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Abstract

We define the Sheffer group of all Sheffer-type polynomials and prove the isomorphism between the Sheffer group and the Riordan
group. An equivalence of the Riordan array pair and generalized Stirling number pair is also presented. Finally, we discuss a higher
dimensional extension of Riordan array pairs.
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1. Introduction

Riordan array is a special type of infinite lower-triangular matrix and the set of all Riordan matrices forms a group
called the Riordan group, which was first defined in 1991 by Shapiro et al. [23]. Some of main results on the Riordan
group and its applications to the combinatorial sums and identities can be found in [15,22,23,26]. In particular, in
the work by Sprugnoli (cf. [24,25]). In this paper, we will define an operation on the set of all Sheffer polynomial
sequences so it forms a group called as the Sheffer group, which gives a general pattern consisting of various special
Sheffer-type polynomial sequences as elements. We will show that every element of the group and its inverse are the
potential polynomials of a pair of generalized Stirling numbers (GSNs) (see 3.7), and the isomorphism between the
Sheffer group and the Riordan group (see 2.2). Hence, the established results on the Sheffer group connect the Riordan
group, GSN pairs, and Riordan arrays, which can lead a comprehensive study on all of the topics. For instance, the
Sheffer group and the related GSN-pairs and their inverse relations can be used to derive combinatorial identities as
well as algebraic identities containing the Sheffer-type polynomials.

As what mentioned in [15] (see also in [1]), “The concept of representing columns of infinite matrices by formal
power series is not new and goes back to Schur’s paper on Faber polynomials in 1945 (cf. [21])”. A formal power series
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in auxiliary variable t of the form

b(t) = b0 + b1t + b2t
2 + · · · =

∑
n�0

bnt
n

is called an ordinary generating function of the sequence {bn}.

Definition 1.1. Let A(t) and g(t) be any given formal power series over the real number field R or complex number
field C with A(0)= 1, g(0)= 0 and g′(0) �= 0. We call the infinite matrix D =[dn,k]n,k �0 with real entries or complex
entries a generalized Riordan matrix (the originally defined Riordan matrices need g′(0)= 1) if its kth column satisfies∑

n�0

dn,kt
n = A(t)(g(t))k; (1.1)

that is,

dn,k = [tn]A(t)(g(t))k .

The Riordan matrix is denoted by [dn,k] or (A(t), f (t)).

Example 1.1. Riordan matrices (1, t) and (1/(1−t), t/(1−t)) are the identity matrix and Pascal’s triangle, respectively.
If (A(t), g(t) and (B(t), f (t)) are Riordan matrices, then

(A(t), g(t)) ∗ (B(t), f (t)) := (A(t)B(g(t)), f (g(t))) (1.2)

is called the matrix multiplication, i.e., for (A(t), g(t)) = [dnk]n�k �0 and (B(t), f (t)) = [cnk]n�k �0 we have

(A(t), g(t)) ∗ (B(t), f (t)) := (A(t)B(g(t)) · f (g(t))) = [dnk][cnk]. (1.3)

The set of all Riordan matrices is a group under the matrix multiplication (cf. [23–25]).

Definition 1.2. Let A(t) and g(t) be defined as 1.1. Then the polynomials pn(x) (n = 0, 1, 2, . . .) defined by the
generating function (GF)

A(t)exg(t) =
∑
n�0

pn(x)tn (1.4)

are called Sheffer-type polynomials with p0(x) = 1. Accordingly, pn(D) with D ≡ d/dt is called Sheffer-type
differential operator of degree n associated with A(t) and g(t). In particular, p0(D) ≡ I is the identity operator.

The set of all Sheffer-type polynomial sequences {pn(x) = [tn]A(t)exg(t)} with an operation, “umbral composition”
(cf. [18,19]), shown later forms a group called the Sheffer group. We will also show that the Riordan group and the
Sheffer group are isomorphic.

In Roman’s book [18], {Sn = n!pn(x)} is called Sheffer sequence (also cf. [19,20]). Certain recurrence relation of
pn(x) can be found in Hsu–Shiue’s paper [12]. There are two special kinds of weighted Stirling numbers defined by
Carlitz [4] (see also [2,8]). We now give the following definition of the generalized Stirling numbers.

Definition 1.3. Let A(t) and g(t) be defined as 1.1, and let

1

k!A(t)(g(t))k =
∑
n�k

�(n, k)
tn

n! . (1.5)

Then �(n, k) is called the generalized Stirling number with respect to A(t) and g(t).

The special case of A(t) ≡ 1 was studied in [10].
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As having been commonly employed in the calculus of finite differences as well as in combinatorial analysis, the
operators E, �, D are defined by the following relations:

Ef (t) = f (t + 1), �f (t) = f (t + 1) − f (t), Df (t) = d

dt
f (t).

Powers of these operators are defined in the usual way. In particular, for any real numbers x, one may define Exf (t) =
f (t + x). Also, the number 1 may be used as an identity operator, viz. 1f (t) ≡ f (t). It is easy to verify that these
operators satisfy the formal relations (cf. [13])

E = 1 + � = eD, � = E − 1 = eD − 1, D = log(1 + �).

From Definitions 1.1–1.3 we have

pn(x) = [tn]A(t)exg(t) = [tn]
∑
k �0

1

k!A(t)(g(t))kxk =
n∑

k=0

dn,k

xk

k! = 1

n!
n∑

k=0

�(n, k)xk , (1.6)

where we use dn,k = �(n, k) = 0 for all k > n. Therefore, with a constant multiple, 1/(k!), of the kth column, the rows
of the Riordan array present the coefficients of the Sheffer-type polynomial sequences. As an example, the rows of the
Riordan array (1/(1 − t), t/(t − 1)) = [(−1)k

(
n
k

) ]0�k �n give the coefficients of the Laguerre polynomial sequences
{pn(x) =∑n

k=0(−1)k
(

n
k

)
xk/k!}0�n.

This paper will be managed as follows. We shall define the Sheffer group and present its properties in Section 2.
Then the Riordan array pairs and the generalized Stirling pairs will be shown in Section 3. Finally, we shall discuss
their higher dimensional extension in Section 4.

2. Sheffer group

Let {pn(x) =∑n
k=0pn,kx

k} and {qn(x) =∑n
k=0qn,kx

k} be two Sheffer-type polynomial sequences. Then we define
an operation, #, of {pn(x)} and {qn(x)}, called the (polynomial) sequence multiplication (or the “umbral composition”
see [18,19]), as{

pn(x)}#{qn(x)} := {rn(x) =
n∑

k=0

rn,kx
k

}
, (2.1)

where

rn,k =
n∑

�=k

�!pn�q�k, n���k. (2.2)

It is clear that the defined operation is not commutative. Sheffer group under the “umbral composition” was defined
with the n!-umbral calculus in Roman [18]. We now give a formulation with the matrix form, or the 1-umbral calculus
(cf. [24]).

Theorem 2.1. The set of all Sheffer-type polynomial sequences defined by Definition (1.2) with the operation # defined
by (2.2) forms a group called the Sheffer group and denoted by ({pn(x)}, #). The identity of the group is {xn/n!}.
The inverse of {pn(x)} in the group, denoted by {pn(x)}(−1), is the Sheffer-type polynomial sequence generated by
1/A(ḡ(t)) exp(xḡ(t)), where ḡ is the compositional inverse of g; i.e., (g ◦ ḡ)(t) = (ḡ ◦ g)(t) = t .

Proof. We now give a sketch of the proof. Some obvious details are omitted. Let {pn(x) =∑n
k=0pn,kx

k}, {qn(x) =∑n
k=0qn,kx

k}, and {rn(x)=∑n
k=0rn,kx

k} be three Sheffer-type polynomial sequences. It can also be found the operation
of the sequence multiplication satisfies the associative law, namely,

{pn(x)}#({qn(x)}#{rn(x)}) =
{

n∑
k=0

(
n∑

u=k

n∑
�=u

�!u!pn,�q�,uru,k

)
xk

}
= ({pn(x)}#{qn(x)})#{rn(x)}.
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It is clear that {pn(x)}#{xn/n!}= {xn/n!}#{pn(x)}= {pn(x)}. Hence, the set of all Sheffer-type polynomial sequences
forms a group. �

From (1.6) we can establish the mapping � : [dn,k] �→ {pn(x)} or � : (A(t), g(t)) �→ {pn(x)} as follows:

�([dn,k]n�k �0) :=
n∑

j=0

dn,j x
j /j ! = [dn,k]n�k �0X, (2.3)

for fixed n, where X = (1, x, x2/2!, . . . )T, or equivalently,

�((A(t), g(t)) := [tn]A(t)exg(t). (2.4)

It is clear that (1, t), the identity Riordan array maps to the identity Sheffer-type polynomial sequence {pn(x) ≡
xn/(n!)}n�0. From the Definition 1.1 we immediately know that

pn(x) = [tn]A(t)exg(t) if and only if dn,k = [tn]A(t)(g(t))k . (2.5)

Hence, the mapping � is one-to-one and onto. From the mapping defined by (2.3), we understand that the operation
# defined in the Sheffer group is equivalent to the matrix multiplication of two Riordan matrices in the Riordan
group. In [16], the connection between usual matrix multiplication and Riordan matrix multiplication is given. Hence,
a connection between usual matrix multiplication and the Sheffer-type sequence multiplication can be established
similarly. Using symbolic calculus with operators D and E, we find via (2.4) or Definition 1.2:

A(t)f (g(t)) = A(t)Eg(t)f (0) = A(t)eg(t)Df (0) =
∑
k �0

tkpk(D)f (0). (2.6)

This is the desired expression given in [7] to expand the composite function A(t)f (g(t)). Hence, we have pn(D)f (0)=
[tn]A(t)f (g(t)), which, from (2.5) and the multiplication in the Riordan group, is equivalent to

n∑
k=0

dn,kfk = [tn]A(t)f (g(t)), (2.7)

where (f0, f1, . . .) has GF f (t). The last expression was used to find the Riordan subgroup by Shapiro recently (cf.
[22]). Eq. (2.7) can also be considered as a linear transform to f (t) or (f0, f1, . . .) represented by Riordan matrix
(A(t), g(t)). Thus, (2.3) or (2.4) is the linear transform of ext . With the aid of (2.7), we may transfer a property of the
Riordan group to the Sheffer group.

Example 2.1. We now consider (1/(1 − t), t/(t − 1)), an involution in the Riordan group (cf. [3]), that possesses the
matrix form:

[dn,k]n�k �0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 −1

1 −2 1

1 −3 3 −1

1 −4 6 −4 1

... ...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

It is easy to find that

dn,k = (−1)k
(n

k

)
.

Consequently,

pn(x) = �[dn,k] =
n∑

k=0

(−1)k
(n

k

) xk

k! , (2.9)
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which is the Laguerre polynomial of order zero. Conversely, for the given polynomials (2.9), we obtain matrix (2.8),
in which entries satisfy

−dn,k−1 + dn,k = dn+1,k .

Hence, its generating functions satisfy

−tA(t)(g(t))k−1 + tA(t)(g(t))k = A(t)(g(t))k .

It follows that g(t) = t/(t − 1). From the first column of matrix (2.8) we also obtain A(t) = 1/(1 − t).
If the sequences {pn(x)} and {qn(x)} are mapped from the Riordan arrays [dn,k] and [cn,k], respectively, then from

the defined operation, (2.2), of the polynomial sequence multiplication, the coefficients of the polynomials pn(x) and
qn(x) are, respectively, pn,k = dn,k/(k!) and qn,k = cn,k/(k!), and hence, we have

[k!rn,k]n�k �0 = [dn,k][cn,k],

where rn,k are obtained in (2.2). Consequently, the Sheffer-type polynomial sequence {rn(x)} is mapped from the
Riordan array:

[en,k] := [dn,k][cn,k],

where en,k =∑n
�=0dn,�c�,k (n���k).

Similarly, {L(p−1)
n (x)}−1 = {L(p−1)

n (x)} because of(
1

(1 − t)p
,

t

t − 1

)−1

=
(

1

(1 − t)p
,

t

t − 1

)
.

Theorem 2.2. The Sheffer group and the Riordan group are isomorphic.

Proof. Let {pn(x) =∑n
k=0pn,kx

k} and {qn(x) =∑n
k=0qn,kx

k} be two Sheffer-type polynomial sequences mapped by
� from (A(t), g(t)) and (B(t), f (t)), respectively, i.e., �(A(t), g(t)) = {pn(x)} and �(B(t), f (t)) = {qn(x)} we have

{pn(x)}#{qn(x)} = �((A(t), g(t)))#�((B(t), f (t)) = �((A(t), g(t)) ∗ (B(t), f (t)). (2.10)

Since mapping � : [dn,k] �→ {pn(x)} or equivalently, � : (A(t), g(t)) �→ {pn(x)} is one-to-one and onto and satisfies
(2.10), we obtain the theorem. �

It is clear that the identity Sheffer polynomial sequence, {xn/n!}, is the mapping from the Riordan array (1, t). Hence,
the inverse of a Sheffer-type polynomial sequence {pn(x)}, denoted by {pn(x)}−1, is defined as �(1/(A(ḡ(t))), ḡ(t)),
where {pn(x)} = �(A(t), g(t)) and ḡ(t) is the compositional inverse of g(t), i.e., g(ḡ(t)) = ḡ(g(t)) = t .

Example 2.2. We now consider an exponential Riordan array (t/(et − 1), t). Since �(t/(et − 1), t) = {(1/n!)Bn(x)}
and (t/(et − 1), t)−1 = ((et − 1)/t, t), we have{

1

n!Bn(x)

}−1

=
(

et − 1

t
, t

)
=
{

1

n!
n∑

k=0

(n

k

) xn−k

k + 1

}
.

Similarly, {L(p−1)
n (x)}−1 = {L(p−1)

n (x)} because of(
1

(1 − t)p
,

t

t − 1

)−1

=
(

1

(1 − t)p
,

t

t − 1

)
.
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Example 2.3. We now consider the sequence multiplication of the (p − 1)st order Laguerre polynomial sequences
generated by involution (1/(1 − t)p, t/(t − 1)) in the Riordan group (cf. [3]),

{Lp−1
n (x)}#{Lp−1

n (x)} =
(

1

(1 − t)p
,

t

t − 1

)
∗
(

1

(1 − t)p
,

t

t − 1

)
= (1, t),

or equivalently

{Lp−1
n (x)}#{Lp−1

n (x)} =
{

xn

n!
}

,

which implies that {Lp−1
n (x)} is the inverse of itself and the following identity:

n∑
�=0

(−1)k+� (n + p − 1)!
(p + k − 1)!(n − �)!(� − k)! = �n,k , (2.11)

where �n,k is the Kronecker symbol, which takes value 1 when n = k and zero otherwise.

Example 2.4. Since the multiplication of two exponential Riordan arrays(
t

et − 1
, t

)
∗
(

2

et + 1
, t

)
=
(

2t

e2t − 1
, t

)
,

we can present the result of the sequence operation of the Bernoulli polynomial sequence and the Euler polynomial
sequence as{

1

n!Bn(x)

}
#

{
1

n!En(x)

}
=
{

1

n!Bn

(x

2

)}
.

Remark 2.1. Let pn(x) = a0 + a1x + · · · + anx
n, ai ∈ R, n = 0, 1, . . ., with the corresponding lower triangular array

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0,0

d1,0 d1,1

d2,0 d2,1 d2,2

...
...

...
. . .

dn,0 dn,1 dn,2 ... dn,n

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then the Sheffer polynomial sequence {pn(x)} can be regarded as the matrix transformation � defined by

� : A �→ A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x

x2

2!
...

xn

n!
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.12)

By using (2.12), we may find subgroups of the Sheffer group if the corresponding subgroups of the Riordan group
can be found. In addition, the above consideration can be extended to the higher dimensional setting.

Furthermore, the operation defined by (2.1)–(2.2), of �AX ={pn(x)} and �BX ={qn(x)}, X =[1, x, x2/2!, . . . , xn/

n!, . . . ]T, where {pn(x)} and {qn(x)} are two sequences in the Sheffer group with corresponding Riordan matrices
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A and B, respectively, can be written as

{pn(x)}#{qn(x)} := (�AB)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x

x2

2!
...

xn

n!
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (AB)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

x

x2

2!
...

xn

n!
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a regular matrix multiplication of A and B. Based on this point of view, ({pn(x)}, #, +) can be considered as a ring,
where + is a used addition of matrices.

Definition 2.1. Let {pn(x)} and {qn(x)} be two Sheffer polynomial sequences. We say {pn(x)} and {qn(x)} are com-
binatorial orthogonal if they satisfy

{pn(x)}#{qn(x)} = {qn(x)}#{pn(x)} =
{

xn

n!
}

, (2.13)

and we denote {pn(x)}⊥com{qn(x)}.

Example 2.5. Laguerre polynomial sequence is combinatorial orthogonal, i.e., {L(p−1)
n (x)}⊥com{L(p−1)

n (x)}. Al-
though Laguerre polynomials are also analytic orthogonal, i.e., orthogonal in an inner product sense, it is not necessary
that the analytic orthogonality implies the combinatorial orthogonality or verse vise. For instance, �(1/(1 − t), t) =
{1, 1+x, 1+x +x2/2, . . .} and �(1− t, t)={1, −1+x, −x +x2/2, . . .} are combinatoric orthogonal, but not analytic
orthogonal.

At the end of this section, we give a list of some Sheffer polynomials for the interested readers to construct the inverses
and the resulting polynomials under the sequence multiplication. In the table, we can see many array components are
exponential Riordan array components.

A(t) g(t) pn(x) Name of polynomials

t/(et − 1) t
1

n!Bn(x) Bernoulli

2/(et + 1) t
1

n!En(x) Euler

et log(1 + t) (PC)n(x) Poisson–Charlier
e−�t (� �= 0) log(1 + t) Ĉ

(�)
n (x) Charlier

1 log(1 + t)/(1 − t) (ML)n(x) Mittag–Leffler
(1 − t)−1 log(1 + t)/(1 − t) pn(x) Pidduck

(1 − t)(−p)(p > 0) t/(t − 1) L
(p−1)
n (x) Laguerre

e�t (� �= 0) 1 −et (Tos)(�)
n (x) Toscano

1 et − 1 �n(x) Touchard
1/(1 + t) t/(t − 1) An(x) Angelescu
(1 − t)/(1 + t)2 t/(t − 1) (De)n(x) Denisyuk

(1 − t)−p(p > 0) et − 1 T
(p)
n (x) Weighted–Touchard
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3. Riordan array pairs and generalized Stirling number pairs

We first define the Riordan pairs.

Definition 3.1. Let A(t) and g(t) be given as in Definition 1.1. Then we have a Riordan pair {dn,k, d̄n,k} as defined by{
A(t)(g(t))k =∑∞

n=kdn,kt
n,

A(ḡ(t))−1(ḡ(t))k =∑∞
n=kd̄n,kt

n,
(3.1)

where ḡ ≡ g〈−1〉 is the compositional inverse of g with ḡ(0) = 0, [t]ḡ(t) �= 0, and d0,0 = d̄0,0 = 1.

We also need the following definition of generalized Stirling number pairs (cf. [10] for the case of A ≡ 1, and a
special example has been also studied in [24]).

Definition 3.2. Let A(t) and g(t) be given as in Definition 1.1. Then we have a generalized Stirling number pair
{�(n, k), �̄(n, k)} as defined by⎧⎪⎨⎪⎩

1

k!A(t)(g(t))k =∑∞
n=k�(n, k)

tn

n! ,
1

k!A(ḡ(t))−1(ḡ(t))k =∑∞
n=k�̄(n, k)

tn

n! ,
(3.2)

where ḡ ≡ g〈−1〉 is the compositional inverse of g with ḡ(0) = 0, [t]ḡ(t) �= 0, and �(0, 0) = �̄(0, 0) = 1.

Remark 3.1. A closed connection between (3.1) and (3.2) is apparent. A special case of pair (3.2) for A(t) = 1 was
established in [9], which were later applied to derive some combinatorial identities (cf. [26]).

Remark 3.2. If in (3.2) let A(t) and g(t) be defined by

A(t) = (1 + �t)	/�, g(t) = ((1 + �t)
/� − 1)/
,

where �, 
, and 	 are real or complex numbers with �
 �= 0, then

A(ḡ(t)) = (1 + 
t)	/
, ḡ(t) = ((1 + 
t)�/
 − 1)/�,

so that �(n, k) = S(n, k; �, 
, 	) and �̄(n, k) = S(n, k; 
, �, −	) just form a pair of GSNs with three parameters. Note
that such a class of GSN-pairs includes various useful special number-pairs. A detailed investigation of GSNs was
given in [11] in 1998. For a very recent development relating to this subject, see [17].

Note that (3.1)–(3.2) imply the orthogonality relations∑
k �n�m

dm,nd̄n,k =
∑

k �n�m

d̄m,ndn,k = �mk ,

and ∑
k �n�m

�(m, n)�̄(n, k) =
∑

k �n�m

�̄(m, n)�(n, k) = �mk ,

with �mk denoting the Kronecker delta, and it follows that there hold the inverse relations:

fn

n! =
n∑

k=0

dn,k

gk

k! ⇐⇒ gn

n! =
n∑

k=0

d̄n,k

fk

k! , (3.3)
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and

fn =
n∑

k=0

�(n, k)gk ⇐⇒ gn =
n∑

k=0

�̄(n, k)fk . (3.4)

For an element {pn(x)} in the Sheffer group ({pn(x)}, #), it is easy to write its inverse {p̄n(x)} = {pn(x)}−1 as

p̄n(x) =
n∑

k=0

d̄n,k

xk

k! = 1

n!
n∑

k=0

�̄(n, k)xk ,

which are generated by

A(ḡ(t))−1exḡ(t) =
∑
n�0

p̄n(x)tn,

with p̄0(x) = 1.
We shall give an application of the inverse formulas (3.3)–(3.4) based on the following result.

Theorem 3.3. The Sheffe-type operator pn(D) has an expression of the form

pn(D) = 1

n!
n∑

k=0

�(n, k)Dk , (3.5)

where �(n, k) (associated with A(t) and g(t)) may be written in the form

�(n, k) =
n∑

r=k

(n

r

)
�n−rBrk(a1, a2, . . .), (3.6)

provided that A(t) =∑m�0�mtm/m! and g(t) =∑m�1amtm/m! with �0 = 1, a1 �= 0.

Proof. Note that (3.6) follows from (1.6). Moreover, recall a known expression for potential polynomials (cf. e.g.,
Comtet [5, Section 3.5, Theorem B], etc.). We have

1

k! (g(t))k =
∞∑

r �k

tr

r!Brk(a1, a2, . . .).

Substituting this into (3.2) and comparing the resulting expression with the RHS of (3.2), we see that (3.6) is true. �

Corollary 3.4. Formula (2.5) may be rewritten in the form

A(t)f (g(t)) =
∞∑

n=0

tn

n!

(
n∑

k=0

�(n, k)f (k)(0)

)
=

∞∑
n=0

tn

(
n∑

k=0

dn,k

k! f (k)(0)

)
, (3.7)

where �(n, k)’s are defined by (3.1) and given by (3.6).

Corollary 3.5. For the case A(t) = 1, (3.6) gives

�(n, k) = Bn,k(a1, a2, . . .),

and

dn,k = k!
n!Bn,k(a1, a2, . . .),
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where the incomplete Bell polynomial Bn,k(a1, a2, . . .) has an explicit expression (cf. [5])

Bn,k(a1, a2, . . .) =
∑
(c)

n!
c1!c2! · · ·

(a1

1!
)

c1

(a2

2!
)

c2 · · · ,

where the summation extends over all integers c1, c2, . . . �0, such that c1 + 2c2 + 3c3 + · · · = n, c1 + c2 + · · · = k.

Corollary 3.6. The generalized exponential polynomials related to the generalized Stirling numbers �(n, k) and �̄(n, k)

are given, respectively, by the following:

n!pn(x) =
n∑

k=0

�(n, k)xk , (3.8)

and

n!p̄n(x) =
n∑

k=0

�̄(n, k)xk , (3.9)

where pn(x) and p̄n(x) are Sheffer-type polynomials associated with {A(t), g(t)} and {A(ḡ(t))−1, ḡ(t)}, respectively

Applying the reciprocal relations (3.4)–(3.9) we get

Corollary 3.7. There hold the relations

n∑
k=0

�̄(n, k)k!pk(x) = xn, (3.10)

and

n∑
k=0

�(n, k)k!p̄k(x) = xn. (3.11)

These may be used as recurrence relations for pn(x) and p∗
n(x) respectively.

Eqs. (3.10) and (3.11) are equivalently⎧⎪⎨⎪⎩
∑n

k=0d̄n,kpk(x) = xn

n! ,∑n
k=0dn,kp̄k(x) = xn

n! .
(3.12)

Evidently (3.4) and (3.7) imply a higher derivative formula for A(t)f (g(t)) at t = 0, namely(
dn

dtn

)
(A(t)f (g(t)))

∣∣∣∣
t=0

=
n∑

k=0

�(n, k)f (k)(0) = n!pn(D)f (0).

Certainly, this will reduce to the Faa di Bruno formula when A(t) = 1.

Example 3.1. As a simple instance take {�(n, k), �̄(n, k)} to be the ordinary Stirling numbers {s(n, k), s̄(n, k)} of the
first and second kinds. Then (3.9) yields the Bell number W(n) at x = 1, namely,

W(n) = n!p̄n(1) =
n∑

k=0

s(n, k).
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Consequently, (3.11) gives the simple identity

n∑
k=0

s(n, k)W(k) = 1.

More examples could be constructed using Sheffer polynomials listed in the table at the end of Section 2.

4. Higher dimensional extension

We now extend the Riordan group to the higher dimensional setting. In what follows we shall adopt the multi-index
notational system. Denote

t̂ ≡ (t1, . . . , tr ), x̂ ≡ (x1, . . . , xr ),

t̂ + x̂ ≡ (t1 + x1, . . . , tr + xr),

0̂ ≡ (0, . . . , 0), ĝ(t) ≡ (g1(t1), . . . , gr (tr )),

x̂ · ĝ(t) ≡
r∑

i=1

xigi(ti).

Also, Ei means the shift operator acting on ti , namely for 1� i�r ,

Eif (. . . , ti , . . .) = f (. . . , ti + 1, . . .),

E
xi

i f (. . . , ti , . . .) = f (. . . , ti + xi, . . .).

Formally we may denote Ei = eDi = exp(�/�ti ). Moreover, we write t� ≡ t
�1
1 , . . . , t

�r
r with � ≡ �̂ ≡ (�1, . . . , �r ), r

being positive integer. Also, �� 0̂ means �i �0 (i = 1, . . . , r), and ��� means �i ��i for all i = 1, . . . , r .
We first give an analog of Definition 1.2.

Definition 4.1. Let t̂ = (t1, t2, . . . , tr ), A(t̂), ĝ(t) = (g1(t1), g2(t2), . . . , gr (tr )) and f (t̂) be any given formal power
series over the complex number field Cr with A(0̂)=1, gi(0)=0 and g′

i (0) �= 0 (i =1, 2, . . . , r). Then the polynomials
pn̂(x̂) (n̂ ∈ Nr ∪ 0̂) as defined by the GF

A(t̂)ex̂·ĝ(t) =
∑
n̂� 0̂

pn̂(x̂)t n̂ (4.1)

are called Sheffer-type polynomials with p0̂(x̂)=1. Accordingly, pn̂(D̂) with D̂ ≡ (D1, D2, . . . , Dr) is called Sheffer-

type differential operator of degree n̂ associated with A(t̂) and ĝ(t). In particular, p0̂(D̂) ≡ I is the identity operator.

For formal power series f (t̂), the coefficient of t� = (t
�1
1 , t

�2
2 , . . . , t

�r
r ) is usually denoted by [t�]f (t̂). Accordingly,

(4.1) is equivalent to the expression p�(x̂) = [t�]A(t̂)ex̂·ĝ(t). Also, we shall frequently use the notation

p�(D̂)f (0̂) = [p�(D̂)f (t̂)]
t̂=0̂, (4.2)

and �! ≡ �̂! = �1!�2! · · · �r !.

Definition 4.2. Let A(t̂) and ĝ(t) be any formal power series defined on Cr , with A(0̂) = 1, gi(0) = 0 and g′
i (0) �= 0

(i = 1, 2, . . . , r). Then we have a multivariate weighted Stirling-type pair {�(n̂, k̂), �∗(n̂, k̂)} as defined by

1

k̂!A(t̂)�r
i=1(gi(ti))

ki =
∑
n̂� k̂

�(n̂, k̂)
t n̂

n̂! , (4.3)
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1

k̂!A(̂g∗(t))
−1

�r
i=1(g

∗
i (ti ))

ki =
∑
n̂� k̂

�∗(n̂, k̂)
t n̂

n̂! , (4.4)

where ̂g∗(t) = (g∗
1(t1), g

∗
2(t2), . . . , g

∗
r (tr )), g∗

i ≡ g
〈−1〉
i is the compositional inverse of gi (i = 1, 2, . . . , r) with

g∗
i (0) = 0, [ti]g∗

i (ti ) �= 0, and �(0̂, 0̂) = �∗(0̂, 0̂) = 1. We call �(n̂, k̂) the dual of �∗(n̂, k̂) and vice verse. We will
also call

d
n̂,k̂

:= k̂

n̂
�(n̂, k̂), d∗

n̂,k̂
:= k̂

n̂
�∗(n̂, k̂),

the multivariate Riordan arrays and denote them by (A(t̂), ĝ(t)) and (1/A(̂g∗(t)), ̂g∗(t)), respectively.

Example 4.1. As an example, considering A(t̂) = 1 and ĝ(t) = t̂ , we obtain the p�(x̂) defined by (4.1), namely,

p�(x̂) = x�

�! .

Thus the multivariate weighted Stirling-type pair {�(n̂, k̂), �∗(n̂, k̂)} defined as (4.3)–(4.4) is (�(n̂, k̂), �∗(n̂, k̂)), where

�(n̂, k̂) = �∗(n̂, k̂) = �
n̂,k̂

.

The corresponding multivariate Riordan array pair is (d
n̂,k̂

, d∗
n̂,k̂

), where

d
n̂,k̂

= d∗
n̂,k̂

= k̂

n̂
�
n̂,k̂

.

A similar argument as (2.3) and (2.4) can be established as follows.

Theorem 4.3. Eqs. (4.3) and (4.4) imply the biorthogonality relations∑
m̂� n̂� k̂

�(m̂, n̂)�∗(n̂, k̂) =
∑

m̂� n̂� k̂

�∗(m̂, n̂)�(n̂, k̂) = �
m̂k̂

, (4.5)

with �
m̂k̂

denoting the Kronecker delta, i.e., �
m̂k̂

= 1 if m̂ = k̂ and 0 otherwise, and it follows that there hold the inverse
relations:

fn̂ =
∑

n̂� k̂ � 0̂

�(n̂, k̂)g
k̂

⇐⇒ gn̂ =
∑

n̂� k̂ � 0̂

�∗(n̂, k̂)f
k̂
. (4.6)

Proof. Transforming ti by g∗
i (ti ) in (4.3) and multiplying A(̂g∗(t))−1(k̂!) on the both sides of the resulting equation

yields

t k̂ =
∑
n̂� k̂

�(n̂, k̂)
k̂!
n̂!A(̂g∗(t))

−1
�r

i=1(g
∗
i (ti ))

ni . (4.7)

By substituting (4.4) into the above equation, we obtain

t k̂ =
∑
n̂� k̂

�(n̂, k̂)
∑
m̂� n̂

�∗(m̂, n̂)
k̂!
m̂! t

m̂ =
∑
m̂� k̂

k̂!
m̂! t

m̂
∑

m̂� n̂� k̂

�∗(m̂, n̂)�(n̂, k̂).

Equating the coefficients of the terms t m̂ on the leftmost side and the rightmost side of the above equation leads (4.5)
and (4.6). This completes the proof. �
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Remark 4.1. [�(m̂, n̂)] and [�∗(n̂, k̂)] are a pair of inverse r-dimensional matrices, which may be useful in the higher
dimensional matrix theory.

From (4.5), we can see that the 2r dimensional infinite matrices �(n̂, k̂) and �∗(n̂, k̂) are invertible for each other,
i.e., their product is the identity matrix [�

n̂,k̂
]
n̂� k̂ � 0̂.

By introducing group multiplication

(A(t̂), ĝ(t)) ∗ (B(t̂), ĥ(t)) = (A(t̂)B(ĝ(t)), ̂h(g(t))), (4.8)

where ̂h(g(t)) = (h1(g1(t1)), . . . , hr (gr(tr ))), from Theorem 4.3, we immediately see that the inverse of (A(t̂), ĝ(t))

is (1/A(̂̄g(t)), ̂̄g(t)) because their multiplication result is the identity I = (1, t̂). Hence, similar to [23], we obtain the
following corollary.

Corollary 4.4. Let A(t̂) and ĝ(t) be any formal power series defined on Cr , with A(0̂) = 1, gi(0) = 0 and g′
i (0) �=

0 (i = 1, 2, . . . , r). Then with respect to the multiplication defined by (4.8), {(A(t̂), ĝ(t))} forms a group with the
identity I = (1, t̂) and for any element (A(t̂), ĝ(t)) in the group, its inverse is (1/A(̂g∗(t)), ̂g∗(t)), where ̂g∗(t) =
(g∗

1(t1), g
∗
2(t2), . . . , g

∗
r (tr )), g∗

i ≡ g
〈−1〉
i is the compositional inverse of gi (i = 1, 2, . . . , r) with g∗

i (0) = 0,

[ti]g∗
i (0) �= 0.

Proof. This proof is an analog of the proof on the one variable Riordan group (cf. [23]). Indeed, from (4.8) we have

(A(t̂), ĝ(t)) ∗ I = (A(t̂), ĝ(t)),

((A(t̂), ĝ(t)) ∗ (B(t̂), ĥ(t))) ∗ (C(t̂), f̂ (t)) = (A(t̂)B(ĝ(t))C( ̂h(g(t))), ̂f (h(g(t))))

= (A(t̂), ĝ(t)) ∗ ((B(t̂), ĥ(t)) ∗ (C(t̂), f̂ (t))),

and

(A(t̂), ĝ(t)) ∗
(

1

A(̂g∗(t))
, ̂g∗(t)

)
=
(

A(t̂)
1

A( ̂g∗(g(t)))
, ̂g∗(g(t))

)
= (1, t̂) = I .

This completes the proof of the corollary. �

From Definition 4.1, we have

p�(x̂) = [t�]A(t̂)ex̂·ĝ(t) = [t�]
∑
k̂ � 0̂

1

k̂!A(t̂)�r
i=1(gi(ti))

�i x
�i

i =
∑

��k � 0̂

d�,k̂

x�

k̂! .

Therefore, we establish a one-to-one and onto mapping �r from [d
n̂,k̂

] to pn̂(x̂), where �1 ≡ � shown as in (2.9).
By defining the operation, denoted as #, to two higher dimensional Sheffer type polynomial sequences, {pn̂(x̂) =∑

n̂��� 0̂pn̂,�x
�} and {qn̂(x̂) =∑

n̂��� 0̂qn̂,�x
�}, as follows, the set {{pn̂}, #} forms a group, called the higher dimen-

sional Sheffer group:

{pn̂}#{qn̂} =
⎧⎨⎩ ∑

n̂��� 0̂

rn̂,�x
�

⎫⎬⎭ ,

where

rn̂,� =
∑

n̂� �̂��

�̂!p
n̂,�̂

q
�̂,�.

Similar to Theorem 2.2, we can establish the following result.

Theorem 4.5. The set {{pn̂}, #} with the operation # is a group, called the higher dimensional Sheffer group that is
isomorphic to the higher dimensional Riordan group defined in Corollary 4.4.
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Example 4.2. As an example of (4.1), we set A(t̂)=1 and exp(x̂ ·ĝ(t))=exp(x1(e
t1 −1)+x2(e

t2 −1)+· · ·+xr(e
tr −1))

in (4.1) and obtain

exp(x̂ · ĝ(t)) =
∑
�� 0̂

�̂�(x̂)t�, (4.9)

where

�̂�(x̂) = �r
j=1��j

(xj ),

and �u(t) is the Touchard polynomial of degree u. Hence, we may call �̂�(x̂) the higher dimensional Touchard polynomial
of order �.

Example 4.3. Sheffer-type expansion (4.1) also includes the following two special cases shown as in [14]. Let A(t̂)=
2m/(exp

∑r
i=1ti + 1)m and exp(x̂ · ĝ(t)) = exp(

∑r
i=1xiti). Then the corresponding Sheffer-type expansion of (4.1)

shown as in [14] has the form

A(t̂) exp(x̂ · ĝ(t)) =
∑
�� 0̂

E
(m)

� (x̂)

�! t�,

where E
(m)

� (x̂) (�� 0̂) is defined as the mth order r-variable Euler’s polynomial in [14].

Similarly, substituting A(t̂) = (
∑r

i=1ti )
m/(exp

∑r
i=1ti − 1)m and exp(x̂ · ĝ(t)) = exp(

∑r
i=1xiti) into (4.1) yields

A(t̂) exp(x̂ · ĝ(t)) =
∑
�� 0̂

B
(m)

� (x̂)

�! t�,

where B
(m)

� (x̂) (�� 0̂) is called in [14] the mth order r-variable Bernoulli polynomial. Some basic properties of E
(m)

� (x̂)

and B
(m)

� (x̂) were studied in [14].
Since(

2m

(exp
∑r

i=1ti + 1)m
, t̂

)
∗
(

(
∑r

i=1ti )
m

(exp
∑r

i=1ti + 1)m
, t̂

)
=
(

(
∑r

i=12ti )
m

(exp
∑r

i=12ti + 1)m
, t̂

)
,

we have

{E(m)

� (x̂)}#{B(m)

� (x̂)} = {B(m)

� (2x̂)}.

Example 4.4. For the case A(t̂) = 1 and if ĝ(t) =∑m̂� (1,...,1)am tm/(m̂)!, where am = a
(1)
m1 · · · a(r)

mr
, it follows that

ex̂·ĝ(t) may be written in the form:

exp(x̂ · ĝ(t)) = �r
�=1 exp

⎧⎨⎩x�

∑
m� �1

a(�)
m�

t
m�

�

m�!

⎫⎬⎭= �r
�=1

⎛⎝1 +
∑
k� �1

t
k�

�

k�!

⎧⎨⎩
k�∑

j�=1

x
j�

� Bk�j�
(a

(�)
1 , a

(�)
2 , . . .)

⎫⎬⎭
⎞⎠ ,

(4.10)

so that

p�(x̂) = [t�]ex̂·ĝ(t) = �r
�=1

1

��!
��∑

j�=1

x
j�

� B��j�
(a

(�)
1 , a

(�)
2 , . . .).

Consequently, we have

[t�]f (ĝ(t)) = �r
�=1

1

��!
��∑

j�=1

B��j�
(a

(�)
1 , a

(�)
2 , . . .)D

j�

� f (0̂).
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This is precisely the multivariate extension of the univariate Faa di Bruno formula (cf. [6] for another type extension)

[(d/dt)kf (g(t))]t=0 =
k∑

j=1

Bkj (g
′(0), g′′(0), . . .)f (j)(0). (4.11)

In this paper, examples seems not so enough to illustrate the merit of the theoretical results obtained. Interested
reader might do something including more applications subsequently.

Remark 4.2. The properties of the higher dimensional Sheffer group, such as construction of the subgroup with certain
orders, application to the multivariate expansions, combinatorial identities, etc., remain much to be investigated while
some application results in this topic can be referred to [7].
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