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Abstract

We study involutions in the Riordan group, especially those with combinatorial meaning. We give a new
determinantal criterion for a matrix to be a Riordan involution and examine several classes of examples. A
complete characterization of involutions in the Appell subgroup is developed. In another direction we find
several examples that generalize the RNA matrix but are of independent interest.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Why are involutions of combinatorial interest? Basic curiosity is certainly supplemented by
some intriguing examples. In all these examples we let D = (d(n, k))n,k�0 and if you change the
signs in alternate columns you get a matrix whose square is the identity matrix. The best known
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is Pascal’s matrix where d(n, k) =
(

n

k

)
. A second example is given by the Lah numbers where

d(n, k) =
(

n

k

)
(n+1)!
(k+1)! . Yet a third is given by the coefficients of the Laguerre polynomials where

d(n, k) =
(

n

k

)
n!
k! . These cases have neat closed expressions for d(n, k). Equally interesting are

the RNA matrix [10] and Aigner’s directed animal matrix [1]. Here are the first few rows of these
two matrices:

RNA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
2 3 3 1 0 0
4 6 6 4 1 0
8 13 13 10 5 1

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

and

Directed animals =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
2 3 3 1 0 0
4 6 6 4 1 0
9 13 13 10 5 1

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Note that the left hand columns are the number of secondary RNA structures on a chain of length
n and the Motzkin numbers.

The concept of the Riordan group (R, ∗) has been introduced by Shapiro et al. [14]. A Riordan
matrix D = [dn,k]n,k�0 is defined by a pair of generating functions g(z) = g0 + g1z + g2z

2 + · · ·
and f (z) = f1z + f2z

2 + · · · such that

dn,k = [zn]g(z)(f (z))k,

where g0 /= 0 and f1 /= 0. With little loss of generality we also assume d0,0 = g0 = 1. We denote
this matrix as D = (g(z), f (z)). One example of a Riordan matrix is the Pascal matrix

P =
(

1

1 − z
,

z

1 − z

)
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

· · · · · ·

⎤
⎥⎥⎥⎥⎦ (3)

for which we have(
n

k

)
= [zn] 1

1 − z

(
z

1 − z

)k

.

The Riordan group is the set of all Riordan matrices with the operation being matrix multiplication.
In terms of the generating functions this works out as

(g(z), f (z)) ∗ (G(z), F (z)) = (g(z)G(f (z)), F (f (z))).

Then it is easy to see that the identity element of the Riordan group is I = (1, z), the usual identity

matrix, and the inverse of (g(z), f (z)) is
(

1
g(f̄ (z))

, f̄ (z)
)

, where f̄ (z) is the compositional inverse

of f (z).
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In the present paper, we will focus on involutions in the Riordan group. In combinatorial
situations a Riordan matrix will often have all positive entries on and below the main diagonal
and cannot itself have order 2. We define an element D in the Riordan group to have pseudo order
2 if DM has order 2 where

M = (1, −z) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

· · · · · ·

⎤
⎥⎥⎥⎥⎦ .

Clearly, AMA−1 has order 2 for any element A in the Riordan group. An element of (pseudo) order
2 in the Riordan group will be called a (pseudo) Riordan involution or more briefly a (pseudo)
involution.

In 2001, Shapiro [13] presented several open questions on involutions of the Riordan group:

Q8: Can every element of order 2 in the Riordan group be written as AMA−1 for some element
A in the Riordan group?

Q8.5: If the element of order 2 or pseudo order 2 has combinatorial significance can we find
an A which has a related combinatorial significance?

Q9: If D = (g(z), f (z)) has order 2, is there a simple condition for g(z) in terms of f (z)?

In [2], Cameron and Nkwanta studied classes of combinatorial matrices having pseudo order
2 in the Riordan group and obtained some partial results on the problem Q8. Recently, Cheon and
Kim [3] gave an affirmative answer for Q8 and some positive results concerning the other two
questions.

The purpose of this paper is to study the structure of (pseudo) Riordan involutions. In Section
2, we give a useful characterization of a Riordan matrix in terms of the Stieltjes transform [5,7].
In Section 3, we obtain a necessary and sufficient condition to be a Riordan involution. In Section
4, we determine the generating functions for the λ-invariant sequences in each eigenspace of a
Riordan involution. Finally, in Section 5, we explore generalized RNA triangles.

2. A characterization of a Riordan matrix

For a Riordan matrix D = [dn,k]n,k�0, Rogers [11] has found that every element dn+1,k+1
can be expressed as a linear combination of the elements in the preceding row starting from the
preceding column, and Merlini et al. [9] has found that every element in column 0 can be expressed
as a linear combination of all the elements of the preceding row, also see [15]. Because of their
importance, these properties are stated as the following theorem.

Theorem 2.1. Let D = [dn,k] be an infinite triangular matrix. Then D is a Riordan matrix if
and only if there exists two sequences A = {a0, a1, a2, . . .} and Z = {z0, z1, z2, . . .} with a0 /= 0,

z0 /= 0 such that

(i) dn+1,k+1 = ∑∞
j=0 ajdn,k+j (k, n = 0, 1 . . .),

(ii) dn+1,0 = ∑∞
j=0 zj dn,j , (n = 0, 1, . . .).

The coefficients a0, a1, a2, . . . and z0, z1, z2, . . . appearing in (i) and (ii) are called by the
A-sequence and the Z-sequence of the Riordan matrix D = (g(z), f (z)), respectively. If A(z)
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and Z(z) are the generating functions of the corresponding sequences then it can be proven that
f (z) and g(z) are the solutions of the functional equations, respectively:

f (z) = zA(f (z)),

g(z) = g(0)/(1 − zZ(f (z))). (4)

In this section, we give another characterization of a Riordan matrix. Let D be a Riordan
matrix and let D be the matrix obtained from D by deleting the first row. Since D is a lower
triangular matrix with nonzero entries on the main diagonal, there exists a unique matrix SD such
that DSD = D. We call the matrix SD the Stieltjes transform of D. See [7] for similar ideas but
in the language of continued fractions and [5] where the term production matrix is used instead
of Stieltjes matrix. It was pointed out by the referee that the following result also can be found in
[6]. But the result has been proved independently.

Theorem 2.2. Let D = [dn,k] be an infinite lower triangular matrix with dn,n /= 0. Then D is a
Riordan matrix if and only if the Stieltjes transform matrix SD of D has the following form:

SD =

⎡
⎢⎢⎢⎢⎣

z0 a0
z1 a1 a0
z2 a2 a1 a0
z3 a3 a2 a1

· · · · · ·

⎤
⎥⎥⎥⎥⎦ , (5)

where (a0, a1, . . .) is the A-sequence and (z0, z1, . . .) is the Z-sequence of D.

Proof. Let D = [dn,k] be a Riordan matrix. If we write out DSD = D in matrix form

⎡
⎢⎢⎢⎢⎣

d0,0 0 0 0
d1,0 d1,1 0 0
d2,0 d2,1 d2,2 0
d3,0 d3,1 d3,2 d3,3

· · ·

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z0 a0 0 0
z1 a1 a0 0
z2 a2 a1 a0

z3 a3 a2 a1

· · ·

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

d1,0 d1,1 0 0
d2,0 d2,1 d2,2 0
d3,0 d3,1 d3,2 d3,3

d4,0 d4,1 d4,2 d4,3

· · ·

⎤
⎥⎥⎥⎥⎦

and recall the definitions of the A-sequence (a0, a1, . . .) and the Z-sequence (z0, z1, . . .), we see
that they mesh to give the proof. �

Corollary 2.3. Let D be a Riordan matrix D with A-sequence (a0, a1, . . .) and Z-sequence
(z0, z1, . . .), and let SD be the Stieltjes transform matrix of the form (5). Then the Riordan matrix
D is of the form:

D =
∑
k�0

Ek,0S
k
D (6)

where Ek,0 is a cell whose (k, 0)-entry is 1 and other entries are all zeros, and S0
D is the identity

matrix.

Proof. Let D = [dn,k]n,k�0 be a Riordan matrix with A-sequence (a0, a1, . . .) and Z-sequence
(z0, z1, . . .). By the definition of the A-sequence and Z-sequence, one can easily show that the
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top row of SD is the 1st row of D, and inductively the term Ek,0S
k
D in the sum (6) generates the

kth row of D. �

3. Structure of a Riordan involution

Let D = [di,j ]i,j�0 be a Riordan involution with A-sequence (a0, a1, . . .) and Z-sequence
(z0, z1, . . .). Then we have a0d0,0 = ±1. If a0 = 1 and d0,0 = 1 (or d0,0 = −1, respectively)
then the only Riordan involution is I = (1, z) (or −I = (−1, z), respectively). Hence we may
assume that d0,0 = 1 and a0 = −1.

Let D[α] be a principal submatrix of order |α| indexed by the rows α and columns α of D

and let D[α] be the matrix of order |α| − 1 obtained from D[α] by deleting the first row and last
column. More generally, the matrix obtained from D[α] by deleting the ith row and j th column
will be denoted by D[α](i|j).

Theorem 3.1. Let D = [di,j ]i,j�0 be a Riordan matrix with A-sequence (−1, a1, . . .) and d0,0 =
1. Then D is a Riordan involution if and only if for any consecutive index set α = {i1, i2, . . . , ik}
(k � 3) of {0, 1, 2, . . .}, we have

det(D[α]) = (−1)i2+···+ik−1dik,i1 . (7)

Proof. Let D = [di,j ]i,j�0 be a Riordan involution and let α = {i1, i2, . . . , ik} be any consecutive
subset of {0, 1, 2, . . . , }. We proceed by induction on k � 3. Since D[α] is a k × k involutary
matrix, we have ricj = δij , i, j = 1, 2, . . . , k, where ri and cj are the ith row vector and j th
column vector of D[α], respectively and δij is the Kronecker symbol. In particular, from rkc1 = 0
we obtain

k−1∑
j=2

dik,ij dij ,i1 = ((−1)i1+1 + (−1)ik+1)dik,i1 . (8)

First let k = 3. From (8) with the consecutive indices i1, i2, i3, we obtain

detD[α] = det

[
di2,i1 (−1)i2

di3,i1 di3,i2

]
= di2,i1di3,i2 + (−1)i2+1di3,i1

= (−1)i1+1di3,i1 + (−1)i3+1di3,i1 + (−1)i2+1di3,i1

= (−1)i1+1di3,i1 ,

which proves (7) for k = 3. Now assume that k � 4. Since D is a Riordan matrix with A-sequence
(−1, a1, . . .) and d0,0 = 1, we may assume that a matrix D[α] of order k − 1 has the form

D[α] =

⎡
⎢⎢⎢⎢⎢⎢⎣

di2,i1 (−1)i2

di3,i1 di3,i2 (−1)i3

...
...

. . .
. . .

dik−1,i1 dik−1,i2 · · · . . . (−1)ik−1

dik,i1 dik,i2 · · · · · · dik,ik−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9)

where the unspecified entries are all zeros.
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By applying the Laplace expansion on the first column of D[α] and then by the induction, we
obtain

det(D[α]) =
k−1∑
j=1

(−1)j+1dij+1,i1 detD[α](j |1)

= (−1)i3+···+ik−1dik,i2di2,i1 +
k−2∑
j=2

(−1)j+1dij+1,i1 detD[α](j |1)

+(−1)k+i2+···+ik−1dik,i1 . (10)

Note that for j with 2 � j � k − 2, the matrix D[α](j |1) of order k − 2 has the form

D[α](j |1) =
[
D[α′] O

C D[α′′]
]

,

where α′ = {i2, . . . , ij } and α′′ = {ij+1, . . . , ik}. Since O is (j − 2) × (k − j) zero submatrix
of D[α](j |1), it follows from the induction that

detD[α](j |1) = (detD[α′])(detD[α′′])
= (−1)i2+···+ij +ij+2+···+ik−1dik,ij+1 . (11)

By substituting (11) into (10) and then by applying (8) together with 1 + ij = ij+1, we obtain

det(D[α]) = (−1)i3+···+ik−1

k−1∑
j=2

dik,ij dij ,i1 + (−1)k+i2+···+ik−1dik,i1 (12)

=
(
(−1)i2+···+ik−1 + (−1)1+i3+···+ik + (−1)2+i3+···+ik

)
dik,i1

= (−1)i2+···+ik−1dik,i1 ,

which proves (7).
Conversely, suppose that (7) holds for any consecutive index set α = {i1, i2, . . . , ik} (k � 3)

of {0, 1, 2, . . . , }. Note that a Riordan matrix D is involutary if and only if D[α] is involutary for
any consecutive set α.

If k = 1, 2 then clearly D[α] is involutary. Hence for a fixed k � 3 it is sufficient to show that
rkcm = δkm for each m = 1, 2, . . . , k. If k = m then rkcm = (−1)ik (−1)im = (−1)2ik = 1. Now
assume k /= m. Let us consider a consecutive subset αm = {im, . . . , ik} of α = {i1, i2, . . . , ik}.
By applying (12) for αm and then by using 1 + ij = ij+1 together with dik,ik = (−1)ik , we obtain

detD[αm] = (−1)im+2+···+ik−1

k∑
j=m+1

dik,ij dij ,im . (13)

Further, by our assumption we have

detD[αm] = (−1)im+1+···+ik−1dik,im . (14)

Thus it follows from (13) and (14) that

(−1)im+2+···+ik−1

k∑
j=m

dik,ij dij ,im = 0.
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Since dij ,im = 0 for 1 � j < m, we obtain

rkcm =
k∑

j=1

dik,ij dij ,im =
k∑

j=m

dik,ij dij ,im = 0,

which completes the proof. �

Since DM is pseudo involution for a Riordan involution D and M = (1, −z), we have the
following corollary.

Corollary 3.2. Let D = [di,j ]i,j�0 be a Riordan matrix with d0,0 = 1. Then D is a pseudo invo-
lution if and only if for any consecutive index set α = {i1, i2, . . . , ik} (k � 3) of {0, 1, 2, . . .}, we
have

det(D[α]) = dik,i1 .

For example, the Pascal matrix P given in (3) is a pseudo involution. Indeed,

det

[
1 1
1 2

]
= 1 (α = {0, 1, 2}), det

[
2 1
3 3

]
= 3 (α = {1, 2, 3}),

det

⎡
⎣2 1 0

3 3 1
4 6 4

⎤
⎦ = 4 (α = {1, 2, 3, 4}), . . . .

One can easily show that each matrix given in (1) and (2) is also a pseudo involution.
As noted in [12], there are some important subgroups of the Riordan group. The Appell sub-

group is the set {(g(z), z)} and the checkerboard subgroup is the set {(g(z), f (z))} where g(z)

is an even function and f (z) is an odd function. In particular, the Appell subgroup is a normal
subgroup of the Riordan group.

For the Appell subgroup, we have the following characterization of involutions.

Theorem 3.3. Let D = (g(z), −z) be a Riordan matrix with a Z-sequence (z0, z1, . . .) where
g(0) = 1. If D is a Riordan involution then for each m = 1, 2, . . . ,

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0 2 0 · · · 0

z1 z0 2
. . .

...

z2 z1 z0
. . . 0

...
. . . 2

z2m−1 z2m−2 · · · z1 z0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (15)

Conversely, if (15) holds for each m = 1, 2, . . . then

(g(z), z) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
z0 1 0 0
z1 z0 1 0
z2 z1 z0 1

· · · · · ·

⎤
⎥⎥⎥⎥⎦ (16)

is a pseudo involution in the Appel subgroup.
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Proof. Let Z(z) be the generating function of a Z -sequence (z0, z1, . . .) in a Riordan involution
D = (g(z), −z). Since (g(z), −z)(g(z), −z) = (1, z), we have g(z)g(−z) = 1. Hence it follows
from (4) that

g(z) = 1

g(−z)
= 1 + zZ(z). (17)

By setting h(z) = 1
1+g(z)

:= ∑∞
n=0 hnz

n and using g(z)g(−z) = 1, we obtain

h(z) + h(−z) = 1

1 + g(z)
+ 1

1 + g(−z)

= 2 + g(z) + g(−z)

1 + g(z) + g(−z) + g(z)g(−z)
= 1. (18)

It immediately follows that h0 = 1/2 and h2m = 0 for each m = 1, 2, . . .. Further, from (17) we
obtain h(z) = 1

2+zZ(z)
. That is, h(z) is the reciprocal inverse of

2 + zZ(z) = 2 + z0z + z1z
2 + · · · + z2m−1z

2m + · · ·
Hence, by Wronski’s formula (p.17 of [8]) we have

h2m = (−1)2m

22m+1
det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0 2 0 · · · 0

z1 z0 2
. . .

...

z2 z1 z0
. . . 0

...
. . . 2

z2m−1 z2m−2 · · · z1 z0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Since h2m = 0 for each m = 1, 2, . . ., the formula (15) follows from (19).
Conversely, suppose that (15) holds for each m = 1, 2, . . .. Let h(z) = ∑

n�0 hnz
n = 1

1+g(z)
.

Since Z(z) is the generating function of a Z-sequence (z0, z1, . . .) in a Riordan matrix
D = (g(z), −z), it follows from (4) that

h(z) = 1

1 + 1
1−zZ(−z)

= 1 − zZ(−z)

2 − zZ(−z)
= 1 − 1

2 − zZ(−z)
.

Hence 1 − h(z) is the reciprocal inverse of 2 − zZ(−z). Thus we obtain h0 = 1
2 and then by

Wronski’s formula

−h2m = (−1)2m

22m+1
det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−z0 2 0 · · · 0

z1 −z0 2
. . .

...

−z2 z1 −z0
. . . 0

...
. . . 2

z2m−1 −z2m−2 · · · z1 −z0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

From (15), we have h2m = 0 for m � 1. Hence, we have

1 = h(z) + h(−z) = 1

1 + g(z)
+ 1

1 + g(−z)
= 2 + g(z) + g(−z)

1 + g(z) + g(−z) + g(z)g(−z)
.

It follows g(z)g(−z) = 1, which implies that D = (g(z), −z) is a Riordan involution. Hence
(g(z), z) is a pseudo involution with the form (16). �
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4. Eigenspace of a Riordan involution

In this section, we determine the generating function for the λ-invariant sequence in each
eigenspace of a Riordan involution.

Let R∞ denote the infinite dimensional real vector space of all real sequences (x0, x1, x2, . . .)
T

and let D = (g(z), f (z)) /= I be a Riordan involution. For an eigenvalue λ of D, Dx = λx implies
that x = D2x = λ(Dx) = λ2x. Hence the only eigenvalues of a Riordan involution D are 1 and
−1. Let Eλ(D) denote the eigenspace of D corresponding to the eigenvalue λ. As in [4] or [16],
we call x ∈ R∞ a λ-invariant sequence if x ∈ Eλ(D).

Let us defineE = [x0
...x1

...x2
... · · ·] to be the infinite matrix where x2m and x2m+1,m = 0, 1, . . .,

are eigenvectors corresponding to λ = 1 and −1, respectively. Then we see that DE = EM or
D = EME−1. Conversely, if there exists the Riordan matrix A such that D = AMA−1 for a
Riordan involution D then each column of A is an eigenvector of D corresponding alternately to
the eigenvalues 1 and −1.

For example, we consider the RNA triangle D with the minus signs in alternate columns, which
is a Riordan involution:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 −1 0 0 0
1 −2 1 0 0
2 −3 3 −1 0
4 −6 6 −4 1

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let A be the Riordan matrix of the form:

A =
(√

g(z), ln g(z)
)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1
2 1 0 0 0

3
8 1 1 0 0

13
16

47
24

3
2 1 0

195
128

47
12

91
24 2 1
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where g(z) is the same generating function as (21). Then one can see that D = AMA−1 or
DA = AM . Hence each even (or odd, respectively) column of A is an eigenvector of the Riordan
involution D corresponding to the eigenvalue 1 (or −1, respectively).

In [3], Cheon and Kim proved the existence for the Riordan matrix A such that D = AMA−1

where D is a Riordan involution. We state it as Lemma 4.1. Further, they showed that if D =
(g(z), f (z)) is a Riordan involution then g(z) may be expressed by g(z) = exp[�(z, f (z))] for
some antisymmetric function �(x, z), i.e., �(x, z) = −�(z, x).

Lemma 4.1 [3]. Let D = (g(z), f (z)) be a Riordan involution. Then there exists the Riordan
matrix A such that D = AMA−1. In particular, the matrix A is of the form

A =
(

exp

[
�(z, f (z))

2

]
, �(z, f (z))

)
for some antisymmetric function �(x, z).
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By Lemma 4.1, we have the following theorem.

Theorem 4.2. Let D = (g(z), f (z)) be a Riordan involution and let GF(xk) be the generating
function of a λ-invariant sequence xk for each k = 0, 1, 2, . . . . Then

GF(xk) = exp

[
�(x, f (x))

2

]
(�(x, f (x)))k

for some antisymmetric function �(x, z).

Note that if we take �(x, z) = ln
∣∣ z
x

∣∣ as an antisymmetric function then one can get the matrix
A in (20) by Lemma 4.1.

5. Generalized RNA triangles

The RNA triangle given in (1) may be expressed by the Riordan matrix D = (g(z), zg(z))

where

g(z) = (1 − z + z2) −√
(1 − z + z2)2 − 4z2

2z2
. (21)

The simplest combinatorial description for g(z) is that it is the generating function for the
number of Motzkin paths with no consecutive UD steps, i.e. with no peaks.

In [2], Cameron and Nkwanta explored Dn := (g(z)
(

1−z
1−zg(z)

)n

, zg(z)) as a generalization of

the RNA triangle with D0 = D, and gave combinatorial interpretations for D1 and D2. Further
they claimed that Dn is a pseudo involution for n � 0, but this does not work for n � 1.

In this section, we generalize the RNA triangle in a similar spirit and some interesting combi-
natorial items emerge.

Theorem 5.1. Let g(z) be the same generating function as (21). Then for any generating function
G(z) with G(0) /= 0,

En :=
(

g(z)

(
G(z)

G(−zg(z))

)n

, zg(z)

)
(22)

is a pseudo involution for each n = 0, 1, 2, . . .

Proof. First we claim that for any generating function G(z) with G(0) /= 0, EnM may be factored
as

EnM = (G(z), z)n(g(z), −zg(z))(G(z), z)−n,

where M = (1, −z). Indeed, we have

EnM =
(

g(z)

(
G(z)

G(−zg(z))

)n

, −zg(z)

)

=
(

g(z)(G(z))n
(

1

G(−zg(z))

)n

, −zg(z)

)

= (g(z)(G(z))n, −zg(z))

((
1

G(z)

)n

, z

)

= ((G(z))n, z)(g(z), −zg(z))

((
1

G(z)

)n

, z

)
= (G(z), z)n(g(z), −zg(z))(G(z), z)−n.



G.-S. Cheon et al. / Linear Algebra and its Applications 428 (2008) 941–952 951

Since (g(z), −zg(z)) is a Riordan involution, clearly EnM is Riordan involution. Hence the proof
is completed. �

For example, when G(z) = 1 + z we obtain a pseudo involution:

En =
(

g(z)

(
1 + z

1 − zg(z)

)n

, zg(z)

)
.

We will soon look at E1 and E2 in detail but to connect with the bivariate antisymmetric functions
we note that

�n(x, z) = ln

∣∣∣∣ zx
(

1 + x

1 + z

)n∣∣∣∣
is antisymmetric. Thus we have:

exp[�n(z, −zg(z))] = e
ln
∣∣∣−zg(z)

z

(
1+z

1−zg(z)

)n∣∣∣ = e
ln
∣∣∣−g(z)

(
1+z

1−zg(z)

)n∣∣∣
= g(z)

(
1 + z

1 − zg(z)

)n

.

In particular, for n = 1, 2 the matrix En has a combinatorial interpretation.
First let us consider the matrix E1:

E1 =
(

g(z)

(
1 + z

1 − zg(z)

)
, zg(z)

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
3 1 0 0 0 0
6 4 1 0 0 0
13 10 5 1 0 0
30 24 15 6 1 0
71 59 40 21 7 1

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the sequence in the first column of E1, see [A125267] in the Sloane’s Encyclopedia of Integer
Sequences. Let us consider walks using the steps U = (1, 1), L = (1, 0), and D = (1, −1). We
want these paths to start at the origin, not to go below the x-axis, and to have no peaks. We also
let the level steps at height 0 be any of three colors. Finally consecutive level steps at height 0
must be distinct colors. Then (E1)n,k is the number of such paths with n steps ending at height k.

A similar but more intricate combinatorial setting exists for E2:

E2 =
(

g(z)

(
1 + z

1 − zg(z)

)2

, zg(z)

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
5 1 0 0 0 0
15 6 1 0 0 0
40 21 7 1 0 0
105 62 28 8 1 0
275 174 91 36 9 1

· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The same rules as in E1 apply for heights above zero but at height zero the rules are as follows.
The first level step can be any of five colors. The next step can be any of colors A, B, or C. After
that an A or B step can be followed by A, B, or C. But a C step can only be followed by a C or
a C* step. AC* step can be followed by any of A, B, or C. There also are no down steps from
height 1 to height 0. It means that the first column of the matrix enumerates paths made uniquely
by horizontal steps. The generating function for the level steps at height 0 is
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g(z) = (1 + z)2

1 − 3z + z2
.

This sequence is [A054888] in the Sloane’s Encyclopedia of Integer Sequences. It also counts
layers for the hyperbolic tessellation by regular pentagons of angle π/2. See the EIS for more
information and a link to a beautiful illustration due to Paolo Dominici.
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