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ABSTRACT: Two inf.nite lower-triangula.r arrays, each of whose entries count unit-
step lattice paths, are presented and denoted by E* and E**. The paths of the
leftmost colu."''s of -R* and R** a.re counted by the RNA numbers. A bijection is
then constructed between the paths. Thus, two types of lattice paths are enumer-
ated by the RNA numbers. In addition, Iattice path and RNA connections to other
combinatorial objects a.re also given.
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1. INrRooucrroN

We consider two infinite lower-triangular arrays where the leftmost columns count
the following sequence of positive integers

{tr}r>o : {1,1,1,2,4,8,17,37,82,...}. (1)

The arrays are denoted by À* and R** and the first few entries are given below.
Note that the leading 1 of the sequence is not included in the leftmost colurnn of
-R**.

The numbers given bV (1) also count possible ribonucleic acid (RNA) secondary
structures of length n (n equals the number of nucleotides) from molecular biology
and are called ,RN,,4 numbers. See Sloane [14],[15] for more information on these
numbers. The single.stranded RNA molecule consists of a sequence of base pairs
derived from one of four nucleotides called: adenine (A), cytosine (C), guanine (G),
and uracil (IJ) where A bonds or pairs with U and G bonds or pairs with C. RNA
sequences are words defined over the four-letter genetic alphabet {A,U,G,C}. A
Iinear sequence of such bases is called the primary stracture. When an RNA mol-
ecule folds back on itself and forms new hydrogen bonds that form heiical regions,
the sequence is then referred to as the secondary str-ucture. The following I{NA
sequence
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is an example of a primary secondary structure of length n : 27. This sequence
when folded in two dimeusions is referred to as a cloverlea"f, in the biological lit-
eratule, and is the secondary structure assumed by transfer RNA molecules, see

Schmitt a.:rd Waterman [10]. The best pointer to the firnctionality of aa RNA mole-
cule is its overall three dimensional structure called t}.Le tertiary structurc. We note
that the three dimensional RNA folding problem is a difficult problem in compu-
tational biology. However, important in-formation can be obtained from knowledge
of its' primary aud secondary structures - the linear sequence and Watson-Crick
pairing of constituent bases. RNA molecules have important roles in regulating
protein-coding genes and catalysis [2].

The enumeration of RNA secondary structures was first studied, from a graph
theoretic point of view, by Waterman [20].

Definition t.L. A secondary structure i,s a graph on the set of n labeled points
po'ints {L,2,. . . ,n) such that the adjacency matrir A: (atl) has the following three
properties: (i) oo,t+t:L for 1<? < n-1, (ii) For allfired,i,L<iln,thereis
at most one a,;i : I where j + i,+1, and, (ii,E If aij : aH: t, where i,< lQ < j,
theni<l<j.

If. aii :1, i and j are said t'o be bond,ed. Thus, if s (n) denotes the total number
of secondary structures defined on n labeled points, then the associated recurrence
relation is

s(0):1,s(1) :L,s(2):1 and fot n)2
n-I

s(n + 1) : s(n) + D'0 - I)s(n - j).
j:1

Donaghey [L] uotes that the RNA numbers ca,n also be computed by the following

sum
sr 7 /"-/c\1rù-k\\ _f

k"-k\ re )\n-t)'
For n,k > 0

s(n,k):!(:-Í\1"-k-1\rqr+t/\ k-r )
counts the possible mrmber of RNA structures of length n with exactly ,k basepairs

[10],121]. See Jin eú. al. [4] for au interesting extension and new proof of this
formula. The generating firnction for the RNA numbers, which can be derived from
the recurrence relation, is

\-s\z) - lsnz'' :
n)O

l-z-lz2-W

Proofs of the recurrence relation and generating function can be found in the refer-
ences l3l, [8], [20], and [21].

We now defiae the type of lattice paths discussed in this paper.

(3)
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Deffnition L.2. A NSE lattice path i,s 0, sequence of contiguous and, reuersible unit
steps that trauerse the two di,mens'ional 'integral lattice Z2. The step directi,ons are
(0,1) : N (North or up), (0, -1) : S (South or doum), and (L,0) : A (East or
right). AII patlus begin at the origin and moue un'it steps accordi,ng to the foltouíng
restrictions. The paths are cons,idered to be in the first quadrunt of the (r,y) plane
and, neuer pass below the r-o,s'is. The length of each path is the number of unit steps,
and, the height corresponils to the y ualue of the endpoint (r,A) of the path.

Wè denote NSE* as the set of unit step lattice paths that satisfy Definition 1.2
and do not have consecutive pairs ofN and S steps. It is know that the nxk anay
.R* counts unit step NSE* lattice paths where n is the length of the path and ,b

the height [6],[7]. For instance, illustrated below, NEESNEESEE is a NSE* path of
length 10 ending at height k:0.

o -----+ --+ o o ------+ ---+ o

î tî t
a o o o -----+ -----+x

NSE* Path

Theorem l.L. (161,[7]) There is a bijection betweenthe set of unit-step NStr tattice
paths of length n end,ing at height k :0 and the set of RNA secondary stractures
of length n.

Thus, the paths of the leftmost column of .R* a.re counted by the RNA numbers
and bijective with RNA secondary structures. In this paper we will show that the
n x lî, array À** also counts a certain subset of unit step NSE lattice paths with
certain restrictions. Moreover, we will construct a bijection between the lattice
paths counted by the leftmost columns of ,R* and E**. As a result of this two types
of lattice paths emrmerated by the RNA numbers are given. In addition, lattice
path and RNA connections to other combiaatorial objects are given.

2. L.trrrcn Petu INronpRETATroN oF fi**
A lattice path interpretation of -B** is given in this sectiou, and we prove .l?**

is a Riordan matrix. A Riorda;r matrix is now defined and depends upon certain
formal power series.

Definition 2.1. An infinite matris L: (ln,x)n,x>o lnith com,pler entries C i,s catted
a R'iordan matrix if the kth column satisfi,es

Dtn,orn :: g (z) (Í (r))k
n)0

where g(z):tl-gtz*gzz2 *... and f Q): f1z* f2z2 * Ízz3 *... belong to the
ring of forrnal power series Cllzll and h * 0.

The coeffcients of the formal power series corresponding to g (z) and 9 (z) (Í (r))o
represeat the column entries of a Riordan matrix. The concept of representing
columns of infinite matrices by coefficients of formal power series is not new and



4

goes back to Schur's paper on Faber polynomiats [11]. A formal povrer series in
auxiliary variable z of the form

b (z) : bs * hz * b2z2 + .. . - Db-r"
n)O

is called an ord'inary generating Junct'ion of the sequence {4,}. For instance, as

earlier stated Equation (3) is the ordinary generating firnction for the sequence of
RNA numbers. We note that a Riordan matrix can be defiaed by a pair of generating
firnctions as -L: (SQ),Í(")). Pascal's 11iangle1 written in lower triangular form,
denoted by

P:(7lG-"),zl$-z))
is ffiically given as an exampie of a Riordan matrix. Note that À* is also a
Riordan matrix [6],[7]. We mention here that the set of all Riordan matrices forms
a noncommutative group call the R'iordan group. See Shapbo et. al. 112] and
Sprugnoli [16] for more on this interesting group.

One key poi:rt when working with Riordan matrices is to find the matrix for-
mation rule. A formation ru,\e, wLúch we denote by lZ;A], is a recurrence relation
which defines the way entries of a Riordan matrix are computed. The notation [Z; A]
means "2" coircides with the formation of the zeroth column and "4" coincides
with the formation of the other columns. In addition to this notation, formation
rules are also denoted by dot diagrams. $ss N{s1ìini, et. aI. [5] for dot diagra,rns
and related properties of Riordan matrices.

Following Rogers [9] and Merlini, et. al. [5], with minor adjustments, we
give two usefirl characterizations of a given Riordan matrix. The formation rules
which determine Riordan matrices a.re called A- and Z-sequences. The Z-sequence
(Z : {ro, zt, . . .)) cha,racterizes the zeroth column. This means every element 1rr..1,6

can be erpressed as a linea,r combinatioa of all the elements in the preceding row,
i.e.,

ln+r,o : zsln,6 * zúnJ I z2ln,2 * ... .

The A-sequence (A:{a0,ar,...}, ao*0) characterizes the other columns. In
this case every element 12..,.1,1r..,.1 can be expressed as a linear combination with
coefrcients in A of the elements in the preceding row, sta.rting from the preceding
column on, i.e.,

ln+.L,k*t : aoln,lc * a1ln,1"*1 I a2ln,1r*2 + '" .

Thns, if A (g) and Z (y) arc the generating fi:actions (in auxiliary rariable g) of
the A- and Z-sequences, respectively then for a given Riordan matrix the generating
firnctions g (z) arÀ f (z) arc the solutions of the functional equations

Í (") : zA(f (z)) and s (z) : sol (L - zz (J Q)\ . (4)

Conversel5 A (g) and Z (y) can be determined by letting y : I Q) and elirninating
z from

A(y) : ylz aln.d Z (y) : (g (r) - gù lzs Q) . (5)



Example 2.L. The format'ion
Z(a):LandA(y):7*a.
below.

L'P- t L'Pn,k+l
\r\.t

Pn

A - sequence

The formation rule of -R** is aow given. As examples of the way the entries of
ft** are formed, we refer back to (2) and observe that the second column entry g is
computed by 4*4 + 3 - 2 and the leftmost column entry 8 is computed by 4* 4.
The following diagrams:

(b) 4

illustrate the formation rule of the above examples. These patterns continue to form
all of .R**. Ln general, the (rz, k)th entry of R*' is formed and computed recursively
by Proposition 2.1.

Before proving the proposition we denote NSE** as the set of unit step lattice
paths that satisfy Definition 1.2 and do not have consecutive pairs of S and N steps.
Thus there a,re no paths with SN steps. For instance, the path NEESNEESEE given
above is not an example of a NSE** path. By letting s(n,la) denote the number
of unit-step NSE** lattice paths of length n and height /c, the recurrence relation
below is proved combinatorially in terms of NSE** paths .

Proposition 2.1. Gi,uentheinittalcond,i,tion s(0,0) :1, thenforn) 0 and,k) 7,
s(n+1,k) satisfi'es the following relations where (a) i,s defined for the leftmost
column of R"* and (b) i,s d,efi,ned, for the other columns of R**:

(a) s (n + 1,0) : s(n,0) * s(n,, 1)

(ò) s(n+1,k) : { :t",:*,---t]1:("'k)+s(n,k+1)- s(n-L,k)
L U, c/K>n+L

Proof. Suppose a unit-step I,ISE** lattice path of length n and height k is given.
Then, to form a new path of length (n + 1) and height ,k consider the following
cases. Case (i): if the given path has length n and height ,k - 1, then on the last
step there is 1 choice for height k- 1 (the N step). In this case, all paths whose last
step is N are counted by s (n,k - 1). Case (ii): if the given path has length n and
height È, then on the last step there is 1 choice for height k (the E step). In this
case, all paths whose last step is E are counted by s (n, È). Case (iii): if the given
path has length n, and height ft + L, then on the iast step there is also 1 choice for

5

rale of the Pascal matri,x P i,s [\,O;L,L] where
In general, Pn*t,k*l is computed as illustrated,
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height k + 1 (the S step). In this case, all paths whose last step is S are counted by
s (n,k * 1) . Case (iv): if the given path has length (" - 1) aad height k, then the
Iast possible sequence of steps for height k is SN (south, north steps). The paths
srith SN steps a,re bad paths since paths with consecutive S and N steps a.re not
allowed. Therefore, these paths are removed from the count by -s(n- 1,/c). In
this pariicular case, all paths whose last consecutive sequence of steps is SN are
counted by s (n - 1, k). The over count occurs as a result ofthose paths counted by
s(n,k - 1) whose next to last step is S. Combining all of the cases give all possible
ways of forming a new (n + 1)st path of height k. Applying the addition principle,
recurrence relation (a) is proved. Part (b) is easy to prove by similar reasoning.n

Remark 2.1.. The A-sequence oÍ R** 'is not un'ique s'ince it i,s easg to show R**
has another A-sequence that i.s the same as the A,-sequence of R*. See 16l and l7]
for more d,etails.

We now prove .R** is a Riordan matrix. The geuerating fi:nctions that form the
columns of -R** are now derived. Recall from Definition 2.1 if .R** is Riordan, then
each column is of the form g (r) U QDk for k > 0. By the formation rule of .R**
(i.e., Proposition 2.1), the lcth column generating firnction is defined as

sfk : " 
(sÍo-' + sfk + sÍ*+t) - "2sfk.

Solving for / gives Í : z + (, - r') I + rf2. Now, solvine "f in terms of f (z) and.
simplifying, /(z) becomes /(z) : zs(") where s(z) is defined by Equation (3).
simil6xly, the leftmost column generating firnctions is defined as 9 - l-t z (g + sf) .

Simplifying this equation and expressiug g in terms of 9 (z) gives

sQ): z-1(s(z) - 1): !-z-22-W

The coefEcients of the generating function g (z) count unit-step NSE** lattice paths
of length n, endiag at height ,b : 0. These coeffi.cients are indeed the RNA numbers
given by (1) minus the leading 1. Thus, E** is given a lattice path interpretation
and defined as the Riordan matrix

R** : (r-t (" (r) - t) ,zs(z)) .

3. BurcuoN BntwnBlr NSE* .c.No NSE** PATHs

A bijection is constructed between unit-step NSE* and NSE** lattice paths in this
section. Since both sets count the RNA numbers, there exists a bijection between
the sets.

Theorem 3.t. There is a bijecti.on between the set of uni.t-step NSÈ lattice paths
of length n * 1 end'ing at height, k :0 and, the set of uni,t-step N^9À** latti,ce paths
of length n end'ing at height k :0.

Proof. First, we show how the unit steps of a NSE** lattice path of length n
and height k:0 a,re assigned. To establish the required correspondence, let J* be a
unit-step NSE* lattice path of length n * 1 and height ,t : 0. Recall from Theorem

223
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1.1. that the NSE* paths a^re isomorphic to RNA secondary structures of length n,
and the paths have a linea,r representation. IJsing this representation, write l* in its
linear form as a sequence of integers increasing in order from left to right along a
horizontal axis where the corresponding N and S steps a.re joined by an arc. By the
way NSE* paths are defined no two adjacent points a,re connected by an a,rc and no
two arcs intersect. Thus, in the construction l* is considered to be in linea,r form.

To form a NSE** path l** of length n, the correspondence is set up according to
the following rules. Given l* in linea"r form, write zr of the integer points of l* as

a sequence of integers increasing in order from left to right along a horizontal axis
omitting the (ro + 1)st point. Then starting on the left, join the arcs by leaving the
lefb arc point in place and shifting each right arc point one unit to the left. By doing
this, a linear representation is formed for l** where the joining a,rcs represent from
left to right NS steps and the remaining unjoined points represent E steps. In this
construction there is always an E step or a sequence of E steps between consecutive
S and N steps since the paths a,re of height 0 and never go below the r-aris. The
special cases of the correspondence are now given. The origin of the NSE* paths
is assigned to the empty (zero) path of the NSE** paths. And, the NSE* path of
length 1 which is the E step is assigned to the origin of the l{SE** paths. Therefore,
a NSE** path l** of length n is formed. The correspondence is constructed and
reversible. Thus, the correspondence is one-to-one and the theorem is proved.l

As an example of the correspondence consider l* to be the unit-step NSE" path
NEESNEESEE previously given above. By the rules of the correspondeuce, the
unit-step NSE** path NESENESEE of length 9 in linea.r form is obtained. See

Figure 1 where from left to right joined arcs are denoted by N and S steps and
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non-a,rcs by E steps. See 16] and [7] for more dsfa.ils on the correspondence between
RNA structures a,nd l.[SE* paths.

Remark 3.L. We point out here that some NSÈ* paths are cornistent uith RNA
sttactures and, some are not. Forinstance, the NSI** path NESENESEE assoc'iated,
with Figure f is consistent wi,th RNA. Howeuer, NSI** paths ruith NS steps are not
cons'istent uith RNA structures. The RNA stractures associated, with these type of
paths uiolate the Watson-Cri.ck pai,ring. Although some NSf** paths are also NStr
paths, a subset of NSI** paths we not related to RNA. The 'ínteresting po,i,nt here
i.s that the NS/" paths are bi,jectiae utith RNA while the /f^9È.* paths are not.

4. NoNcnossrNc PARTTTToNS AND OtueR PerH BrJscrroNs

To find a combinatorial relation between the RNA numbers and noncrossing
partitions consider the set [n] :: {1, 2,. . . ,n). A partition n' of [n] is said to be
noncross'ing if 1< a <b <c<d, 1n andif .B1 and 82 are blocksof zrsuch
that a, c € 81 and b, d, € B,2, then .B1 : Bz. That is, given that the conditions are
satisfi.ed, a, b, c and d a,re all in the same block. As a.n exa,rnple of a noncrossing
partition of [6] : {I,2,3,4,5,6} consider

r: 151241316 (6)

where the slashes separate the blocks. The linear representation of n can be illus-
trated where successive elements in the same block are joined by a,rcs.

Following Simion and lJllman [13], a word ar of length n - 1 over the alphabet

{b,e,l,r} can be associated with a noncrossing partition zr. See the reference for
detailed definitions of each letter in the alphabet. By eliminating the letter r and
the consecutive pair of letters ó and e from any potential word, auother word tu*
ca,n be defined over the alphabet {b,e,l,l. The word uf caa also be associated
with a noncrossing partition a'. For exarnple, the noncrossing partition given by (6)
is associated with the word u* (tr) : bbleel. A oue.to-one correspondence between
noncrossing pa^rtitions associated with tu* and the NSE* lattice paths is constructed.
The correspondence is constructed according to the following rules: b -* N, e * S,

and I -+ E where the arrow means "conesponds tot'.
Irr addition to the correspondence between noncrossing partitions associated ul

and the NSE' paths, a one-to-one correspondence is also constructed between non-
crossing partitions associated with another word u,f* and the NSE** paths. In this
ea,se, uf* is defined over the alphabet {b,e,l,r} where now the letter r is not elimi-
nated. However, the consecutive pair of letters b and e remain eliminated from the
formation of any potential word. This pa,rticular correspondence is set up according
to the following rules: b -r N, e - S, I -r E and r -+ NS. For exa,rnple, the noncross-
ing partition given by (6) is now associated with the word ru** (tr) : AreI. Thus, by
way of both sets of lattice paths ( NSE* and NISE**), combinatorial relations are
established between certain subsets of noncrossing partitions and unit-step lattice
paths.

A topic of interest in lattice path combinatorics is the enumeration of pairs of
nonintersectiag lattice paths. Thus, another lattice path bijection is constructed
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where the correspondeace is set up between NSE** paths and pairs of norrintersect-
ing paths. Moreover, a one-to-one correspondence between pairs of nonintersecting
unit-step lattice paths of length n and unit-step NSE** Iattice paths of length n
and height 0 is constructed.

Consider pairs of noniatersecting paths in the integer lattice Z2 both starting at
the origin and proceerling in either a unit step E or N (east or north) direction such
that the pair do not meet again after leaving the origin until the núà step. The
noncrossiag condition is relaxed in the sense that two paths may touch but may
not cross. The path steps are restricted such that there are no pair ofN steps, and
no pair of N arrd E steps follow a pair of E and N steps. This means there a,re no
double north steps and no parting pair of paths last step is the núà step.

For a given NSE** path, the correspondence is set up according to the following
ruLes: N -t NE, S -* EN, and E -- EE where the arrow means "corresponds to".
For the NE pair, the first path proceeds in the N direction and the second in the E
directiop.. Likewise for the EN pair, the first path proceeds in the E direction and
the second in the N direction. As an exa,mple, the NSE** path NNSSE corresponds
with the path pair NE-NE-EN-EN-EE. The figure below illustrates the noncrossing
path pair of the example where the slrrrbol " o " denotes the origin of the path, the
up arrow "f" denotes N steps, the horizontal arrow "--+" denotes E steps, a,nd the
horizontal 3;'1'es7 t'==9" denotes double E steps .

o ---+ --) o -+
îî
îî
a --+ --+ o

Nonintersecting Path

The correspondence is reversible. Thus, the correspondence is oneto.one and the
bijection betweeu path pairs and NSE** paths is established.

The RNA numbers elso count peak free Motzkin paths. These are unit-step
lattice paths with steps (1, 1) : U (Up), (1, -1) : D (Down), and (1,0) : L (Level)
that stay in the upper half plane sta.rting at the origin and ending on the r-axis.
These paths have no peaks in the sense that there are no paths with consecutive U
and D steps. For insf,a,pss, illustrated below, LULLD is an exa,mple of a peak free
Motzkin path of length 5 ending at height k : 0.

o 
--+ 

--+ o
v

a ------+ o x

Motzkin Path

A bijection can easily be constructed between these Motzkin paths and IrISE*
paths of length n. The correspondence is constructed according to the following
rules:

U --+ N.D --+ S. atd L --+ E.
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5. OrnBR Appr.q,nA.NcES oF rHE RNA NuMeBns

The Narayana numbers are also of combinatorial interest and are defined as
N (n, k) : *(i) (r1r) for n ) 1 a.nd lr > 1. These m:mbers car be put into infinite
lower-triaagular matrix form, denoted as N. The trirngle -ly' is not Riordan, and
the frst few entries are

t:I
It is known that the row surns of -lf a.re tbe nth Catalan mrmbers

L l2n\
"": a "1" 1

[19]. The numbers q' occur in a wide va^riety of combinatorial problems and alge.
braic applications (see [17]). A combinatorial interpretation of N is that N(n,,/c)
counts the mrmber of Dyck paths of length 2n, with k peaks. A Dyck path is a
path in the first quadrant, which begins at the origin, ends at (2n,0), and con-
sists of north-east and south-east steps. l{ote, the sequence of diagonal slices
1, 1, 1+ 1, 1+3, 1+6+ 1, . . . of the N triangle give the first few RNA mrmbers. This
can be proved by using generating functions, where the bivariate GF associated
with the Na,rayana munbers is noted by Stanley [17].

Several appearances of the RNA numbers related to planar trees are in [1]. Other
combinatorial applications and interpretations of the RNA numbers are discussed
in [18].
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