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Bernoulli Numbers and the Riemann Zeta Function

3

B Sury is with the Indian
Statistical Institute. He
introduces this article by:

Bernoulli truly stunned us
with his numb-er;
woke us up from a deep
and ignorant slumber.
Its relation with Riemann
zeta
makes us think nothing
could be neater.

The connection is much
deeper
- ask any plumber!
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Introduction

It is a beautiful discovery due to J Bernoulli that for any
positive integer k, the sum "% ; ¢* can be evaluated in
terms of, what are now known as, Bernoulli numbers.

In this article, we shall discuss several methods of eval-
uating the above sum. For instance, Marikkannan and
Ravichandran have written about a method of evalua-
tion using integration. Apart from Bernoulli’s method
which we shall recall, we give a method akin to using
integration, and one using differentiation. These meth-
ods are often useful in evaluating more general sums too
as we shall indicate. Finally, we discuss the connections
with the Riemann Zeta function.

Bernoulli Polynomials and Numbers

To motivate the introduction of the Bernoulli polynomi-
als, let us start with the sum that we want to evaluate

viz., Y i*. Evidently, —'—1; is the coefficient of z*
in the power series expansmn ofe®+e*+...+e™. In
other words,

(n+1)1’_‘1 1k+2k+..‘+ k

e n

— =143 k
e — 1 * k! !

k>0

Now, for z in a small interval around 0, the function %5
can be represented by a power series 225 = 3,59 B
The numbers B, are known as Bernoulh numbers and 1t
is easy to evaluate them as follows.

Since the power series z and (e” — 1) 3,50 B, % agree
in an interval around 0, the numbers are determlned
recursively as

By=1, Z<;>33:0Vr22.

s<r
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The first few values are By = 1,B; = —1/2,B, = 1/6
and B3:B5—_—B7="'=0.

Now, consider the function Fy(z) =
F;(0) = 1. Once again, in an interval around 0, F; has
a power series expansion Fy(z) = Y450 Bx (t)—"j;

The functions By(t) are actually polynomials in ¢ since

ZBk(t —————Ft( ) tz —CMZBk
k>0 er k>0
and thus

k (k&

But) =3 (F) Bttt

=\l

B (t) are called Bernoulli polynomials; note that Bi(0) =
By.

Returning to our sum, we have that ——i2—+— is the
eln+l)z_1 .

coefficient of z* in 1 , it is the coefﬁcxent of

g+l jn el o Fn+1(l') Fo(z)-

kyok . . tnk B n+1)—B k
Thus, 142 ;5 - = k+1((k+1))1 AL = (k+1)' Zl 0( +1)
By(n + 1)+

In other words,

k

1 k+1
k ok ... k. k+1-1
1% + 2 +n A 1;0( ] )Bl(n+1) .

Note that it is evident from this formula that the sum
of the k-th powers of the first n natural numbers is a
polynomial function of n of degree k + 1.

Method of ‘Integration’

For convenience, let us denote Si(n) = 1* +2F ... +
nF. This is a polynomial function of n i.e., there is a
polynomial Si(z) of degree k + 1 such that the above

equality holds for all n.
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The basic idea of the method we will discuss now is that
(since n* = Sy (n)~Sp(n—1)), ¥ can be thought of as a
‘derivative’ of the function Sk(z). In other words, Si(z)
itself may be thought of as an ‘integral’ of the func-
tion z*. Of course, this is only heuristic at the moment
because zF will be the derivative of S, at some point be-
tween x — 1 and x. The correct tool to make this precise
is the ‘method of differences’ which is really a discrete
analogue of differentiation. More precisely, let us recall
that the ‘backward difference’ operator is defined on any
function f by (Vf)(z) = f(z) — f(z —1) for all z. It is
trivial to see that if P.(z) = z(z +1)---(z +r — 1) for
r > 1 and for all z, then (VP,)(z) = rP,_1(z) for all z.

Let us call g an anti-difference of f if Ag = f. Note
that if f is a polynomial such that (Vf)(n) = 0 for
infinitely many n, then f is a constant. So, if f, fo are
polynomials with V f; = V fy, then f; — f, is a constant.

Let us look at our sums Si(n) now. Let us keep in mind
that the polynomial Sy(z) has no constant term. Writ-
ing fy(z) = z* and g.(z) for any anti-difference of f
which is a polynomial function, then we have (Vgi)(n) =
fe(n) = nF = Sp(n)—Sk(n—1) = (VSi)(n) forall n > 2.

Hence, Si(z) = gr(x) + ¢ for some constant c. Since
Si(z) has no constant term, we have ¢ = —gi(0).

In other words, Sk(n) = gr(n) — gx(0) for any anti-
difference (polynomial) function gy of f.

Note the similarity with the fundamental theorem of
calculus.

So, our problem reduces to finding an anti-difference of
the function z*. We observed earlier that the function
P(z) = z(x +1)---(z + 7 — 1) has an anti-difference
%{%ﬂ. Therefore, it is just a matter of writing z* in
terms of the P,’s.

For instance, £ = 1 gives fi(z) = ¢ = Py(z) so that
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g1(z) can be taken to be f—zéﬂ = 5@;—12 so that Si(n) =
g1(n) — 1(0) = 25HL.

2
For k = 2, one has fy(z) =22 =z(z+ 1) —z = Py(z) —

P;(z) so that g, can be taken as go(z) = f—“”éﬂ — &éﬂ =
z(z41)(z+2)  z(z+1) - z(r+1)(2z+1)
3 ) 6 :

This gives Sy(n) = 2tlenotl) for 4]) p,

The fact that one can indeed write z* as an integer linear
combination of Py, P._1,---, P, can be seen as follows.

Now P.(z) =z(z+1)---(z+r—1) ="+ a,_1,2"" ' +
.-+ + ag, for some integers a;,. Indeed, these integers
are the symmetric polynomials in 1,2,--- 7 — 1.

Then, we have the matrix equation AF = P, where A
is the upper triangular integer matrix

1 a1 Qr—2p - Gog
0 1 Ag-2k—1 - Ook-1
.. ,
0 0 0 1
F is the column vector (z*,z*7!,...,z) and, P is the

column vector (Py(x), Pr-1(x),- -, Pi(z)).

The matrix A has an inverse which is also an upper
triangular integer matrix B with 1’s on the diagonal.

Thus, F = BP gives the required expression.

Let us remark here that the above method is general
enough to work atleast for any complex polynomial func-
tion f instead of fr. Thus, to evaluate f(1)+---+ f(n),
one writes [ as a linear combination of the polynomials
P, say,

flz) = ao + a1 Py(z) + - - - + agPy(z),

where d = deg f and a; are complex numbers. Then,
one has
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The reasons for not
being able to
evaluate £ at odd
values

(or even say whether
it is irrational in
general)

are deep.

FU) 4+t f(n) = agn+ay 20 4 . | g ittt

d+1
A Method Involving Differentiation

This is an elementary and pretty useful method involv-

ing the differential operator z.

Note that (z+ d ):1: = nx". Therefore, applying it repet-

itively, one obtams (zL)Fz™ = nkam.

Hence 1% + 2% + - 41 = (zL)* (1 + 2+ 22 + - +27)
at = 1.

This can be rewritten in a more convenient form as

n n+1

Zz = lim,_,(z—)" —————
dz

i=1 z—1

Riemann Zeta Function

In this final section we discuss the sums of the infinite
series y_,>1 ﬁg_for integers k > 2. This is a special value
of the so-called Riemann zeta function ((s) defined as
the sum of the series 3,5, & for any real number s > 1
(actually, it can be defined as a complex valued function
for any complex number s with Re s > 1 by the same
series).

Some of the values are {(2) = §(4) o =, ¢(6) = &= 45

The reader will notice that we have not written {(k) for
any odd value of k and that, for even k, the value seems
to be a rational multiple of 7*. In fact, the value {(3) is
known to be irrational but it is still unkown if it can be
expressed in terms of ‘known’ constants | We shall show
now that ((2k) is indeed a rational multiple of 7% for
any natural number k. In fact, the Bernoulli numbers
will surface here again! The reasons for not being able
to evaluate ¢ at odd values (or even say whether it is
irrational in general) are deep.

Now, for any complex number z, we have sin z = 2 [],,>;

(1~ Fm)-
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Its logarithmic derivative gives us

22 42k
zcotz—l—l—ZZ —I—ZZZ .
n>1 ~# 1kl VT
On the other hand, in the definition of the Bernoulli
numbers as Z*5 = 3,59 Brf—:, if we put z = 2iz, we
obtain (recalling that Bo,.; = 0 for r > 1),
02k ,2k

zeot z =1~ (~1)*'By

k>1

&)

Comparing the two expressions, we obtain

% k— IB 22k_1 2k
C(2K) = (-1 Bug™

Here is a rather surprising observation. The Riemann
zeta function ((s) is defined by the series 3,5, n™* for
any complex number with Re (s) > 1. The theory of the
zeta function implies that its definition can be extended
(not by the same series, of course) to all values of s
other than s = 1. Moreover, the values at s and 1 — s
are related by what is known as a functional equation
(thus there is the mysterious half line Re (s) = 1/2 in the
middle on which the Riemann hypothesis predicts all the
nontrivial zeroes of {(s) ought to lie). Let us now think
of the naive idea that since (k) for any natural number
k > 1is given by the series 3,5, n~ kit is possible that
the value ¢ (—k) is related to the partlal sums Y., <N n*.
That this is indeed so is a simple, beautiful observation
due to J Minac. Recall from the previous discussion that
there is a unique polynomial Sy(z) which coincides with
the sum 1¥ + ... + nF at x = n for any natural number
n and that Sy has degree k + 1. In fact, we saw that

_ Brya(z+1) — Beya(1)
Sk(.’t) = P .
As B! (z) = mB,,_1(z) for all m, we see

1 . 1 Bk+1($ + ].) — Bk+1(1) .
/0 Si(zx l)dx—/o e =

It turns out
interestingly that for
natural numbers k,
the value £ (—k) is
related to the partial

k
n
sums z .

n<N
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Abel's partial

summation formula is

an elementary yet
very powerful

formula — the readers

are well aware of its

continuous analogue

~ integration by
parts.

Bt
—1)k =
(=1) k+1
We claim :
(k) = [ Sl — Vda = (~1 2
0 k kE+1

Actually, one can use the functional equation for the
zeta function to conclude this but we follow a more el-
ementary method of obtaining analytic continuation of
the zeta function which will also prove this claim.

The analytic continuation of the zeta function to all
s # 1 and the fact that lim,;(s — 1)((s) = 1 are
obtainable as follows. Now, the zeta function ((s) is
defined for a complex variable s by the series 3> ; n™*
which converges for Re (s) > 1. We shall use Abel’s
partial summation formula which is an elementary yet
very powerful formula — the readers are well aware of its
continuous analogue — integration by parts.

If {an}, {b.} are two sequences of complex numbers, and
if A, = ay + - - - + a,, then we have the identity

albl 4. + anbn = Anbn+1 — Z Ak(bk-l—l —_ bk)
k=1
Thus, 3, an,b, converges if both the sequence {Anbny1}
and the series 3301 Ak (bk+1 — bi) converge.

The proof follows simply by observing that

n

Y apby = > (Ap—Ap-1)be—=> Acbi—Y_ Apbryr+Anbniy.
k=1 k=1 k=1 k=1

In our case, by using Abel’s partial summation formula,
one has

C(s)=s£w-—[xid:v=—f——s/lw {$}dm

s+t s—1 aat

Here [z] and {z} respectively denote the integral part
and the fractional part of . Note that the integral con-
verges for Re (s) > 0 and thus the last expression gives
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the analytic continuation of the zeta function to the re-
gion Re (s) > 0. We shall proceed inductively now. On
writing

o0 {m} . Z /’n-+1 T —
1 .’L"+1 .’L‘"+1 / (u + n)s+1
and integrating the last integral by parts, we obtain
s s(s+1) oo {z}?
— —1)- .
() s—1 ) 2 1 xot? dz

From this, we have analytic continuation of { for Re
(s) > —1 and also that ¢{(0) = —31. Proceeding induc-
tively, we get

+1 +q-1
() =152 T +‘f)! 2D (¢(s+9)-1)
s(s+1)---(s+ m) um™tl
T (m 1) (u + n)stmtl’

The infinite sum on the nght hand side converges for
Re (s) > —m and thus we have an expression for {(s)
for such s. At this point, we evaluate it at s =1—-m
Rather surprisingly, this pretty but simple idea does not
seem to have been thought of until very recently when
it was done so by Ram Murty and M Reece. We get

1, (=nm

A-m)=1- o+ 1)~

m—1 m —
S (") e -mea -0
The first few values at nonpositive integers are
((0) = 3, ¢(~1) = ~35,¢(~2) = 0,¢(~3) = 7
2 12 120
On the other hand, for M =1,2,3,-- -, we have

k
M =3 (’“ N i)(—l)fsk_r(M _1).
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Therefore, we get

k E+1 . 1 (_1)k+1
s <7‘ n 1) (—"1) /O Sk_r(.'L' - 1)dl‘ = k_—*-é_

As ((0) = —1, we arrive at the formula

(k) = [ Sula—1)do = (-1F 2L,

which was claimed.

Let us finally remark that the Riemann zeta function
vanishes at the negative even integers —2,—-4, -6, -
and these are its so-called trivial zeroes. The Riemann
hypothesis asserts that all other zeroes lie on the line
Re (s) =1/2.

Errata
Resonance, Vol. 8, No.5, May 2003, page 10

Equations (1), (2) and (3) should read as follows:

VE = ple Gauss law (N
_ oB

VxE = — a1 Faraday law (2)

VB=0 No magnetic charges 3)

We regret the typographical error.
Editors

Resonance gratefully acknowledges help received from
R L Karandikar, V Pati, B Bagchi and S G Dani.
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