 € K andn € N, then ;]l ;= AdD-Lne)) ©Now et us prove a statement
similar to proposition 4.1 [8] in our setting.

Proposition 14. Let (u,0) € UM <~ US withu = 1+ u,, u, € K[[x]]* and
o =x+0,,0, € M. Letd € K. Then the serie§, o) = (1, x)+(uy, 0, ) =

Z ( ﬁ ) (s, o)™ is convergent iIK[[ x]] =« 9 and the sum of this series belongs
n>0
to UM < US.

Proof. According to proposition 10 we already agree for the cormecg of the
series iNK[[x]] = M. To conclude the proof it is shicient to check that the sum
of the series belongs t0M < US. The first term of the series is,#) because

( é ) = 1. Now we make use of lemma 3 to study the terps &, )" for each

ne N\ {0}
1. Second coordinate gfi(, o)
e Caser, = 0: the second component is equal to O for evesyN \ {0};

e Caseo, # 0: the second component is equalatd. According to
lemma5y(c°") > 2" > 1.

2. First coordinate ofi(,, o,)™:
e Caseu, = 0: the first component is equal to O for everg N \ {0};
e Caseu, #0:

— Caseo, = 0: the first component is equal tou., (0)"* = u, if
n=1andto 0 ifn> 1 sinceu,(0) = 0;

22



n
— Caser, # 0: the first component is equalﬂy+oa°+(k‘l). Then

k=1
according to lemma 5,

n n
W[ |ue 0oty 2 vw) Y- 21> 0.
k=1 k=1

O

The definition of generalized powers for elements of the éargroup pro-
vided by the previous proposition seems quite natural, nieekess it is not the
convenient one in our setting. Actually when restrictedatunal integers it does
not match with the usual powers[[x]] =9t as it can be easily checked even on
trivial instances: let: = 1+ x ando = x + x. Therefore on the one hand, seen as
an element of the Riordan group, one has

(u, o) (o o) xp,o%?)

(A +x) o (x+x2)) x (1 +x),(x+x2) o (x+x2))
(A+x+x2)A+x),x+x2+ (x+x%)?)

(L+2x +2x% + x3,x + 2x% + 2x3 + x%) .

(29)

Using the series definition, we have on the other hand,

(X, XZ)xO + 2(X, x2)><l + (X, X2)><12

(1, x) + 2(x, x2) + (%, x?) > (x, x?)
(1, x) + (2%, 2x%) + (x3,x%) (30)
= (L+2x+x%x+2x%+x%.

So our definition for generalized powers has a serious wesknedoes not
generalize the usual powers, which makes it impossible taken as generalized
powers at least in this minimal sense. The same weaknesarsdshy the expo-
nential, logarithm or inverse series for instance. Newwetss there is a convenient
algebra in which those series play their expected roles.

4. A convenient setting for the generalized powers

4.1. The algebra of formal power seri&§[u., o.,]]

In order to fix the problem met in the end of the previous sec¢tiee need to
introduce a new algebra in which can be lead convenient keelcu
Let (us,o0,) € K[[x]]* > M* \ {(0,0)}. Our first goal is to prove thag,, . is
one-to-one.
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Lemma 15. For every integers K m,

n n
Low(| [ 0ot <] [ 0ot
k=1 k=1

2. v(") < v(cM).

0
Proof. 1. e Suppose that = 0 (and thereforen > 0). In this casel—[ Jre
k=1

n
%1 .= 1 by convention and then(1) = 0. BesideS/(l_[y+ o
k=1

m
o) = ) Y (0" > 0;
k=1

e Suppose that > 0. Thenitis clear that the choicesof ando, gives
the expected result.
2. e Suppose that = 0. v(c%°) = v(x) = 1 andv(c™) = v(o,)™ > 2™ > 1
for everym > 0O;

e Suppose that # 0. Then itis clear that(o,)" < v(o,)™

Lemma 16. ¢, ) : K[[x]] — K[[x]] > Dt is one-to-one.
Proof. Since it is a linear mapping, it is ficient to check that its kernel is re-

duced to zero. So let = Z f.x" € K[[x]] be a nonzero series. L&k =
n=0
v(f). In this casegq, o) (f) = du..on(frx™ + Z fix") = o (frex™) +

n>nNgp

¢@+,0+)(Z fix") = foo(us, o)™ + Z fo(us, 0,)™". Checking component by

n>nNgp n>nNgp

component and using the previous lemma, we obtain the eagheesult. O

Remark 3. The mapping,, ) is far from being onto. For instance, 1§, o) €
K[[x]] =Mt such thaty = @ + u, ando = Bx + o, witha # B, @ # 0 and
B # 0. If (u,0) € K[[us,0]] then there exists € K[[x]] such that(u,o) =
Z fa(uy, 0,)™" and, according to the fact thét,, o.) € K[[x]]* =", fo(1, x) =

n>0

(a, Bx), which implies that f = @ = B: a contradiction.
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Now it becomes natural to define

K[ o ]] = M@y, 0,) = 1) fopss )™ = " fox" € K[[x]]} .
n>0 n>0
By injectivity of ¢, ), for every {1,0) € K[[u,,0.]], it exists one only one
formal power seried such that g,0) = Z fa(uy, o)™, So it is possible to

n>0
manipulate the elements &f[u., o .]] via their representation as a sum of con-

verging series in the “variable’u(, o). It is also interesting to remark, due to
lemma 7 sincey,, o) is topologically nilpotent, thai fa(us, o)™ does not

neN
depend on the order of summation (which explains the usesafdbation h € N”
rather than h > 0”). Becausep,, ., is a linear mappingK[[u., o.]] has a struc-

ture of K subvector space df[[x]] = M. In particular, Z fn(p+,a+)””) =

n>0

D A, oy and Y. foliee, o)™+ Gale )™ = D (Fat o), )™

n>0 n>0 n>0 n>0

The addition of two elements &f[ u., o7, ]] in K[[x]] =<t matches with their addi-
tion inK[[u,, 0,]]. Nevertheless the notatidf[u, , o-,]] should seem misleading
because.. o.)(f0) # ¢(u..)(f) % $u.)(@). Indeed, on the one side,

¢(/1+,0'+)(fg) = Z (Z fkgn—k] (,u+, 0_+)><n (31)

n>0 \ k=0

and on the other side,

Pir.o)(F) 2 b, .0)(9)

ST

n>0 n>0

> (m )" [Z Okt 0+)”"D

n>0 k>0
(by linearity and continuity in the first variable ef)

D T (2 04) % G (0))

n>0

(32)
In order to obtain an algebra, we introduce the usual Caucbgygt “” on
K[[s+, o4 ]]-

D ol )M x Y Gl ) 1= [Z fkgn_k) (o)™ (33)

n>0 n>0 n>0 \ k=0
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We should remark that this multiplication is commutativatary to=. Actually
this operation simulates the multiplicatienin the multiplicative monoid gener-
ated by (., c,). Indeed letd € N. We define §®)nar € K by 6@ = 0 for
everyn # d ands® = 1. Then we havez 8Dy, )™ = (e, 0.)". Now let

n>0

d, e e N. Let us compute the following Cauchy product

n
Z S8 sy 07 )" Z O (e, o)™ = Z Z 5(kd)5$16—)k (s, o)™ (34)
n>0 n>0 n>0| k=0

———
=0 & k#d,n+d+e
= (,U+, 0_+)><(d+e) .

But the first member of the Cauchy product occurring as thenefmber of
the first equality is nothing else thap,(o )™, whereas its second member is
(us, o). On “monomials” ft,, 0 ,)™" the Cauchy product is identical ta In
particular for every natural integex, (u,,o,)™" = (u., o)™ where the second
member is theith Cauchy power ofy,, o). Then,¢,, ., becomes an algebra
isomorphism fronK[[x]] into K[[ ., o ,]].

We use this Cauchy product to define the generalized powdenfents (1+
W, X + o) of the Riordan group in terms of a the binomial series: dlet K

and define ((1x) + (u,, o)™ = Z( ;]l )(p+,a+)*”. We need to prove that this

n>0

binomial series is convergent. Nevertheless it can be dtktilat if2 € N, then
(1, %) + (us, o4))** matches with thetth Cauchy power of (& u.,x + o) €

K[[us,o0.]]. Therefore this version of the generalized powers exsetheé usual
ones (inK[[u, o+]] notin UM > US).

Proposition 17. The serieg(1, x) + (u,,0.))" = Z( ;]1 )(,u+,0'+)*n is conver-
n>0

gent and defines an elementli < US.

Proof. Actually since [t,,0,)" = (u., o.)™", the resultis already given by propo-
sition 14. ]

Mimicking in K[[u,,o.]] the usual properties that hold true in the algebra
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K[[x]] of formal power serie we can check that for everye K,
exp@log((L x) + (u+, 04))) = (L %) + (4, 1)) (35)
Moreover, due to the fact that for evefye K][[x]], exp(z fa(uy, o)™ is in-

n>0
vertible inK[[u,, o.]], A — (A + ., x + 0,))* is easily seen as a one-parameter

subgroup fromK, +, 0) to U(K[[ s, o,]])-

In summary this new version for generalized powers satisfies

1. wheneven € N, (1 + u,,x + 0,)*" is the usuahth power (with respect to
Cauchy product) of (* u,,x + o) as an element &[[u,, o, ]] but not as
an element oUM = US;

2. (1+p,, x+0.)Yisthe inverse of (* i, x+0,) as an invertible element
of K[[u,, o ,]] but not as an element &fM = US;

3.1 (1+ pu,,x+0,)*is a one-parameter subgroup froi, ¢, 0) to
UKI[[us, o4 ]D)-

In this setting, the following also holds. f§ = 1, thenz fo(uy, o)™ is invert-

n>0

#(~1)
ible (in K[[ 1., o,]]) and its inverse |EZ fn(y+,a+)><”) = > (~1'g(s, o)

n>0 n>0

whereg(u,, o) = Z fa(us, o)™, For such a serieg fa(us, o)™ which be-

n>1 n>0

ey
longs toUM =< US, we can also define for every € K, (Z fn(,u+,a-+)””) =

n>0

Z( A )(g(,u+,o'+))*n with the usual properties of one-parameter group of such

n>0 n_
generalized powers.

4.2. Aninfinite number of copies B{[ x]]
BecauseK[[u,,o]] is isomorphic, as an algebra, ®[[x]], it is possible
to study the properties of series in powers @f, ) through the properties of

3To be more rigorous, we need to eqiifi i, , o, ]] with the (u., o-,)-adic topology or, equiv-
alently, with the valuation obtained froRi[[ x]]'s one by replacing the monomials inby mono-
mials in .,o.): in other terms, one can usg,, ) to transport the topology ak[[x]] on
K[[p+,0+]] in @ homeomorphic way. TheK[[u,, o,]] becomes isomorphic t&[[x]] as a topo-
logical algebra ang,, .,y becomes a topological isomorphism.
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the corresponding formal power series. We dengte,,)(f) by f(u.,o.), and
v(f(us, o)) = v(f). Now K[[u,,o,]] is a isomorphic as a topological algebra
to K[[x]]. In particular if f = 1 + g € K[[x]] wherev(g) > O, thenf(u,,o ) has
a multiplicative inverse irK[[u,, o.]] given by Z(—l)”g(y+,o-+)*”, as already

n>0

computed in the previous subsection. Moreover i 9t, then right substitution
bya@hoyﬁswﬂdMKﬂyHUJLfwﬂvgoa@hag::Ezmawhane

n>0

K[[us,04]]. So usingK[[u,,o,]] we may define a near algebtd[u,,o.]] >
M(u,, o y) - whereM(u,, o) = (uy,o0,) < K[[u,, 0,]] - isomorphic (both as a
vector space and as a monoid) 8 x]] <M. If (u(u,, o)., o(us, o)), belongs
to K[y, o ]]F = W+ (uy, o) (for the natural definitions of botK([[ ., o ,]]* and
M (uy, 04)), then an algebr&[[u(u,, o)y, o(us, 1) ]], isomorphic toK[[ x]],
may be defined. The process can continue indefinitely.

Remark 4. The seti(u,, o), asd, is both a near algebra and a ringoid.
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