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APPROXIMATION OF THE JACOBI POLYNOMIALS
AND THE RACAH COEFFICIENTS

U. ELIAS AND H. GINGOLD

ABSTRACT. This is the second part of a project which
provides asymptotic approximations to the Jacobi polynomi-
als Pr(ba’ﬁ)(m) and to the Racah coefficients Pr(ban+c’b"+d) (z),
as n — oo, where a,b,c,d are constants. The approxima-
tions to P{*") () are generated by the construction of certain
fundamental sets of solutions to a hypergeometric differential
equation. In a first step we construct approximations to the
Jacobi polynomials and the Racah coefficients on a closed in-
terval [z1, 1] where the solutions are free of zeros. This poses a
special challenge since the two endpoints of the interval are a
regular—singular point and a turning point of the correspond-
ing differential equation. In the second step we “connect” the
approximations of the Jacobi polynomials on [1,c0) through
the singular regular point z = 1 to yield a global approxi-
mation on [z1,00). Our global approximation of the Jacobi
polynomials on [z1,00) is obtained without the intervention
of “special functions.”

1. Introduction. This work is a continuation of the studies in [5].
In this recent paper [5], a technique was developed and employed that
rendered new asymptotic approximations to solutions of the differential
equation

(1.1) v =px)y, a<z<b

and their derivatives. This technique was applied to the hypergeometric
equation

(1.2)

w [ a?-1 N B -1 +n(n+a+5+1)+(a+1)(5+1)/2
YT li@ 12 T4z 1) 2?1 y

on the interval (1,00). One solution of equation (1.2) is the function

(x—1)tD/2 (4 1)(ﬁ+1)/2PT(La,,6’) (z), so an approximation of the Jacobi

P(Dﬁﬁ)

polynomial P,™"’(z) is obtained on [1,00). The same method was
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applied also to some specialized Jacobi polynomials where a,( are
replaced by linear functions of n. These polynomials, plantabnth) (x),
are employed in the representation of the Racah coefficients. The Racah
coefficients play an important role in quantum theory, see e.g., [1, 2].

See [3, 14, 17] for other numerous applications.

The asymptotic approximations that we utilize are
(1.3)

I 1/2 I 1/2
= |1+ 1+ ——) +gu(l-— /4
Y1 [( Q11)( i l2) Q21( \/H—lz) }p

X exp(/w/\ds>,
(1.4) N

I 1/2 I 1/2 )
= 14— +(1+ 1- ~1/4
v {“2( Vil > ( ‘””( m) }p

I 1/2 I 1/2 »
- 1-—— ) —@a+ (1+ > ]
e {q( m) Uta)\1t =g ) |P
xexp(—/ )\d.z'),
Zo

A=\p+ (@ /4p)?,  lz)=p/4p*".

The four perturbation terms g;;(z) are solutions of four separate
Volterra integral equations of the second type
(1.7)

g (z) = — /awr(tl) [/t (L) exp ( - 2/; Ads) dh} it
- /:r(tl) [/t r(ts) exp < _ 2/: Ads)qll(tg)dtz] dt.

where



APPROXIMATION OF THE JACOBI POLYNOMIALS 851

qoo(z )——/b (tl)[/: (t2) exp <2/t:1)\ds> dtz] dt,

(1.8) \ :
/ r [/ (t2) exp <2/ /\ds>q22(t2) dt2] dtq,
ta
b ¢
q12( / r(t1) exp( 2/ )\ds> dtq
b ztl
(1.9) / (t1) exp< 2/ /\ds>
: b
x [/ r(t2)q12(t2)dt2] dt,
t1
t1
g1 ( / 7(t1) exp (2/ Ads) dt,
ztl
(1.10) / (t1) exp (2/ ,\ds>

t1
X [/ r(t2)qa1(t2) dt2 | dty

with 7 = 1'/2(1 + [?). They are calculated by a rapidly convergent
resolvent series. It follows that

qi1(a) = ga1(a) = ga2(b) = q12(b) = 0.

If, in addition, [, A(t)dt = +oo, then also gi2(a) = 0 and if

fb A(t) dt = 400, then also go1(b) = 0 [5, Theorem 3.1]. Moreover,
q11(b) = g22(a). Note that all other terms in the asymptotic approxi-
mations (1.3)—(1.6) are explicitly given by algebraic expressions and by
certain integrals of algebraic expressions.

The asymptotic techniques that are utilized in [5] and here are
influenced by [7, 8, 9]. The reader who is interested in more details
in how our technique differs from the WKB technique and from the
asymptotic techniques utilized in [4, 10-13, 15, 16] may want to
consult the comparisons in [5].
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The asymptotic approximations (1.3)—(1.6) may be applied to a wide
variety of problems. They hold on bounded or unbounded intervals, at
regular points and at regular-singular points as well. In [5] we derived
new representations and approximations of the Jacobi polynomials as
xz— 17, 2 = 400, n — +00 or a — 0.

Our plan is to provide global approximations to the Jacobi polyno-
mials P{*") (x) and to the Racah coefficients on the entire interval
(—00,00). In this quest the interval (—oo,00) is decomposed into a
union of a finite number of intervals. On each subinterval an asymp-
totic approximation is provided, and the different approximations are
“connected” on neighboring intervals. (This type of connection was
called in [16] “central connection” in contrast to “lateral connection”
that requires analytic continuation in the complex plane.)

In the present work we extend the results of [5] to a subinterval of
the interval of orthogonality (—1,1). Let zp,21,—1 < zp < 23 < 1
denote the turning points, i.e., the two points where p(z) vanishes. We
shall obtain asymptotic approximations of the solutions of (1.2) on the
intervals (—1, zp] and [21, 1) where p(z) > 0. The analysis of solutions of
(1.2) on the intervals (—1, zo] and [z1, 1) should not be underestimated,
since each such interval poses a challenge to the task of determining an
asymptotic approximation to the solutions of (1.2). This is so because
of several reasons:

(1) One endpoint, say z1, is a turning point while the other end point
x = 1 is a regular-singular point of equation (1.2). It is noteworthy
that the approximations (1.3)—(1.6) are valid at turning points as well.
This property turns out to be of prime importance in the current work.

(2) Our technique extracts the values of solutions of differential
equations at the turning points zp,z; from the asymptotic formulas
without the intervention of special functions. All these benefits follow
from one and the same set of asymptotic approximations, (1.3)—(1.6)
that are written in several variations. At the turning points, some of
the perturbation terms g;x(x) are shown to play an important role in
the approximations. These are uncommon practices in the literature.

(3) For Jacobi polynomials with large values of n, the intervals
(=1, 2] and [21,1) shrink to zero, having length O(1/n). On the
other hand, for P,E“"*“”’”“j)(x), the lengths of these intervals tend,
as n — 00, to positive numbers. We note that the limiting values of
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zp and 2z; as functions of n coincide with the limiting values obtained
in [6]. In either case (z1,1) separates the interval [1,c0), where Jacobi
polynomials have no zeros, from the interval (2, z1), where p(z) < 0
where the behavior of Jacobi polynomials is dominated by their zeros.

Among other results, we prove

Theorem 1.1. (z — 1)@+D/2(z 4 1)B+D/2p{*P) (3) s given on
(1,00) by y1(z)/Cr, while on [z1,1) it is given by y2(x)/CL, where
Cg,CyL are explicitly calculated constants.

In a future work we plan to derive approximations on (zg, z1) where
p(z) < 0 and thus complete a global description on (—o0,00). The
upcoming sections build towards a primary goal of this article. Namely,
the approximation of the Racah coefficients on the interval [z1,00) as
n — 00, to be given in Section 6. It is shown that from one formula we
get the asymptotic approximation of the Racah coefficients as n — oo
away from the turning point z; as well as an approximation of the
Racah coefficients in the vicinity of the turning point z;. The special
nature of our formulas also provide us with the value of the Racah
coefficients at x = z;.

2. Fundamental systems. Let us write equation (1.2) as y’ =
p(z)y with

A n B n c
z—12 (z+1)2 22-1

(2.1) M@Z(

We shall primarily be concerned with
a? -1
4

2
~1
(2.2) 3:54 >0,

C:nm+a+5+D+%m+Dw+U>Q

A= >0,

and we will give special consideration to the cases where o, are
replaced by an + «, bn + (.
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In [5] we calculated that, on (1, c0),

(2.3)
p(z) = Aw s )7+ 1(3:6(5_—11)); to -, 0,
(2.4)
ey — “2A@+ 1)3 +£§x—1)123 = 1]
I(z) P _ 7

T 4pd2 T 4p32

A+ 1? 4+ Bz - 13+ Cz(2? - 1)
(2.5) = 72[14(% n 1)2 T B(:L‘ — 1)2 + C(m2 _ 1)]3/2 <0,

and

(2.6)
_ 4AC(z+1)? +4BC(x — 1)? + (124B + C?)(2* — 1)

l/(m) = 9(A(z +1)2 + B(z — 1)2 + C(22 — 1)]5/2 > 0.

Consider (1.2) on (—1,1). For A, B,C > 0, p(z) may have two zeros,
say zop < z1, in (—1,1) and p(z) > 0 on (z1,1) and (—1,2p). Since
we are interested in A, B and C that are possibly more general than
those which are specified in (2.2), the change of sign of p(z) in (—1,1)
is not always guaranteed. The following discussion applies to [z1,1),
regardless of its length.

(2.5)-(2.6) change their external
< 1, we have [(z? — 1)2]3/2 =

As we turn from (1,00) to (21,1)
appearance. p(z) > 0, but for z

[V

|22 — 1/> = —(2? — 1)3, hence
(2.7)
/ 3 _1)3 2 _
() P Az +1)°+ Bz — 1)° + Cz(z* — 1) on (21,1),

T 4p2 2[4(z +1)2+ B(z — 1)2 4+ C(22 — 1)]3/2
which differs by a minus sign from the expression in (2.5) that holds on
(1,00). Equation (2.7) implies that I(17) = (24) /2 = (a2 —1)"1/2 >
0. Thus /() has a jump discontinuity at = 1. From (2.7) it follows
that

() = _4AC(z+1)* +4BC(z —1)* + (12AB 4+ C*)(2* - 1)
(2.8) - 2[A(z +1)2 + B(z — 1)2 + C(22 — 1)]5/2

on (z1,1).
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We need the following lemma for the sequel.

Lemma 2.1. Let p(x) be given in (2.1) with arbitrary A, B,C > 0.
If p(x) has real zeros, say —1 < zo < 21 < 1, then on (z1,1), l(z) is
positive and decreasing.

Proof. Consider I(z) = p'/4p®/? on (z1,1), where p(z) > 0. Since
p(17) = 4oco and p(z) is positive on (z1,1), we have p'(z;) > 0
and p’(17) > 0. Thus, if p’(x) changes its sign in (z1,1), this must
happen twice. In this situation the numerator of (2.7), m(z) =
A(z+1)*+B(z—1)>+C(z*—z), must have two zeros in (21, 1). But this
is impossible, since m’(z) = 3[A(z+1)?+B(z—1)?>+C(z2-1)]4+2C > 0
on (z1, 1) by the positivity of C' and p(x) there. Hence, p'(x) must have
a fixed positive sign on (21, 1). Consequently, I[(z) > 0.

By (2.8), the numerator of I'(z) can be written as
(2.9) 4C[A(z +1)* + B(z — 1)* + C(2® — 1)] + 3(4AB — C*)(z* - 1).

The first group of terms is positive on (z1,1) since p(z) > 0 there.
If p(xz) has two real zeros, they are, by (2.1), 201 = (B — A%
VC? —4AB/(A+ B+ C) and C? — 4AB > 0. Consequently, the last
term of (2.9) is positive on (z1,1) as well. Thus, I'(z) < 0 on (z1,1). O

Theorem 2.2. Let p(z) be given in (2.1) with A,B,C > 0. If p(z)
has real zeros, say —1 < zp < z1 < 1, then yi(z),y2(x) of (1.3)—(1.4)
are a fundamental system of solutions of (1.1) on (z1,1) with gjr(x),
J k = 1,2 continuous functions of x on the closed interval [z1,1].
Moreover, each of the functions qji(x), j,k = 1,2 is bounded by the
same bound for all A,B,C > 0.

Proof. First let us outline the formal transformations of [5] that lead
to (1.3)—(1.10). Equation (1.1) is written as

7' = Az, A:<0 1), Z:(y} y?).
p 0 Y1 Y2
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A sequence of linear transformations leads to Z = TV (I + Q)®, where
/4 o —1/4
p p
T = ,
<p1/4 _p1/4>
B 1 1+vV1412 -l
V21 + 2+ VI )2 l 1+ VIt

_ (a1 qi2 _ [ &XP fz‘mg A 0
= , d(z) = = .
Q21 G22 0 exp [, —A

As trace (A) = 0, we have det (Z) = const. Also det(T) = -2,
det (V) = 1, det (®) = 1. Therefore, Z is a fundamental system if
and only if the constant det (I + Q(z)) is nonzero. For z = a, we have
q11(a) = g21(a) = 0; therefore,
_ 1+qu(a)  quafa) ) _
det (I + Q(z)) = det < oila) 1+ qu(a)> =1+ g22(a).

So we have to show that go2(a) # —1 or analogously that ¢q11(b) # —1.
(In particular, det (I + Q(a)) = det (I + Q)(b) implies that gso(a) =
q11(0).) |g22(a)| < 1 is implied, for example, by the global estimate for
g¢;j(z) that was obtained in [5, (3.20)]. From the Voltera equations for
g;;(z) it follows that

o < ] [ 1] @+ g

llgjjll = suplg;j(z)|, J=1,2.
xT

(2.10)

This implies

LSy Ir(2)] dt]?

(2.11) lgjsll <
2~ 7o) deP?

provided that [ f ir(t)| dt}? < 1. But this indeed happens for [a,b] =
[21,1] (and for [a,b] = [1,00) as well). Recall that » =1'/2(1 + [?) and
by Lemma 3.1, l(x) >0, !'(z) < 0 on [z1,1]. Consequently,

/ | (t)|dt—/1|l’dt
LR AT )
1 12
—1
= [ ———dt
[ zem

- 7%[arctanl(1) — arctanl(z1)].
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Since I(z) is positive, decreasing and continuous on (21, 1), the variation
of arctanl(z) does not exceed 7/2 and f (t)|dt < m/4. Thus,

(le1 |r(t)|dt)? < (w/4)? < 1. Consequently, |q22( N < llgeel] < 1.
In a similar manner, we have

ory o< ot 2] [ i) ol

llgjkll = suplgjx(z)|, 4,k=1,2, k#3j.
Hence,

2f |r(¢)| dt

2.13 ginl| < —2a TEY
(213) lol < o=t

Similar considerations had been applied to the interval (1,00) in [5,
(3.20), (3.21), (5.7)]. o

3. The fundamental system near z = 1*. In order to connect
the solutions of (1.2) on (1,00) with those on [21,1), we compute the
asymptotic values of a fundamental solution y;,y2 on both sides of
x = 1. Since p(z) = ((a® = 1)/4)(z — 1)72(1 + O(z — 1)) > 0, we have

e
ANz) = (p+ (#'/4p)*)"/? = 5—=<(1+ O(z — 1)) > 0.
2(x—1)
In order to calculate a fundamental system near x = 11, we choose in

equations (1.3)—(1.6) a fixed point zg = zg in the interval (1,00). We
split the integral fXR Ads as follows.

R O
J bt e [

Here [['(A—a/2(s—1))ds — 0 as z — 1" and
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is a regular integral, so

exp (/R )\ds> _ (;_11>a/2em(1 +O@@—1))

near x = 1. For practical purposes it is convenient to take gz = 2.

Recall that the asymptotic approximations (1.3)—(1.6) for the interval
(1, 00), are such that

q11(1) = g21(1) = ga2(00) = g12(00) = 0.
Moreover, since [,, A(t) dt = +oo and [~ A(t) dt = +o0, we also have
q12(1) = g21(c0) = 0.

The value g22(1) = g11(00) is computed by the absolutely convergent
resolvent series of (1.7). Next, I(11) = —(24) /2 = —(a? —1)'/2 <0,

<l+ I >1/2_<a_1>1/2
V1+12 \ «a ’

and, together with p~1/4(z) = ((a®?—1)/4)"Y4(z - 1)Y/2(1+O(z - 1)),
we get from (1.3) that, near z = 11,
(3.1)

yl(x)=(3)1/2<°‘_1>1/4( (e )21 L Oz — 1)),

o a+1 TR — 1)o/2

For the calculation of y2(z) near z = 17, exp ffR Ads is replaced by
exp(— f;ﬂ Ads), we utilize gi2(1) = 0 and

VIt \ « ’

so by (1.4) we get

(3.2) y2(z) = (1 + g22(1)) <i> v (a + 1)”‘* (zr ;i)a/z

a—1
x (z —1)CoFD/2(1 4 Oz — 1)).
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The calculation of yj(z) and y5(z) requires the already known values
of exp ffR Ads, p~'/*(x), q11(1) = g21(1) = 0. Then we obtain

(3.3)
a—1)1Y4(q 3/4 eIR
yi(z) = ( 1)(2a)(1/2+ ) wn 1) (z — 1) D21+ Oz — 1)),
(a—1)%4a+ 1)V (zg — 1)2/2

yo(x) = —(1 4 g22(1))

(20)1/2 er

x (z— 1) D/2(1 4 Oz — 1))

near z = 11,

It is known [15] that the solution (z—1)©@+1/2(z41)B+D/2pleA) (3
of equation (1.2) is bounded at z = 1 while any other linearly inde-
pendent solution is unbounded at x = 1. On the other hand, it follows
from (3.1) and (3.2) that y;(z) is bounded at # = 1 and y2(x) is not.
Consequently,

(35)  yi(z) = Crlz — 1)@V 2 (@ + 1)PFVEPEA (g),

where C'g is a certain number independent of x. A comparison of
(3.1) with (3.5) and the well-known normalization PT(La’ﬁ)(l) = (n:a>
determines

1/2 1/4
CR _ z a—1 er /2(,3+1)/2 n—+ o .
a a+1 (zr — l)a/2 n

While P{*? (z) is explicitly expressed in terms of y;(z), note that
for Qg"’ﬂ) (z), Jacobi’s function of the second kind [15, page 73],
(x — 1)(@tD/2(z + 1)(B+1)/2Q£{1’ﬂ) (x) is a certain linear combination
of y1(x) and ya(z).

4. The fundamental system near x = 1~. The next step is to
produce a fundamental system of solutions y;,ys on (z1,1). We have

q11(21) = q12(21) = q21(21) = q12(1) = @21 (1) = g22(1) = 0.
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The values of ¢11(1), g22(21) are obtained from the absolutely converg-
ing resolvent series of (1.7) and (1.8).

In this section we calculate the fundamental system near x = 17.
Near x = 17, we have

A(m):‘ 1+0( 1) = (1+0(z 1)) > 0.

2(x—1) 21 —=z)

On the interval (21, 1), we choose in equations (1.3)—(1.6) a fixed point
x9 = xr, and rewrite the integral as

[oro] () [ (- sa)

Here [["(A — a/2(1 — s))ds — 0 as © — 1. Let us denote

exp (/L Ads) _ (11__2)_&/26%(1 +O@—1))

near z = 1~. Finally, [(17) = (a® — 1)"%/2 >0,

<l+ l >1/2_<Oé+].>1/2
V1+12 a '

Together with p~%/4(z) = ((a® —1)/4) Y41 —2)/2(1+ O(z—1)) > 0,
we get from (5.6)
(4.1)

B 2\ o+ 1\ e (—at1)/2
@ =0ram)(2) () o ae
X (1+ 0z — 1))

Then




APPROXIMATION OF THE JACOBI POLYNOMIALS 861

near x = 1~. For y(z), we get

o — 3/4 o 1/4 evr
vi(z) = (1+ qui(1)) ( 1)(2a)(1/2+ : (1—ap)e/?

x (1 —z)D/2(1 4 Oz — 1)).

(4.2)

For the calculation of y (), we replace exp(f;0 Ads) by exp(— f;o Ads).
After some manipulations, we obtain that

2\ /2 a—1 1/4 e 1L
(4.3) v (@) = (E) (a n 1) (1 —25)/?
x (1—zp)@tV/2(1 4+ Oz - 1)),

oy (@D a1 e
y2($) - (20[)1/2 (1 — IL)a/z
x (1—2) @ /21 4+ 0z -1)).

(4.4)

Now, near © = 17, ya(z) is the bounded solution and consequently
(45)  pa(e) = Ol = 2)*H/2 a4 )EF2 RO (2)
with a numerical factor Cr,. This is in contrast to the situation near x =

1F, where the solution y; () is related to (z — 1)(@+D/2(z41)B+1/2 »
piP) (). The normalization PT(La’B)(l) = (n:a> determines

(4.6) Cp= 2 V2 ra— 1\ e n+a
' 7 \a at+1) (L—zp)*/22@+02\ n )°

The usefulness of relations (4.5) and (4.6) will become apparent in the
sequel.

5. The fundamental system near x = 2;". In this section we
calculate the fundamental system yi,ys in the interval (27,1) near

r = z. Since p(z) has a simple zero at z;, the dominant part of
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AMz) = (p+ (p'/4p)?)*/? near 2] is p'/4p > 0. Therefore,
exp </ )\ds> = exp/ (Vp+ (p'/4p)2 — p'/4p) ds
TL rL

X exp/ p' /4pds

L

o < zj JzW’/Illf)%Lp’Mp) <pIEfL))>1/4'

Denote z

pds
or P+ (P'/4p)* +p'/4p

Here E(z,x;) is regular at © = z;". In equations (1.3) and (1.4) we
need the expressions

E(z,zr1) := exp

(5.1) p V4 (z) exp (/ Ads) = E(z,z1)/p"*(x1),

(52)  p~Yi(z)exp (/L .Y ds> - %p_lﬂ(x).

Since z; is a simple zero of p(x) and p(z) > 0 on (z1,1), we have

I(2]) = co and s
l
14 =2,
( \/1+12>

! 1/2
11— —= =0 at 2;.
( Vit 12> '
With ¢11(21) = g21(21) = 0, we get from (1.3) and (1.5) that

(5.3)
() = V2ED T (14 00— 21)),
p (CUL)
(5.4)
/ ! 1/2 ! 1/2
yl(x): |:(1+QI1)<1_ 1+lz> — Q21 <l+ﬁ> :|

E(z,zr) 1/2
p1/4($L)p (I) ‘) 07
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as zf . Thus, y;(z) is a solution which is characterized by the boundary
value y'(z1) = 0. Notice that the estimates in relations (5.3) and (5.4)
hold for n fixed.

The calculation of y2(z) near z; is slightly different. Since I(z;") = oo,
we get for a fixed value of n

l 1/2 1 4p3/2
5.5 1-— N —— = , as & — 2y .
(5.5) < V1+ l2> Vol V2 !

Together with (5.2) this yields near z = z;",

e

dp(zp)t/*

~ \/§E(x, zr)p' (x)

p(z),
which tends to 0 as z — z;". The other term of ya(z) in (1.4) is

I 1/2 z
q”(“m) p1/4($)exp</ _m)

~ \/5171/4(3%) —1/2
E(:E, l'L)

(x)qr2(x),

SO

1/4(
(5.6) ya(277) = m mllgﬂ <p*1/2(x)q12(33)> .

The limit at z;” is of the form 0 - co. Due to the importance of

y2(z) in the representation of pLd) (z), we proceed to show that
the function p~'/2(z)q12(z) can be obtained nevertheless by a regular
integral representation.

Proposition 5.1. The function p~/?(x)qi2(x) is continuous on
the closed interval [z1,1]. Moreover, it can be written as a sum of an
absolutely convergent series which is uniformly convergent and bounded
for all z € [z,1], A,B,C > 0, and A/C + B/C < p, where p is a
constant.
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Proof. To this end we write the Volterra equation (1.9) as

q12(z) = w(z) + L{g12],

w(z) = —/wlr(tl)exp < - 2/:1 )\ds> dt,
Ligis] = — /zl r(t)) exp < - 2/:1 )\ds> [/tl r(tg)qlg(tg)dtg] dt,

and express its solution as the absolutely converging resolvent series
(5.8) q12(z) = w(x) + Z L [w].

v=1
Let us multiply equation (1.9) by p'/2(z). It follows that the function

p V2 (x)qi2(z) satisfies

1

p (@) qua(x) = —/z r(ty) exp < - 2/: Ads)pl/z(:r) dt

(5.9) - /: r(t1) exp ( - 2/: Ads>p1/2(x)

X [/tl T(tg)qlg(tg)dt2:| dt;.

1

Notice that

(5.10) exp < -2 /: Ads)p_1/2(ac)
e )[4
e, (-2

= E*(z,t1)p (1),
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so equation (5.9) becomes
(5.11)
1

P2 (a)qus (@) = — / E2(, t)r(t0)p 2 (1) iy

x

_/:EQ(m,tl)r(tl)p—lﬂ(tl) [/1 r(t2)qia(t2) dtz] .

t1

Note that (5.9) and (5.11) are different ways to write
(5.12) p~ 2 (@)ar2(z) = p7 2 (@)w(z) +p~ /() Ligio] (2).

Since p,p’ > 0 on [z1,1] where z; is the zero of p(z), we have
A—p'/4p > 0, and so E(z,t;) < 1for z7 < z < ¢; < 1. Next,
the expression 7(t;)p~'/2(t;) is a continuous function on [z, 1]. To see
this, recall that r = 1’/2(1 + [?). Therefore,

1/2 A4 s _ 73p12 + 2ppll

“2a+ )’ P + 16p°

(5.13) P~
Since p has a simple zero at z; and a double pole at 1, it is easy to see
that (t1)p~'/2(t1) has limits both as t; — z;” and as t; — 1~. Hence,
rp~ /2 is a continuous function on [z1, 1] and E?(z,t1)r(t1)p~Y/2(t1) in
(5.11) is absolutely integrable on [z1,1] as a function of ¢;. It follows
that p'/2(z)qi2(x) as well as p~/2(z)w(z) are continuous functions of
z on the closed interval [z1,1] and p~/2(z)L[.](x) on the righthand
side of (5.12) is a Volterra operator with a continuous kernel.

The substitution of the absolutely convergent series (5.8) into the
righthand side of (5.12) takes this one step further and provides a direct
representation of p~1/2(x)qy2(x). It leads to the explicit representation

p~ (@) qr2(z) = p~*(@)w(z) +p~ 2 L[w](x)

+ > p ALY [w])(z)

v=1

(5.14)

in terms of an absolutely converging series for = € [z, 1].

Our next goal is to show that the series (5.14) is uniformly convergent
and bounded for the range of all parameters z € [z1,1], A,B,C > 0
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and A/C, B/C are restricted to a fixed, bounded interval. To this end,
rewrite p(x) as

(5.15) p(z) = Cp(z).

p(z) depends only on the ratios A/C, B/C. A straightforward calcu-
lation reveals that

_ _3ﬁ12 + 2ﬁﬁl!
1/2 _
(5.16) e o) = L2

is bounded for the entire range of x and the parameters. This, combined
with the fact that E2(x,t,)r(t1)p~'/2(t1) is bounded, leads to the
desired conclusion. ]

Finally, in (1.6),

1/4

5.17 (zF) = —(1 + M

(5.17) () = (1t an() B

and the fundamental solution on the righthand side of the turning point
21 18

(5.18) (yl({) y2(z?>

vi(z1)  wa(z))
[ V2E(z,zr)/p*(xL) V2pUY (xL)limI_}z;r(P_l/z(w)qu(x))/E(ZIL7 zr)
B ( 0 —(1+ g22(z))p"/ 4 (er) / E(=  zn). >
Note that the terms goa(2)") and lim,_,+ (p~'/2(x)qi2(x)) that are
evaluated by absolutely convergent resolvent series liberate us from
the need to utilize special functions.

This argument completes a global representation of the Jacobi poly-
nomials in [z, 00).
(5.19)
PLh) () = {yz(m)/CL(l — 2)@t/2(z 4 1)B+D/2 on [5,1],

" 1 (2)/Crlz — 1)E+D/2( + 1)E+D/2 on [1, 00).

By the above arguments, the seemingly singular expressions at x = 1
converge, in fact, to the same limit from both sides of x = 1.
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6. The Racah coefficients. Now let us focus on the Racah
coefficients Pr(banJra’anrﬁ)(ac) which is obtained from equation (1.2) as
a, B are replaced, respectively, by an + «, bn + 8. An elaboration on
the asymptotic behavior of y; (x) and on the Racah coeflicients, on the
interval [1,00), is given in [5]. We now augment it by the asymptotic
behavior of the Racah coefficients as n — oo on the interval [y, 1]. For
fixed numbers a,b, o, 3, and a > 0, b > 0, let
A= lim é

n—oo

~ lim ((an+a)? —1)/4

nsoon(n+an+a+bn+B+1)+ (an+a+1)(bn+5+1)/2

14+a+b+ab/2’

)
I
B
|

) (bn + B) — 1)/4

im

nsoon(nt+ant+a+bn+B+1)+ (an+a+1)(bn+8+1)/2
b2

l+a+b+ab/2’

Then, there exists

, B-A++V1-4AB
w:= lim z;(n) = ~ = .
n—o00 1+A+B

This is compatible with [6, equation (5)]. We are ready now to
formulate the next theorem.

Theorem 6.1. Let p(x) be given in (2.1) with A, B,C > 0 with «, 8
replaced, respectively, with an + «, bn + 3. Let p(z) possess two real
zeros —1 < zg < z1 < 1. Then

(i) on any closed subinterval I of (w, 1] the asymptotic approzimation
of the Racah coefficients is given by

-1 —1/4 T
P(an+a,bn+g)(x) ~ [L+O(n™)]p / exp(— fIL Ads)
" Cr(1 - z)(@ntatD/2(z + 1)bntAtD)/2

(6.1)

as n — o0.
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(il) In the vicinity of z1 and on any subinterval of [21,1) the Racah
coefficients are approzimated by (6.7).

(iii) At the turning point z; the Racah coefficients are given precisely
by (6.9).

(iv) On the interval [1,00) the Racah coefficients possess an asymp-
totic approrimation
(6.2)
[1+0mY)p~ Y4z expf Ads)

(an+a,bn+pB)
P ( ) CR(CL‘_ l)(a"+a+1)/2(a¢+]_)(bn+ﬁ+1)/ n — oo.

Proof. (i) Rewrite I(z) in (2.7) as

@)= L2 — 12 LA/O@+1)° + (B/C)(z —1)° + 2(a® — 1)
s 20(A/C) (@ + 1)2 + (B/O)(x — 12 + (a2~ P/

Notice that on every closed subinterval I of (w,1] the denominator
of I(z) is bounded away from 0 and that A/C, B/C are bounded.
Therefore, [(z) = O(n~!). Consequently,

(6.3) /w2 [r(t)]| dt = %[arctanl(xg) —arctani(z;)] = O(n™1),

Z1

uniformly for 1,22 € I. We are going to use the estimate (6.3), (2.11)
and (2.13) in combination with (1.4) and (4.5) in order to obtain the
desired formula (6.1).

By virtue of (2.11) the values ||g;;|| are finite. Moreover, from (2.10)
together with (6.3) it follows that on every closed subinterval I of (w, 1]
we have

b
[, |r(t)] dt]? s
(6.4) lgj5 ()] < llgjll < “b— =0(n™7).
[, ()] at]?
In a similar manner we have
2f |r(t)| dt

(6.5) lgjn ()] <llgjxll < =0(n™ ")

2—f| )| dt]?
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on the same subinterval I. By inserting these conclusions into (1.4),
we get

y2(w) 1+ O~ lp~ 4 exp ( - Ads),

and the result (6.1) follows. Note that equation (6.1) is not singular
at £ = 17 in spite of its singular apparent form. This follows since, as
in (4.3), the numerator has at = 1~ a zero of the same order as the
denominator.

(ii) In the vicinity of w = lim, o, 21(n), we write (1.4) as
(6.6) Plantabntf) g
_ la2(@)p” % (@) A+ U/ VIFE) 2+ (14 g2z () (L= (1/VIFE)/>p~ 12 (a)]

Cr(1—z)(antat)/2(g41)(bntB+1)/2

x pt/4(z) exp < —/ Ads).
zL

By (5.1)

p'/*(z) exp (— / ,\ds> = B~} (z,z)p"*(21);

L

hence, in the vicinity of w we keep the following approximation of the
Racah coefficients

(6.7) P{enteubnth)(z)
_ law@p (@) A+ U/ VIFPN 4 (14+a25(2)) 1= (I/VIFE) '/ >p /()]

Cr(1—z)(antatl)/2(g41)(bntB+1)/2
-1 1/4
x B (z,zL)p"*(xL).-

At this juncture the formula (6.7) is now further replaced by a simpler
asymptotic formula. This is so because of the following considerations.
Denote

! 1/2
(6.8) Ti(x) := qlg(x)p_1/2(m) <1 + \/ﬁ) ,

I 1/2 i
T2(x):=(1+q22(x>>(1m) p V2(a),
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that make up a factor in the numerator of (6.7) such that

Ti(z) + To(z) := [qm(m)p1/2(w)<1+\/1€r—12>1/2

Htam)(1- o= ) I/Zpl/Q(I)} .

The identity

(1 ~ I >1/2p_1/2(w) _ p—1/2(m)
Vi P T B ANV B/

_ 4p(z)
(1H2) /A [/T6058 (2) + (7' (2))2 45 ()] /2

ﬁ:p/ca

shows that T(2;) = 0. The term T5(x) does not converge uniformly
as n — 0o. Ty(z) cannot be discarded because the term Tj(z) does
not converge uniformly for x € [21,1] as n — oo and it is not known if
Ti(x) is bounded away from zero on [z1, 1].

iii) The behavior of y(z) at z = z; is given in (5.6), so at the
1 g

turning point z; we have
(6.9)
\/ilim,Hz;r (=12 (@)qr2(2)) B~ (21, 21)p"* (21

(an+a;bn+pB)
Pn (Zl) - CL(l _ zl)(an+a+1)/2(zl + 1)(bn+ﬂ+1)/2

(iv) Formula (6.2) follows from the uniform estimates in [5, page 182]
as a — oo, as follows. The precise formula for the Racah coefficients
on [1,00) is

(6.10) Plantabnth) ()
[(14012) (L VIFE) a1 (1= (1 VIFE) 2 Jp™ " exp( [T A ds)

- Cr(z—1)@ntatD/2 (g1 1)(brntBF/2

It is shown in [5, page 182] that

/100 Ir(t)|dt = O(a™"') as a — oo.
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Here we replace o by an + « and let n — co. It follows from (6.4) and
(6.5) that

q1(x) =0(n7?), (@) =0(n""),

uniformly on [1,00) as n — co. The uniform convergence of {(x) to 0
n [1,00) as n — oo is verified in [5]. This implies the desired result
(6.2). o
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