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Bernoulli troly stunned us 

with his numb-er; 

woke us up from a deep 

and ignorant slumber. 

Its relation with Riemann 

zeta 

makes us think nothing 

could be heater. 

The connection is much 

deeper 

- ask any plumber! 
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It is a beautiful  discovery due to J Bernoulli  tha t  for any 
positive integer k, the sum ~ i ~  ik can be evaluated in 
terms of, wha t  are now known as, Bernoulli  numbers.  

In this article, we shall discuss several methods  of eval- 
uat ing the above sum. For instance,  Marikkannan and  
Ravichandran have wri t ten about  a method  of evalua- 
t ion using integration.  Apart  from Bernoulli 's m e t h o d  
which we shall recall, we give a me thod  akin to using 
integration, and one using differentiation. These meth-  
ods are often useful in evaluating more general sums too 
as we shall indicate. Finally, we discuss the connections 
with the R iemann  Zeta function. 

Bernoul l i  P o l y n o m i a l s  and  N u m b e r s  

To motivate the  introduct ion of the  Bernoulli polynomi-  
als, let us s tar t  wi th  the sum tha t  we want  to evaluate 

viz., ~ i n l  i k. Evidently, ~ '  ik k! is the  coefficient of x k 
in the power series expansion of e ~ + e ~ + - - -  + e "~. In 
other words, 

e ('~+i)x - 1 1 k q-  2 k -~ . . .  -{- n k 

-- 1 + ~ x k. 
e x - 1 k! 

k>0 

Now, for x in a small interval a round 0, the function 
e x - - 1  

fig can be represented by a power series ~ - I  = ~r>0_ B r ~ .  
The numbers  B~ are known as Bernoulli  numbers  and it 
is easy to evaluate them as follows. 

Since the power series x and (e ~ - 1)~T>0 B ~  agree 
in an interval around 0, the numbers  are de te rmined  
recursiveIy as 

B 0 = l ,  s<r~--~(:)B~=OVr->2" 
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T h e  first few values are B0 = 1, B1 = - 1 / 2 ,  B2 = 1/6 

and  B3 = B5 = B7 . . . . .  0. 

- ~ f o r x : f i 0 a n d  Now, consider the  funct ion  Ft(x) ~ - 1  
Ft(O) = 1. Once again,  in an  interval a round  0, Ft has 

a power  series expans ion  Ft(x) = Ek>_o Bk(t)~,.. 

T h e  funct ions  Bk(t) are actual ly polynomials  in t since 

X k X k 

E Bk(t)-~-(.. = Ft(x) = e, ~ e ~ x _ 1 = et~ E Bk~. 
k_>O k_>o 

and  thus  

B (t) = Z B/tk-z 
/=0 

Bk(t) are called Bernoul l i  polynomials;  no te  t ha t  Bk(O) = 

Bk. 

R e t u r n i n g  to our sum,  we have tha t  lk+2k+"'+"k is tile k! 
coefficient of x k in e("+1)~-1 i.e., i t  is t he  coefficient of 

e ~ - I  

x k+l in ~(e(,~+1/~_1) = Fn+l(x) - Fo(X). 

Thus ,  a! -- (k+l)! -- (k+l)! ~ = o  a 
B/(n + 1) k+l-/. 

In  o ther  words, 

l k + 2 k + . . . + n k - -  l ~ - - ~ ' ~ ( k + l ) B t ( n + l ) k + l - l .  
k + l t =  o l 

No te  t h a t  it is ev ident  f rom this formula  t ha t  the  sum 
of the  k - th  powers of the  first n na tu ra l  numbers  is a 
po lynomia l  func t ion  of n of degree k + 1. 

Method of 'Integration' 

For convenience,  let us denote  Sk(n) = 1 k +. 2 k + . . .  + 
n ~. This  is a po lynomia l  funct ion of n i.e., there  is a 
po lynomia l  Sk(X) of degree k + 1 such t h a t  the  above 
equal i ty  holds for all n. 
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The basic idea of the method  we will discuss now is tha t  
(since n k = S k ( n ) - S k ( n -  1)), x k can be thought  of as a 
'derivative'  of the function Sk(x).  In other  words, S~(x) 
itself may be thought  of as an ' integral '  of tile func- 
tion x k. Of course, this is only heurist ic at the momen t  
because x k will be the derivative of Sk at some point  be- 
tween x - 1 and x. The correct tool to make this precise 
is the 'me thod  of differences' which is really a discrete 
analogue of differentiation. More precisely, let us recall  
tha t  the 'backward difference' operator  is defined on any 
function f by ( V f ) ( x ) =  f ( x ) -  f (  x - 1) for all x. I t  is 
trivial to see tha t  if P,.(x) = x i x  + 1 ) . . .  ( x + r - 1) for 
r _> 1 and for all x, then  (VPr) (x)  = rP~_l(x) for all x. 

Let us call g an anti-difference of f if A 9 = f .  Note  
that  if f is a polynomial  such tha t  ( V f ) ( n )  = 0 for 
infinitely many  n, then f is a constant .  So, if f l ,  f2 are 
polynomials wi th  ~Tfl = V f2, then  f l  - f2 is a constant .  

Let us look at our sums Sk (n) now. Let us keep in mind  
tha t  the polynomial  Sk(x) has no constant  term. Writ-  
ing fk (x)  = x k and gk(x) for any anti-difference of fk 
which is a polynomial  function, then  we have (Vgk)(n)  = 
fk(n)  = n k = S k i n ) - S k ( n - 1 )  = (VSk ) (n )  for all n >_ 2. 

Hence, Sk(x)  = gk(x) + c for some constant  c. Since 
Sk(x) has no constant term, we have c = -9k(O). 

In other words, Sk(n) = g k ( n ) -  gk(O) for  any anti- 
difference (polynomial) funct ion gk of fk.  

Note the similarity wi th  the fundamenta l  theorem of 

calculus. 

So, our problem reduces to finding an anti-difference of 
the function x k. We observed earlier tha t  the funct ion 
Prix) = x i x  + 1 ) . . - ( x  + r -  1) has an anti-difference 

p~+l(~) Therefore, it is just  a ma t t e r  of wri t ing x k in 
r + l  " 

terms of the  Pr's. 

For instance, k = 1 gives f l ( x )  = x = Pl(x)  so tha t  
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g l ( x )  can be taken to be p2(x) = x(x+l) 2 2 so tha t  S l ( n )  = 
n(n+l)  

g l ( n )  - gl(O) = 2 

For k = 2, one has f 2 ( x )  = x 2 = x ( x  + 1 ) -  x = P 2 ( x ) -  

Pl(X) so tha t  g2 can be taken as g2(x)  = p3(x) _ P~(~) = 3 2 
x ( x + l ) ( x + 2 )  _ x(x+l)  = x ( x + l ) ( 2 x + l )  

3 2 6 

n(n-+-l ) (2n+l)  fo r  a l l  n .  This  gives S2(n)  = 6 

The  fact tha t  one can indeed write x k as an integer linear 
combinat ion of Pk,  P k - 1 , ' " ,  P1 can be seen as follows. 

a X r - 1  Now P r ( x )  = x ( x  + 1 ) - - - ( x  + r -  1) = x ~ + r - l , r  -~- 

"'" + a0,~ for some integers ai,r. Indeed, these integers 
are the  symmetr ic  polynomials in 1, 2, �9 �9 �9 r - 1. 

Then ,  we have the mat r ix  equation A F  = P ,  where A 
is the  upper t r iangular  integer matr ix  

1 a k - l , k  a k - 2 , k  " �9 " aO,k 

0 1 ak-2,k-1 "'" aO,k-1 

J 0 0 . . .  0 1 

F is the column vector (xk,  xk -1 ,  . . .  ,x)  and, P is the 

column vector (Pk(x), P k - l ( X ) , . . ' ,  P l ( x ) ) .  

The  matr ix  A has an inverse which is also an upper 
t r iangular  integer mat r ix  B with l ' s  on the diagonal. 

Thus,  F = B P  gives the required expression. 

Let  us remark here tha t  the above me thod  is general 
enough to work atleast  for any complex polynomial  func- 
t ion f instead of fk. Thus,  to evaluate f ( 1 ) + . . . +  f ( n ) ,  

one writes f as a linear combination of the polynomials 
Pr, say, 

f (x )  = ao + a lPl (x)  + " "  + adPd( ), 

where  d = deg f and a~ are complex numbers.  Then,  
one has 
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The reasons for not 

being able to 

evaluate r at odd 

values 

(or even say whether 

it is irrational in 

general) 

are deep. 

f ( 1 ) + . . . + f ( n )  
_ ~(.+:). . .(~+a) 

= a o n + a l _ _  + . . . + , , d  d+, " 

A M e t h o d  Invo lv ing  D i f f e r e n t i a t i o n  

This is an elementary and pretty useful method involv- 
ing the differential operator x ~ .  

Note that ( x d ) x  ~ = n x " .  Therefore, applying it repet- 
itively, one obtains ( x ~ ) k x  '~ = n k x  '~. 

Hence 1 k + 2  k + , . . + n  k = ( x ~ ) e ( l + x + x  2 + . - . + x  ~) 
a t x = l .  

This can be rewritten in a more convenient form as 

k i k =  lim=-+l(X~x)kXn+l - l x T _ ~  
i = 1  

R i e m a n n  Z e t a  F u n c t i o n  

In this final section we discuss the sums of the infinite 
series ~ > 1  ~Az for integers k _> 2. This is a special value 
of the so-called Riemann zeta function ~(s) defined as 

1 for any real number s > 1 the sum of the series ~,,>1 ~--r 
(actually, it can be defined as a complex valued function 
for any complex number s with Re s > 1 by the same 
series). 

~r 2 l r  4 7r 6 
S o m e  o f  t h e  v a l u e s  a r e  = = r  = 

The reader will notice that we have not written ~(k) for 
any odd value of k and that, for even k, the value seems 
to be a rational multiple of 7r k. In fact, the value r is 
known to be irrational but it is still unkown if it can be 
expressed in terms of 'known' constants [ We shall show 
now that  ~(2k) is indeed a rational multiple of 7r 2k for 
any natural number k. In fact, the Bernoulli numbers 
will surface here again! The reasons for not being able 
to evaluate ~ at odd values (or even say whether it is 
irrational in general) are deep. 

Now, for any complex number z,  we have sin z = z I]n_>l 

(1 ==) - -  ~ �9 
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Its logari thmic derivative gives us 

z ~ 1 z ~k 
zcot  z = 1 + 2 E z 2 - n27r2" = 1 -  2 E E n2kTr2k �9 

n~l  n>l k>l 

On the other hand,  in the definition of the  Bernoulli 
=, 

= - ~ r > 0 B r T ,  if we put  x = 2iz, we numbers  as e=_l 
obta in  (recalling tha t  B2r+l  = 0 for  r > 1), 

22kZ2k 
zcot z = 1 -  ~--~.(--1)k-lB2k (2k)! " 

k>l 

Compar ing  the two expressions, we obtain 

2~k-1 
 (2k) = (-1)k-lB k 

Here is a ra ther  surprising observation. The  Riemann 
zeta function ~(s) is defined by the series En>l n-S for 
any complex number  wi th  Re (s) > 1. The  theory of the 
zeta  function implies tha t  its definition can be extended 
(not by the same series, of course) to all values of s 
o ther  than  s = 1. Moreover, the values at  s and 1 - s 
are related by wha t  is known as a functional  equation 
(thus there is the mysterious half line Re (s) = 1/2 in the 
middle  on which the Riemann  hypothesis predicts all the 
nontr ivial  zeroes of ~(s) ought to lie). Let us now think 
of the  naive idea tha t  since ~(k) for any na tura l  number  
k > 1 is given by the series ~n> l  n-k,  it is possible tha t  
the value ~ ( - k )  is re la ted to the part ial  sums ~-~n<_g n'v. 
Tha t  this is indeed so is a simple, beautiful  observation 
due to J Minac. Recall  from the previous discussion tha t  
there  is a unique polynomial  S'v(x) which coincides with 
the  sum l'v + . . .  + n k at x = n for any na tura l  number  
n and  tha t  Sk has degree k + 1. In fact, we saw tha t  

Sk(x) = Bk+l(X + 1 ) -  Bk+l(1) 
k + l  

As B ' ( x )  = mB,,,_l(X) for all m, we see 

f l  S ,v (x -  1 ) d x =  fl Bk+I(X Or 1 ) -  Bk+l(1) _ _ 
do ./o k + l  
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It,turns out 
interestingly that for 
natural numbers k, 
the value r is 
related to the partial 

sums E nk . 
n<N 
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Abel's partial 

summation formula is 

an elementary yet 

very powerful 

formula - the readers 

are well aware of its 

continuous analogue 

- integration by 

parts. 

�9 k B k + l  

( -1 )  k7 1" 

We claim : 

1 " "k B k + l  f 
( ( - k )  = ]o S k ( x -  1)dx----- ( -1 )  

Actually, one can use the functional equation for the 
zeta function to conclude this but we follow a more el- 
ementary method of obtaining analytic continuation of 
the zeta function which will also prove this claim. 

The analytic continuation of the zeta function to all 
s • 1 and the fact that  lim~__,l(s- 1)~(s) = 1 are 
obtainable as follows. Now, the zeta function ~(s) i~ 
defined for a complex variable s by tim series ~,~176 1 n -s 
which converges for Re (s) > 1. We shall use Abel's 
partial summation formula which is an elementary yet 
very powerful formula - the readers are well aware of its 
continuous analogue - integration by parts. 

I f  {am}, {bn} are two sequences of complex numbers, and 
if A,~ = al + . . .  + am, then we have the identity 

n 

albl + ' "  + anb, = A,~b,~+l - ~ Ak(bk+l - bk). 
k = l  

Thus, ~ n  a,~bn converges if  both the sequence {A~b,~+l} 
and the series ~k~176 Ak(bk+l - bk) converge. 

The proof follows simply by observing that  

akbk = ~ ( A k - A k - 1 ) b k -  ~-~. Akbk-~-~ Akb~+l+Anbn+l. 
k----1 k = l  k = l  k = l  

In our case, by using Abel's partial summation formula, 
one has 

r  = s d x  = - s oo { x }  d x  
8 l X s + l  " 

Here Ix] and {x} respectively denote the integral part 
and the fractional part of x. Note that  the integral con- 
verges for Re (s) > 0 and thus the last expression gives 
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the  analytic continuat ion of the zeta function to the re- 
gion Re (s) > 0. We shall proceed inductively now. On 
writ ing 

X s~-I --X "~--t-T ~- (U "~- n )  s+l n : l  n-~l JO 

and integrating the  last integral by parts, we obtain 

r -- s ' - ~  (r + 1 ) -  1) s(s + 1) {X}2dx 
2 X 8+2 " 

From this, we have analytic continuation of ~ for Re 
(s) > - 1  and also tha t  ~(0) - 1 Proceeding induc- - -  - 3 ~  

tively, we get 

1 "~ s ( s + l ) . . . ( s + q - 1 ) ( r 2 4 7  , , ( ( s )  --- 1-~ 7 -1 E q----1 

s(s q_ l) . . . (s q_ m) ~_~ L1 ?~m+l 
(777, -[- 1)! n----1 0 (U -t- n )  .-t-mq-l" 

The  infinite sum on the  right hand side converges for 
Re (s) > - m  and thus we have an expression for ((s)  
for such s. At this point,  we evaluate it at s = 1 - m. 
Rather  surprisingly, this pret ty  but simple idea does not 
seem to have been thought  of until very recently when 
it was done so by Ra m Murty and M Reece. We get 

1 ( - 1 )  m 
~ ( 1 - m ) - - -  1 - - - +  

m m ( m  + 1) 

( (_1)  q m - 1 (((1 - m + q) - 1). 
q=l q 

The  first few values at nonpositive integers are 

1 
~(0) = - ~ , ( ( - 1 )  ---- - -  

On  the  other hand, for M -- 1, 2, 3 , . . . ,  we have 

Mk+l = ~ r + 
r ~ O  

1 1 
12' r  ---- 0, ~ ( - 3 )  -- 120" 
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Therefore, we get 

k 

r~O 

As - 1 -- - ~ ,  we arrive at the  formula 

fo - .k Bk+l r  = S k ( x -  1)dx = ( - 1 )  k Z l '  

which was claimed. 

Let us finally remark that  the  Riemann  zeta funct ion 
vanishes at the  negative even integers - 2 , - 4 , - 6 , . . -  
and these kre its so-called triviM zeroes. The R iemann  
hypothesis asserts tha t  all other  zeroes lie on the  line 
Re ( s ) =  1 /2 .  

Errata 

Resonance, Vol. 8, No.5, May 2003, page 10 

Equations (1), (2) and (3) should read as follows: 

V-E = p/e Gauss law (1) 

0B 
Vx ~. = - -~- Faraday law (2) 

V.B = 0 No magnetic charges (3) 

We regret the typographical error. 
Editors 
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