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Abstract: The main object of this paper is to obtain several symmetric properties of theq-zeta type functions. As applications of these
properties, we give some new interesting identities for the modifiedq-Genocchi polynomials. Finally, our applications are shown to
lead to a number of interesting results which we state in the present paper.
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1 Introduction

Throughout this paper, we use the following standard
notations:

N := {1,2,3, · · ·} and N0 := {0,1,2, · · ·}=N∪{0} .

Also, as usual,R denotes the set of real numbers andC
denotes the set of complex numbers.

The Genocchi polynomialsGn(x) and the Genocchi
numbers Gn := Gn(0) are given by the following
generating functions:

∞

∑
n=0

Gn(x)
tn

n!
=

(
2t

et +1

)
ext

and
∞

∑
n=0

Gn
tn

n!
=

2t
et +1

, (|t|< π),

(1)

respectively. In particular, the second generating function
in (1) can be restated as follows:

eGt+t +eGt = 2t

by using theumbral (symbolic) convention exhibited by
Gn := Gn. By utilizing the Taylor-Maclaurin expansion,

one finds that

(G+1)n+Gn =





2 (n= 1)

0 (otherwise).
(2)

It follows from (2) that (see, for details, [29])

G1 = 1, G2 =−1, G3 = 0, G4 = 1, G5 = 0,

G6 =−3, G7 = 0, G8 = 17, . . .

and (in general)

G2n+1 = 0 (n∈ N).

The history of the Genocchi polynomialsGn(x) and
the Genocchi numbersGn can be traced back to the
Italian mathematician, Angelo Genocchi (1817–1889).
From Genocchi to the present time, the Genocchi
polynomials and the Genocchi numbers have been
extensively studied in many different contexts in such
branches of Mathematics as, for instance, Elementary
Number Theory, Complex Analytic Number Theory,
Homotopy Theory (especially stable Homotopy groups of
spheres), Differential Topology (especially differential
structures on spheres), Theory of Modular Forms
(especially Eisenstein series),p-Adic Analytic Number
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Theory (especiallyp-adic L-functions) and Quantum
Physics (especially quantum groups). Investigations
involving the Genocchi polynomials and their associated
combinatorial relations have received considerable
attention in recent years (see, for details, [1], [2], [3], [6],
[7], [8], [16], [24], [30] and [26]).

Araci et al. [6] studied the modifiedq-Genocchi
polynomials which are given by the following generating
function:

Fq (x, t) =
∞

∑
n=0

Gn,q (x)
tn

n!
=

[2]q t
∞

∑
m=0

(−q)me(x+[m]q)t , (3)

where theq-number[λ ]q is given by

[λ ]q :=
1−qλ

1−q
(0< q< 1; λ ∈ C), (4)

so that, obviously, we have

lim
q→1−

{[λ ]q}= λ (λ ∈ C).

In the case whenx= 0 in (3), it leads to

Gn,q (0) := Gn,q,

that is, to the modifiedq-Genocchi numbersGn,q. In
addition to this, by lettingq → 1−, Gn,q reduces to the
Genocchi numbersGn:

lim
q→1−

{Gn,q}= Gn.

The Genocchi numbersGn(x) possess a number of
important properties and are well known in Number
Theory. In fact, these numbers are related to the values at
negative integers of the Euler Zeta function defined by
(see [20], [22], [23], [28], [29]; see also [31])

ζ (s,x) =
∞

∑
n=0

(−1)n

(x+n)s = Φ(−1,s,x) (5)

(s∈ C; x∈ C\Z−
0 ; Z−

0 := {0,−1,−2, . . .}),

where Φ(z,s,a) denotes the widely- and
extensively-studied general Hurwitz-Lerch Zeta function
defined by (see, for example, [28, p. 121et seq.] and [29,
p. 194et seq.]; see also [27], [31] and [32])

Φ(z,s,a) :=
∞

∑
n=0

zn

(n+a)s (6)

(
a∈ C\Z−

0 ; s∈ C when|z|< 1; ℜ(s)> 1 when|z|= 1
)
.

Recently, Kim [20] defined theq-Euler Zeta function
as follows:

ζq (s,x) = [2]q
∞

∑
n=0

(−1)nqn

[x+n]sq
, (s∈ C; x∈ C\Z−

0 ).

(7)

On the other hand, Araciet al [6] introduced theq-Zeta
type function ζ̃q (s,x) which is slightly different from
Kim’s q-Zeta functionζq (s,x) defined by (7):

ζ̃q (s,x) :=
1

Γ (s)

∫ ∞

0
ts−2{−Fq (x,−t)

}
dt

= [2]q
∞

∑
n=0

(−1)nqn
(

x+[n]q

)s , (8)

(
s∈ C; x 6=−[n]q (n∈ N0)

)
,

whereFq (x,−t) is given by (3). From (3) and (8), we find
that (see [6])

ζ̃q (−n,x) =
Gn+1,q(x)

n+1
(n∈ N0). (9)

Moreover, by using (7) and (8), we have

q−sxζ̃q

(
s,q−1 [x]q−1

)
= ζq (s,x) . (10)

The Zeta functions play a crucially important rôle in
Analytic Number Theory and have applications in such
areas as (for example) physics, probability theory, applied
statistics, complex analysis, mathematical physics,p-adic
analysis and other related areas. In particular, the Zeta
functions occur within the concept of knot theory,
quantum field theory, applied analysis and number theory
(see [9], [10], [11], [20], [21], [22], [23], [28] and [31]).

The distribution formula for the modifiedq-Genocchi
polynomials is given by (see [6])

Gn,q

(
qa [d]qx

)
:=

[d]n−1
q

[d]−q

d−1

∑
a=0

(−1)aqa(n+1)
Gn,qd

(
x+

[a]q
qa [d]q

)
,

for d ≡ 1 (mod 2).

(11)

Araci et al. [8] derived several new identities for the
(h,q)-Genocchi polynomials and gave symmetric
identities of the(h,q)-Zeta type functions. Yuan He [14]
gave symmetric identities for Carlitz’sq-Bernoulli
numbers (see also [12] and [13]). Kim also obtained
symmetric identities for theq-Euler polynomials and
derived the symmetric identities for theq-Euler Zeta
function (see [15]). Simsek [25] gave the complete sum of
products of (h,q)-extension of the Euler polynomials.
Bagdasaryan investigated the elementary evaluation of the
Zeta function and presented a real analytic approach to
the values of the Riemann Zeta function (see, for details,
[9] and [10]).

The symmetric identity of the Genocchi polynomials
is given by Theorem 1 below (see [11]).
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Theorem 1.Let a and b be odd integers. Then we have

m

∑
i=0

(
m
i

)
ai−1bm−iGi (bx)Sm−i(a)

=
m

∑
i=0

(
m
i

)
bi−1am−iGi (ax)Sm−i(b), (12)

where

Sm(a) :=
a−1

∑
j=0

(−1) j jm. (13)

Motivated essentially by some of the aforecited
investigations, the fundamental aim of this paper is to
generalize Theorem1 by presenting an interesting and
potentially useful extension of the symmetry identity (12)
to hold true for the modifiedq-Genocchi polynomials
arising from the above-mentionedq-Zeta type functions.
Several other related results are also considered.

2 Theq-Zeta Type Functions

In this section, we recall from (8) that

ζ̃q (s,x) = [2]q
∞

∑
m=0

(−1)mqm
(

x+[m]q

)s . (14)

In view of (10), we consider (14) in the following form:

q−asbx−sb jζ̃qa

(
s,q−a

[
bx+

b j
a

]

q−a

)
=

[2]qa

∞

∑
m=0

(−1)mqma
[
m+bx+ b j

a

]s

qa

. (15)

For non-negative integersk andi such thatm= bk+ i
with 0≦ i ≦ b−1, if we suppose thata≡ 1 (mod 2) and
b≡ 1 (mod 2)), then we have

q−asbx−sb jζ̃qa

(
s,q−a

[
bx+

b j
a

]

q−a

)
(16)

= [a]sq [2]qa

∞

∑
m=0

(−1)mqma

[ma+abx+b j]sqa

= [a]sq [2]qa

∞

∑
m=0

b−1

∑
i=0

(−1)i+mbq(i+mb)a

[(i +mb)a+abx+b j]sqa

= [a]sq [2]qa

b−1

∑
i=0

(−1)i qia
∞

∑
m=0

(−1)mqmba

[ab(m+x)+ai+b j]sqa
,

which readily yields

a−1

∑
j=0

(−1) j q jbq−asbx−sb jζ̃qa

(
s,q−a

[
bx+

b j
a

]

q−a

)

= [a]sq [2]qa

a−1

∑
j=0

(−1) j q jb
b−1

∑
i=0

(−1)i qia×

×
∞

∑
m=0

(−1)mqmba

[ab(m+x)+ai+b j]sqa
. (17)

Upon replacinga by b and j by i in (16), we get

q−asbx−asζ̃qb

(
s,q−b

[
ax+

ai
b

]

q−b

)

= [b]sq [2]qb

a−1

∑
j=0

(−1) j q jb×

×
∞

∑
m=0

(−1)mqmba

[ab(m+x)+ai+b j]sqa
. (18)

Thus, by applying (17) in (18), we obtain the following
theorem.

Theorem 2.For any odd integers a and b, we have

[2]qb

[a]sq

a−1

∑
i=0

(−1)i qib(1−s)ζ̃qa

(
s,q−a

[
bx+

bi
a

]

q−a

)

=
[2]qa

[b]sq

b−1

∑
i=0

(−1)i qia(1−s)×

× ζ̃qb

(
s,q−b

[
ax+

ai
b

]

q−b

)
. (19)

Remark 1. Upon settingb = 1 in Theorem2, we easily
deduce that

ζ̃q

(
s,q−1 [ax]q−1

)
=

[2]q
[2]qa [a]sq

a−1

∑
i=0

(−1)i qi(1−s)ζ̃qa

(
s,q−a

[
x+

i
a

]

q−a

)
. (20)

Taking a = 2 in (20), we derive the following
Corollary.

Corollary 1.For any odd integer a, we have

ζ̃q

(
s,q−1 [2x]q−1

)
=

[2]q
[2]q2 [2]sq

× (21)

[
ζ̃q2

(
s,q−2 [x]q−2

)
−qb(1−s)ζ̃q2

(
s,q−2

[
x+

1
2

]

q−2

)]
.

Remark 2. If we takes= −n in Theorem2, we get the
following symmetric property of the modifiedq-Genocchi
polynomials.

c© 2014 NSP
Natural Sciences Publishing Cor.



2806 S. Araci et. al. : New Symmetric Identities Involvingq-Zeta Type Functions

Theorem 3.For any odd integers a and b, we have

[2]qb [a]n−1
q

a−1

∑
i=0

(−1)i qib(n+1)×

×Gn,qa

(
q−a

[
bx+

bi
a

]

q−a

)
=

= [2]qa [b]n−1
q

b−1

∑
i=0

(−1)i qia(n+1)×

×Gn,qb

(
q−b

[
ax+

ai
b

]

q−b

)
. (22)

We now takeb= 1 and replacex by x
a in Theorem3.

We thus restate the distribution formula for the modified
q-Genocchi polynomials as follows:

Gn,q

(
− [−x]q

)
=

[2]q
[2]qa

[a]n−1
q

a−1

∑
i=0

(−1)i qi(n+1)×

×Gn,qa

(
q−a

[
x+ i

a

]

q−a

)
, (2 ∤ a) . (23)

We next find from (3) that
∞

∑
n=0

Gn,q (x+y)
tn

n!
= [2]q t

∞

∑
m=0

(−q)me(x+y+[m]q)t

=

(
∞

∑
m=0

ym tm

m!

)(
∞

∑
n=0

Gn,q (x)
tn

n!

)
,

which, by applying the Cauchy product, yields

∞

∑
n=0

Gn,q (x+y)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Gk,q (x)yn−k

)
tn

n!
. (24)

Thus, by comparing the coefficients oftn
n! on both sides of

this last equation (24), we get the following Corollary.

Corollary 2.For n∈ N0, we obtain

Gn,q (x+y) =
n

∑
k=0

(
n
k

)
Gk,q (x)yn−k. (25)

By using Theorem3 and (25), we can derive Theorem
4 below.

Theorem 4.For any odd integers a and b, we have

[2]qb [a]n−1
q

n

∑
k=0

(
n
k

)
[a]k−n

q−1 [b]
n−k
q−1 ×

×Gk,q

(
q−a [bx]q−a

)
S(−n−1)

n−k:q−b (a) =

= [2]qa [b]n−1
q

n

∑
k=0

(
n
k

)
[b]k−n

q−1 [a]
n−k
q−1 ×

×Gk,q

(
q−b [ax]q−b

)
S(−n−1)

n−k:q−a (b) . (26)

where

S( j)
m:q (a) :=

a−1

∑
i=0

(−1)i q ji [i]mq . (27)

Remark 3. Letting q→ 1− in Theorem4, we can deduce
the known symmetry identity (12).

3 Concluding Remarks and Observations

In this article, we have derived several symmetric
properties of theq-Zeta type functioñζq (s,x) defined by
(8). As applications of these properties, we give new
interesting symmetry identities for the modified
q-Genocchi polynomialsGn,q (x) which are defined by
(3). In the limit whenq→ 1−, this last result (Theorem 4)
is shown to yield the known symmetry identity (12) for
the Genocchi polynomialsGn(x).
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